
Slovenská technická univerzita v Bratislave
FAKULTA INFORMATIKY A INFORMAČNÝCH TECHNOLÓGÍI

Študijný program: Softvérové inžinierstvo

Bc. Radoslav Menkyna

Zachytenie interakcie zmien implementovaných

aspektmi modelom vlastnost́ı

Diplomová práca

Vedúci diplomového projektu: Ing. Valentino Vranić, PhD.
máj 2009

Slovak University of Technology Bratislava
FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES

Study program: Software engineering

Bc. Radoslav Menkyna

Capturing Interaction of Changes Implemented

by Aspects Using Feature Modeling

Master’s Thesis

Supervisor: Ing. Valentino Vranić, PhD.
May 2009

Slovenská technická univerzita v Bratislave

Fakulta informatiky a informačných technológií

ZADANIE DIPLOMOVEJ PRÁCE

Meno študenta: Bc. Radoslav Menkyna
Študijný odbor: SOFTVÉROVÉ INŽINIERSTVO
Študijný program: Softvérové inžinierstvo

Názov projektu: Zachytenie interakcie zmien implementovaných aspektmi
modelom vlastností

Zadanie:

Implementácia zmien je dôležitou súčasťou riadenia zmien. Niektoré zmeny majú charakter
pretínajúcich záležitostí, t.j. týkajú sa viacerých, inak nesúvisiacich záležitostí. Bolo preukázané, že
aspektovo-orientované programovanie sa dá úspešne využiť pri implementácii takýchto zmien.
Tento prístup je zvlášť výhodný pri existencii viacerých verzií systému prispôsobených rozdielnym
kontextom, čo je príznačné pre rady softvérových výrobkov. Analyzujte interakciu zmien
implementovaných aspektmi. Navrhnite spôsob modelovania a identifikácie interakcie zmien
založený na modelovaní vlastností, technike ktorá sa používa v radoch softvérových výrobkov na
zachytenie konfigurovateľnosti. Prístup demonštrujte na príkladoch.

Odporúčaná literatúra:
M. Bebjak, V. Vranié, and P. Dolog. Evolution of Web Applications with Aspect-Oriented Design

Patterns. In Marco Brambilla and Emilia Mendes, editors, Proc. of ICWE 2007 Workshop s, 2nd International
Workshop on Adaptation and Evolution in Web Systems Engineering, AEWSE 2007, in conjunction with
7th International Conference on Web Engineering, ICWE 2007, July 19,2007, Como, Italy.

P. Dolog, V. Vranié, and M. Bieliková. Representing Change by Aspect. ACM SIGPLAN Notices,
36(12), December 2001.

Valentino Vranié. Multi-paradigm design with feature modeling. Computer Science and Information
Systems Journal (ComSIS), 2(1): 79-102, 2005.

S. O. Rashid, R. Chitchyan, A. Rashid, and R. Khatchadourian. Approach for Change Impact Analysis
of Aspectual Reequirements. AOSD-Europe Deliverable D110, Technical Report,
AOSD-Europe-ULANC-40, March 2008. http://www.aosd-europe.netl

Práca musí obsahovať:

Anotáciu v slovenskom a anglickom jazyku
Analýzu problému
Opis riešenia
Zhodnotenie
Technickú dokumentáciu
Zoznam použitej literatúry
výstupy celého diplomového projektu vrátane vlastnej diplomovej práce

a vytvoreného softvéru (zdrojového kódu s dokumentáciou)

Miesto vypracovania: Ústav informatiky a softvérového inžinierstva, FIIT STU, Bratislava
Vedúci projektu: Ing. Valentino Vranié PhD.

-

Termín odovzdania práce v letnom semestri: dňa 13. mája 2009

Bratislava, dňa 16. februára 2009
prof. Ing. Pavol Návrat, PhD.

riaditel' ÚISI

http://www.aosd-europe.netl

-

LICENČNÁ ZMLUV A O POUŽITÍ ŠKOLSKÉHO DIELA

uzatvorená

podľa § 40 a nasl. zákona Č. 618/2003 Z. z. o autorskom práve a právach súvisiacich s autorským

právom (autorský zákon) v znení neskorších zmien a doplnení a § 51 školské dielo

medzi

Autorom:

meno a priezvisko: Menkyna Radoslav, Bc.

