
Lec ture / P rednáška

{dev}

{dev}
{d

ev
}

{dev}
Software Architecture

Microservices and Containers

Mgr. Pavle Dakić, PhD. student

pavle.dakic@stuba.sk

Software Architecture

Overview

3

• Evolution of Computing
• Historic Timeline of Unix Containers
• The challenge in new matrix and the complexity of

microservices
• What is containerization?
• What is a container?
• Benefits of containerization
• Types of containerization – OCI
• Microservices and containerization
• What is Docker?
• Practical example

Used sources are listed on the literature slide

Evolution of Computing

4Source: docs.docker.com

History and Multi-Dimensional Evolution of Computing #2

5

The challenge in new matrix and the complexity of microservices

6

Historic Timeline of Unix Containers

7

UNIX V7 added chroot 1979
FreeBSD Jails 2000

Linux vserver 2001
Oracle Solaris Zones 2004

openvz 2005
Process Containers 2006

cgroups in Linux Kernel (2.6.24) 2007
AIX (6.1)WPARS 2007

LCX 2008
Warden 2011

LMCTFY 2013
Docker 2013

rkt 2014
OCI 2015

8

What is containerization?

What is containerization?

• Containerization is the packaging of software code with just the operating
system (OS) libraries and dependencies

• Create a single lightweight executable called a container that runs
consistently on any infrastructure

• More portable and resource-efficient than virtual machines (VMs)

• Containers - compute units of modern cloud-native applications

9

Use of containers

10

Application containerization

• Containers encapsulate an application as a single executable package of
software

• Bundles application code together with all of the related configuration files,
libraries, and dependencies required for it to run

• Containerized applications are “isolated” in that they do not bundle in a
copy of the operating system

• Other container layers, like common bins and libraries, can also be shared
among multiple containers

11

What is a container?

• Container ≠ VM
• Isolated
• Share OS
• and sometimes bins/libs

12Source: docs.docker.com

1 2

13

1

2

3
4

5

APIs

14

Benefits of containerization

• Containerization offers significant benefits to developers and development
teams

• Agility: The open source Docker Engine for running containers started the
industry standard for containers

• Simple developer tools and a universal packaging approach that works on
both Linux and Windows operating systems

• Speed: Containers are often referred to as “lightweight,” meaning they
share the machine’s operating system (OS) kernel

15

Benefits of containerization #2

• Fault isolation: Each containerized application is isolated and operates
independently of others

• Efficiency: Software running in containerized environments shares the
machine’s OS kernel

• Application layers within a container can be shared across containers

16

Benefits of containerization #3

• Ease of management: A container orchestration platform automates the
installation, scaling, and management of containerized workloads and
services

• Security: The isolation of applications as containers inherently prevents
the invasion of malicious code from affecting other containers or the host
system

17

Types of containerization - OCI

• The rapid growth in interest and usage of container-based solutions

• Led to the need for standards around container technology and the
approach to packaging software code

• The Open Container Initiative (OCI), established in June 2015 by
Docker and other industry leaders

18

19

https://opencontainers.org/

https://opencontainers.org/

Types of containerization - OCI #2

• Promoting common, minimal, open standards and specifications around
container technology

• Users will not be locked into a particular vendor’s technology

• They will be able to take advantage of OCI-certified technologies that allow
them to build containerized applications

20

Microservices and containerization

• Software companies large and small are embracing microservices as a
superior approach to application development and management, compared
to the earlier monolithic model

• With microservices, a complex application is broken up into a series of
smaller, more specialized services, each with its own database and its own
business logic

• Microservices then communicate with each other across common interfaces
(like APIs) and REST interfaces (like HTTP)

21

Microservices and containerization #2

• The concepts behind microservices and containerization are similar as both
are software development practices

• They essentially transform applications into collections of smaller services or
components which are portable, scalable, efficient and easier to manage

• Microservices and containerization work well when used together

• Containers provide a lightweight encapsulation of any application, whether
it is a traditional monolith or a modular microservice

22

Microservices and containerization #3

• Cloud-based applications and data are accessible from any internet-
connected device, allowing team members to work remotely and on-the-go

• Cloud service providers (CSPs) manage the underlying infrastructure

23

Microservices and containerization #4

• Saves organizations the cost of servers and other equipment and also
provides automated network backups for additional reliability

• Cloud infrastructures scale on demand and can dynamically adjust

• Computing resources

• Capacity

• Infrastructure as load requirements change

24

25

Microservices and containerization #4

• CSPs regularly update offerings, giving users continued access to the latest
innovative technology

• Containers, microservices, and cloud computing bring application
development and delivery to new levels

• This is not possible with traditional methodologies and environments

• These next-generation approaches add agility, efficiency, reliability, and
security to the software development lifecycle

26

27Source: https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-microservices/aks-microservices

Security

• Containerized applications inherently have a level of security since they can
run as isolated processes and can operate independently of other
containers

• This could prevent any malicious code from affecting other containers or
invading the host system

• In terms of resource efficiency, this is a plus, but it also opens the door to
interference and security breaches across containers

28

Security #2

• For example, Linux Namespaces helps to provide an isolated view of:
– the system to each container
– networking
– mount points,
– process IDs
– user IDs
– inter-process communication
– and hostname settings

• Researchers are working to further strengthen Linux container security, to
automate threat detection and response across an enterprise, to monitor
and enforce compliance to meet industry standards and security policies

29

What is Docker?

• Docker is both a Company and Technology

• While Docker has been playing a key role in adoption of the Linux container
technology, they did not invent the concept of containers

• However, they have made the technology consumable by mere humans

30Source: docs.docker.com

What is Docker? #2

• Docker is a software platform that allows you to build, test, and deploy
applications quickly

• While packaging software into standardized units called containers

31

Docker Architecture

• Docker client – Command Line Interface (CLI) for interfacing with the
Docker

• Dockerfile – Text file of Docker instructions used to assemble a Docker
Image

• Image – Hierarchies of files built from a Dockerfile, the file used as input to
the docker build command

32Source: Docker docs and https://docs.docker.com/glossary/

docker ps

Docker Architecture #2

• Docker Engine - Creates, ships and runs Docker containers

• Container – Running instance of an Image using the docker run command

• Registry – Image repository

• Docker Hub (Public) or Docker Trusted Registry (Private)
– Cloud or server based storage and distribution service for your images

33

34

35

The Docker ecosystem

36

Docker images

• Docker Hub

37

Docker images #2

• Images are comprised of
multiple layers, multiple
layers referencing/based on
another image (Union File
System)

• It is possible to build your
own images reading
instructions from a
Dockerfile

38

FROM centos:7

RUN yum install -y python-devel python-virtualenv

RUN virtualenv /opt/pyapp/venv

COPY runpoint.sh /opt/runpoint.sh

EXPOSE 8000

ENTRYPOINT /opt/pyapp/runpoint.sh

Dockerfile example

An image is a collection
of files and some meta
data

docker-compose

• Allows to run multi-
container Docker
applications reading
instructions from a
docker-compose.yml
file

39

version: "2"
services:
 example-application:
 build: ./
 ports:
 - "8000:8000"
 environment:
 - CONFIG_FILE
 db:
 image: postgres
 redis:
 image: redis
 command: redis-server --save "" --appendonly
no
 ports:
 - "6179"

docker-compose.yml - example

$ cd example-docker
$ docker-compose up

Bash - terminal

1

2

Docker Flow

40

Image Container

Operating System

Software
Application Code

Run

Cluster in CloudLocal environment

Source: docs.docker.com

DevOps Cycle

41

1 Plan

2 Code

3 Build

4 Test

5
Release

6
Deploy

7
Operate

8
Monitor

What is Docker Bridge Networking?

docker network create -d bridge --name bridgenet1

Bash

Docker host

42

Docker Bridge Networking and Port Mapping

43

docker container run -p 8080:80

Bash

Host port Container port

1 2

44

45

How Containers are Being Used?

• Developer productivity a top use case today

• Building out CI/CD pipelines

• Consistent container image moves through
pipeline

• Preventing “it worked in dev” syndrome

• Application modernization and portability are
also key adoption drivers (Prem <-> cloud)

46Source: THE EVOLUTION OF THE MODERN SOFTWARE SUPPLY CHAIN, DOCKER SURVEY 2016

Why Containers?