ID študenta: 20896 	 Dátum a miesto narodenia: 29.06. 1984, Žilina

Trvalý pobyt: B. S. Timravy 3,01008 Žilina

Študent fakulty: Fakulta informatiky a informačných technológií STU, Ilkovičova 3, 842 16 Bratislava
Stupeň štúdia]: O @ .,

Názov študijného programu: Softvérové inžinierstvo

Názov študijného odboru: Softvérové inžinierstvo

a

nadobúdateľom:

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE (d'alej STU)
Vazovova 5,81243 Bratislava

Zastúpená dekanom fakulty: prof. RNDr. Ľudovít Molnár, DrSc.

Osoba oprávnená konať: prof. Ing. Pavol Návrat, PhD.

Čl. I
Predmet zmluvy

Predmetom tejto zmluvy je udelenie súhlasu autora školského diela (ďalej aj dielo) špecifikovaného v čl. II tejto zmluvy
nadobúdateľovi na použitie školského diela (ďalej len "licencia") podľa podmienok dohodnutých
v tejto zmluve.

Čl. II

Určenie školského diela

1. Autor udel'uje nadobúdatel'ovi licenciu k tomuto školskému dielu!:

D bakalárska práca

[}fdiplomová práca

D dizertačná práca

D 	iná práca, špecifikovaná ako

s názvom Zachytenie interakcie zmien implementovaných aspektmi modelom vlastností

Zadanie práce je prílohou č. l tejto licenčnej zmluvy.

2. 	 Školské dielo podl'a odseku 1. bolo vytvorené jeho autorom - študentom STU, ktorá je nadobúdatel'om licencie podl'a
tejto zmluvy, na splnennie študijné povinnosti autora vyplývajúce zjeho právneho vzťahu k nadobúdatel'ovi v súlade so
zákonom č. 131/2002 Z. z. o vysokých školách a o zmene a doplnení niektorých zákonov v znení neskorších predpisov.

vyznačte l

3. 	 Školské dielo podl'a odseku 1 sa rozumie ako výsledný celok pozostávajúci zjednej alebo viacerých súčastí. Súčasťou sa
rozumie textová časť publikovaná v papierovej a elektronickej podobe, softvér, hardvér, audiovizuálny záznam alebo
akýkoľvek i podporný materiál, prostriedok pre vytvorenie školského diela.

4. 	 Študent touto zmluvou dáva súhlas na zverejnenie svojho diela v zmysle § 17 ods. 1 písm. cl Autorského
zákona.

5. 	 Prevzatím diela nadobúdateľom sa nadobúdateľ stáva oprávnený používať dielo v rozsahu a spôsobom
uvedených v tejto zmluve.

Čl. III
Spôsob použitia školského diela a rozsah licencie

I. 	 Autor udeľuje nadobúdatel'ovi súhlas na vyhotovenie digitálnej rozmnoženiny školského diela za účelom uchovávania
a bibliografickej registrácie školského diela v súlade s § 8, ods. 2, písm. b) zákona č. 18312000 Z. z. o knižniciach,
o doplnení zákona Slovenskej národnej rady č. 27/1987 Zb. O štátnej pamiatkovej starostlivosti a o zmene a doplnení
zákona č. 68/1997 Z. z. o Matici slovenskej v znení neskorších predpisov.

2. 	 Autor udeľuje nadobúdatel'ovi licenciu na sprístupňovanie vyhotovenej digitálnej rozmnoženiny školského diela online
prostredníctvom internetu bez obmedzenia, vrátane práva poskytnúť sublicenciu tretej osobe na študijné, vedecké,
vzdelávacie a informačné účely.