47

•Quickly create ready-to-run
packaged applications, low cost
deployment and replay

•Automate testing, integration,
packaging

•Reduce / eliminate platform
compatibility issues

•Support next gen applications
(microservices)

•Improves speed and frequency of releases,
reliability of deployments

•Makes app lifecycle efficient, consistent and
repeatable – configure once, run many
times

•Eliminate environment inconsistencies
between development, test, production

•Improve production application resiliency
and scale out / in on demand

Why developers care for
containers?

Why management cares?

Good Use Cases for Containers

48

Ready to Run Application Stacks
– Excellent for Dev/Test setups

– Deployment in Seconds, not Hours/Days

– Start Up, Tear Down Quickly

One-Time Run Jobs and Analytics
– Run the Job / Analysis and quit

Front-End App Servers
– Highly horizontally scalable
– Fast A/B
– Rolling Deployments
–Traditional Technologies -

Backend

New App Dev & Microservices
– Refactor all or part of legacy app

– Containers are great for Microservices

Server Density
– Containers can use dynamic

ports

–Run many of the same app on
a server
• instead of one per VM

OpenShift

• A layer called OpenShift can be added to Docker and Kubernetes to make it
simpler and more accessible for developers to build apps

49

• Web-based Console

• Command-Line Tool

• Logs and metrics

• Templates

OpenShift goal → ready-for-production and scaling

https://www.ibm.com/products/openshift

50

51

Cloud environment and testing for students

• Azure Dev Tools for Teaching
• https://aka.ms/devtoolsforteaching

• IBM Cloud free tier
• https://www.ibm.com/cloud/free

• Oracle Cloud Free Tier
• https://www.oracle.com/sk/cloud/free/

52

https://aka.ms/devtoolsforteaching
https://www.ibm.com/cloud/free
https://www.oracle.com/sk/cloud/free/

QUESTIONS?

53

Literature
1. https://www.ibm.com/topics/containerization
2. https://docs.docker.com
3. https://www.royalcyber.com/technologies/red-hat-openshift/

54

https://www.ibm.com/topics/containerization
https://docs.docker.com/
https://www.royalcyber.com/technologies/red-hat-openshift/

Mgr. Pavle Dakić, PhD. student

Coffee Break

pavle.dakic@stuba.sk

Software
Architecture

Mgr. Pavle Dakić, PhD. student

Exercises

pavle.dakic@stuba.sk

Software
Architecture

Basic Docker commands

docker image pull node:latest
docker image ls
docker container run –d –p 5000:5000 –-name node node:latest
docker container ps
docker container stop node(or <container id>)
docker container rm node (or <container id>)
docker image rmi (or <image id>)
docker build –t node:2.0 .
docker image push node:2.0
docker --help

57

Bash - terminal

List Docker networks

docker network ls
docker network inspect bridge

59https://docs.docker.com/get-started/02_our_app/

https://docs.docker.com/get-started/02_our_app/

60https://docs.docker.com/get-started/03_updating_app/

https://docs.docker.com/get-started/03_updating_app/

Portainer

docker pull portainer/portainer-ce
docker volume create portainer_data

docker run -d -p 8000:8000 -p 9443:9443 --name portainer
portainer/portainer-ce:latest

docker run -d -p 8000:8000 -p 9443:9443 --name portainer --
restart always -v
\\.\pipe\docker_engine:\\.\pipe\docker_engine -v
portainer_data:C:\data portainer/portainer-ce:latest

LiteSpeed

docker pull litespeedtech/litespeed:latest
docker pull litespeedtech/openlitespeed:latest

docker run --name litespeed -p 7080:7080 -p 80:80 -p 443:443 -
it litespeedtech/litespeed:latest

docker run --name openlitespeed -p 7080:7080 -p 80:80 -p
443:443 -it litespeedtech/openlitespeed:latest

docker ps

LiteSpeed #2

docker exec -it openlitespeed bash
cat /usr/local/lsws/adminpasswd
/usr/local/lsws/admin/misc/admpass.sh
/usr/local/lsws/conf/vhosts/