3. 	 Nadobúdateľ je oprávnený udeliť tretej osobe súhlas na použitie diela v rozsahu udelenej licencie.
4. 	 Autor udeľuje nadobúdatel'ovi súhlas na použitie diela alebo jeho časti najmä na: vyhotovenie rozmnoženiny diela,

verejné rozširovanie originálu diela alebo jeho rozmnoženiny alebo zaradenie diela do súborného diela.
5. 	 Nadobúdateľ nie je oprávnený upravovať či inak meniť dielo či názov diela. Nadobúdateľ je oprávnený použiť dielo

v súlade s jeho určením a za podmienok stanovených v tejto zmluve.
6. 	 Licencia udelená autorom nadobúdateľovi podľa tejto zmluvy je nevýhradná, nie je dotknuté právo autora použiť dielo

spôsobom, na ktorý nevýhradnú licenciu udelil a takisto nie je dotknuté právo autora udeliť licenciu tretej osobe pri
rešpektovaní nároku autora podľa čl. III ods. 7 a 8 zmluvy s tým, že autor nesmie udeliť licenciu inému subjektu na taký
účel, ktorý by bol v rozpore s oprávnenými záujmami školy.

7. 	 Nadobúdateľ je oprávnený požadovať, aby mu autor diela zo získanej odmeny súvisiacej s použitím diela primerane
prispel na úhradu nákladov vynaložených na vytvorenie diela, a to podl'a okolností až do ich skutočnej výšky.

8. 	 Autor udeľuje nadobúdateľovi licenciu na dobu trvania majetkových práv.
9. 	 Nadobúdateľ môže školské dielo zverejniť a šíriť aj pod svojim menom.

Čl. IV
Odmena

1. 	 Autor udeľuje nadobúdateľovi licenciu bezodplatne.

Čl. V
Pôvodnosť školského diela

l. 	 Autor prehlasuje, že samostatnou vlastnou tvorivou činnosťou vytvoril školské dielo špecifikované v čl. II a že toto
školské dielo je pôvodné.

2. 	 Autor vyhlasuje, že pred uzavretím tejto licenčnej zmluvy neposkytol k dielu licenciu poskytovanú touto zmluvou
žiadnej tretej osobe, a to ani výhradnú ani nevýhradnú.

3. 	 Autor sa zaručuje, že všetky exempláre originálu školského diela špecifikovaného v čl. II bez ohľadu na nosič majú
totožný obsah.

Čl. VI

Záverečné ustanovenia

1. 	 Táto zmluva je vyhotovená v dvoch rovnopisoch, z ktorých po jednom vyhotovení obdržia autor a nadobúdateľ. Táto
zmluva sa môže meniť alebo dopÍňať len písomným dodatkom podpísaným oboma zmluvnými stranami.

2. 	 Táto zmluva nadobúda platnosť a účinnosť dňom jej podpisu zmluvnými stranami.
3. 	 Na vzťahy, ktoré nie sú výslovne upravené touto zmluvou sa vzťahujú všeobecne záväzné právne predpisy platné

a účinné na území Slovenskej republiky, najmä ustanovenia Autorského zákona a Občianskeho zákonníka.
4. 	 Zmluvné strany vyhlasujú, že zmluvu uzavreli slobodne a vážne, nekonali v omyle ani v tiesni, jej obsahu porozumeli

a na znak súhlasu ju vlastnoručne podpísali.

v Bratislave dňa 16. februára 2009

/h~........................~

autor 	 nadobúdateľ

ANOTÁCIA

Slovenská technická univerzita v Bratislave
FAKULTA INFORMATIKY A INFORMAČNÝCH TECHNOLÓGÍI
Študijný program: Softvérové Inžinierstvo

Autor: Radoslav Menkyna

Diplomová práca: Zachytenie interakcie zmien implementovaných aspek-
tmi modelom vlastnost́ı

Vedúci diplomovej práce: Ing. Valentino Vranić, PhD.

máj 2009

Táto práca sa zaoberá interakciami zmien implementovaných pomocou as-
pektov. Uvádza novú techniku, ktorá na rozoznanie a analýzu interakcíı
použ́ıva modelovanie vlastnost́ı. Priama interakcia je analyzovaná na mod-
eli vlastnost́ı zmien. Práca popisuje konštrukciu čiastočného modelu vlast-
nost́ı systému, ktorý slúži na analýzu ďaľśıch, nepriamych, interakcíı. Pre
vyhodnotenie interakcie zmien je dôležité poznať spôsob ich implementácie.
Tento je možné zistǐt pomocou doménovo špecifických katalógov zmien alebo
aplikovańım multi paradigmového návrhu s modelovańım vlastnost́ı. Ap-
likácia tohto pŕıstupu zahŕňala rozš́ırenie domény riešenia jazyka AspectJ o
nové priamo použitělné paradigmy a zmenu procesu transformačnej analýzy.
Využit́ım tohto postupu je možné identifikovať pŕıpadné interakcie na rôznych
mierach abstrakcie.

ANNOTATION

Slovak University of Technology Bratislava
FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES
Degree course: Software engineering

Author: Radoslav Menkyna

Thesis: Capturing Interaction of Changes Implemented by Aspects Using
Feature Modeling

Supervisor: Ing. Valentino Vranić, PhD.

2009, May

This thesis studies the interactions of changes implemented by aspects. A
new technique which uses the feature modeling to trace the interactions is
proposed. Direct interactions are analyzed on a feature model of changes.
Thesis describes the construction of a partial feature model of given system,
which can be used to study additional interactions present in the system.
To evaluate found interactions it is needed to know how they will be imple-
mented. This can be revealed trough the domain specific change catalogs or
by applying multi-paradigm design with feature modeling. The use of this
approach involved AspectJ solution domain extension and transformational
analysis modification. Using approach proposed in the thesis it was possible
to analyze interactions on different levels of abstraction.

Ďakujem vedúcemu mojej diplomovej práce Valentinovi Vranićovi za jeho
podporu, časté diskusie a cenné pripomienky.

Čestne prehlasujem, že som diplomovú prácu vypracoval samostatne.

Contents

1 Introduction 1

2 Change Versioning 3
2.1 Change Based Versioning . 4
2.2 Aspect-Oriented Approach to Change-Based Versioning . . . 4
2.3 Version Model for Aspect Dependency Management 5

3 Aspect-Oriented Change Realization Techniques 7
3.1 General and Specific Changes 7
3.2 Introducing Role To Class . 8
3.3 Introducing Regions . 9
3.4 Class Exchange . 10
3.5 Method Substitution . 10
3.6 Member Introduction . 11
3.7 Additional Parameter Checking 11
3.8 Additional Return Value Checking/Modification 11
3.9 Performing Action After Event 12

4 Solving Change Perplexity 13
4.1 Changing a Change . 13
4.2 Order of Aspect Execution . 14
4.3 Interaction Between General Change Types 15
4.4 Changes Invoked by System Evolution 16
4.5 Logical Error Localization . 17
4.6 Representing Changes by Aspects—Tool Support 17

5 Interaction of Changes 19
5.1 Feature Modeling . 19
5.2 Dependency Graphs . 21
5.3 Transforming Dependency Graphs into Feature Models 23

5.3.1 Dependencies Captured by Feature Diagrams 23
5.3.2 Dependencies Captured by Additional Constraints . . 24
5.3.3 Capturing Behavioral Component of Dependency Graphs 25

5.4 Modeling Changes Implemented by Aspects 26

ii Contents

5.5 Direct Dependences and Interactions 28
5.6 Indirect Dependences and Interactions 28

5.6.1 The Partial Feature Model Construction 29
5.6.2 Dependency Evaluation 33
5.6.3 Deriving Constraints 33

6 Change Realization Using MPDfm 35
6.1 Multi-Paradigm Design with Feature Modeling 35
6.2 Generally Applicable Change Types as Paradigms 36

6.2.1 Method Substitution 37
6.2.2 Performing Action After Event 38

6.3 Transformational Analysis . 38
6.4 Interaction Evaluation . 41

7 Conclusion and Future Work 43

A AspectJ Solution Domain Extension 49
A.1 Performing Action After Event (Figure A.1) 49
A.2 Method Substitution (Figure A.2) 49
A.3 Introducing Regions (Figure A.3) 50
A.4 Class Exchange (Figure A.4) 50
A.5 Introducing Role to Class (Figure A.5) 50
A.6 Member Introduction (Figure A.6)