LiteSpeed #3

Create new vhost
cd /usr/local/lsws
mkdir Example2
mkdir Example2/{conf,html,logs}
chown lsadm:lsadm Example2/conf

MySQL

docker pull mysql:latest

docker run --name mysql-l -e MYSQL_ALLOW_EMPTY_PASSWORD=1 -d -
p 3306:3306 -p 33060:33060 mysql:latest

docker ps

Postgres

docker pull postgres:latest

docker run --name postgres-l -e
POSTGRES_HOST_AUTH_METHOD=trust -d -p 5432:5432
postgres:latest

docker ps
docker stop

MSSQL 2022

docker pull mcr.microsoft.com/mssql/server:2022-latest
docker pull mcr.microsoft.com/mssql/server:2019-latest

SQL22
docker run --name='sql22' --hostname='sql22' -p 1433:1433 --
memory='5g' --shm-size='2g' --add-
host=host.docker.internal:host-gateway -v
sql22data:/var/opt/mssql -e 'MSSQL_AGENT_ENABLED=True' -e
'TZ=Europe/Bratislava' -e
'MSSQL_COLLATION=SQL_Slovenian_CP1250_CI_AS' -e
'ACCEPT_EULA=Y' -e 'MSSQL_SA_PASSWORD=yourStrong(!)Password' -
d mcr.microsoft.com/mssql/server:2022-latest

MSSQL 2022 #2

Connect to network
docker network connect --alias sql22 mynet sql22
docker exec -it --add-host=host.docker.internal:host-gateway
sql22 bash
Disconnect from network
docker network disconnect mynet sql22

Read Config for Docker container
docker inspect sql22

Root Bash access
sudo docker exec -it --user root sql22 bash

69

MSSQL 2019

SQL19
docker run --name sql19 --hostname sql19 -p 1433:1433 --
memory='5g' --shm-size='5g' -e 'MSSQL_AGENT_ENABLED=True' -e
'TZ=Europe/Bratislava' -e
'MSSQL_COLLATION=SQL_Slovenian_CP1250_CI_AS' -e
'ACCEPT_EULA=Y' -e 'MSSQL_SA_PASSWORD=yourStrong(!)Password' -
d mcr.microsoft.com/mssql/server:2019-latest

	Slide Number 1
	Microservices and Containers
	Overview
	Evolution of Computing
	History and Multi-Dimensional Evolution of Computing #2
	The challenge in new matrix and the complexity of microservices
	Historic Timeline of Unix Containers
	Slide Number 8
	What is containerization?
	Use of containers
	Application containerization
	What is a container?
	Slide Number 13
	Slide Number 14
	Benefits of containerization
	Benefits of containerization #2
	Benefits of containerization #3
	Types of containerization - OCI
	Slide Number 19
	Types of containerization - OCI #2
	Microservices and containerization
	Microservices and containerization #2
	Microservices and containerization #3
	Microservices and containerization #4
	Slide Number 25
	Microservices and containerization #4
	Slide Number 27
	Security
	Security #2
	What is Docker?
	What is Docker? #2
	Docker Architecture
	Docker Architecture #2
	Slide Number 34
	Slide Number 35
	The Docker ecosystem
	Docker images
	Docker images #2
	docker-compose
	Docker Flow
	DevOps Cycle
	What is Docker Bridge Networking?
	Docker Bridge Networking and Port Mapping
	Slide Number 44
	Slide Number 45
	How Containers are Being Used?
	Why Containers?
	Good Use Cases for Containers
	OpenShift
	Slide Number 50
	Slide Number 51
	Cloud environment and testing for students
	Slide Number 53
	Literature
	Software Architecture
	Software Architecture
	Basic Docker commands
	List Docker networks
	Slide Number 59
	Slide Number 60
	Portainer
	LiteSpeed
	LiteSpeed #2
	LiteSpeed #3
	MySQL
	Postgres
	MSSQL 2022
	MSSQL 2022 #2
	Slide Number 69
	MSSQL 2019