B The Process of Transformational Analysis

C Attached CD Contents

D Aspect-Oriented Change Realization Based on Multi-Paradigm
Design with Feature Modeling

E Aspect-Oriented Change Realizations and Their Interaction

F Developing Applications with Aspect-Oriented Change Re-
alization

G Dealing with Interaction of Aspect-Oriented Change Real-
izations using Feature Modeling

Chapter 1

Introduction

Aspect-oriented paradigm was designed to capture crosscutting concerns and
express them in a modular way. An idea was proposed that a change should
be represented using an aspect [DVB01]. In such approach a logical change
can be expressed modularly and easily plugged to the system. Moreover,
in case that a change is no longer required in the system it can be easily
unplugged.

When a large number of changes represented by aspects is present in
the system undesired interactions and problems can occur. This thesis will
study interactions and discuss problems coupled with representing changes
by aspects. A technique which uses feature modeling to represent changes
implemented by aspects was proposed to analyze the interactions. This
technique has several stages that can help to discover possible interactions
of changes represented by aspects. First, interactions are analyzed on the
highest level of abstraction on feature model of changes. In the next stage
indirect or unforeseen interactions can be revealed. Construction of partial
feature model of the underlying system is characteristic for this stage.

To evaluate the possible interactions of changes it is needed to know how
they will be implemented. Implementation details can be gained trough the
domain specific catalogs. This is not always possible. Another possibility is
to employ the multi-paradigm design with feature modeling to get details
of the implementation. To use such approach new direct usable paradigms
which represent known change realizations were added to AspectJ solution
domain. After modified transformation analysis process possible interactions
of changes can be evaluated.

The rest of the document is organized as follows: Chapter 2 introduces
the change versioning and places the used approach into the existing ver-
sioning models. Chapter 3 presents an overview of two level change real-
ization model and possible change realization techniques. Some techniques
were modified and two new techniques were proposed. In chapter 4 possible
problems coupled with representing changes by aspects are discussed and

2 Chapter 1. Introduction

their solutions are proposed. Chapter 5 introduces the technique which uses
feature models of changes to find their possible interactions. Creation of
partial feature model of the system which reveals additional possible inter-
action is described. Chapter 6 proposes an approach in which changes are
considered paradigms in terms of multi-paradigm design. Transformational
analysis can be than used to choose between several change realizations.
Chapter 7 concludes presented work.

Chapter 2

Change Versioning

This chapter will describe the main aspects of version control in general and
connect this approach with the known versioning models. The main goal of
this work is not to introduce a new versioning model, but to study inter-
actions of changes at the implementation level, focusing on approach which
uses the aspects to represent changes. However, the principle of change
versioning has to be understood first.

There are many approaches to the version control. One of the main
difference between numerous version control models is how they define a
version. Models that define a version as a state of an evolving system are
called state-based. These models use revisions and variants to describe a
state of particular system. On the other hand change-based models define a
version as set of changes applied to a baseline. Each change represents some
logical action and may carry some additional attributes which represent the
nature of the change [CW98].

Another classification of the version models is derived from the way how
versions are constructed. Extensional versioning models define a version
by enumerating its members. All versions are explicit. User of system
based on this model usually checks out some version (revision), performs
changes on this version, and submits it as a new version. Another approach
called intensional versioning defines a version set using a predicate. The
predicate represents some condition that must be satisfied by all members
of the version. In such model versions are implicit and many combinations
may be created on demand [CW98].

The rest of the chapter is organized as follows: Section 2.1 summarizes
concept of change based versioning. Section 2.2 describes an approach in
which change is represented by aspect. Section 2.3 describes version model
for aspect dependency management.

4 Chapter 2. Change Versioning

2.1 Change Based Versioning

In change based extensional versioning version set is defined explicitly by
enumerating its members. Member (version) is defined as application of
some changes relative to some baseline. This type of versioning is known
also under term change packets model [CW98].

In change based intensional versioning new version is constructed as a
set of freely combined changes according to actual requirements. A change
is defined as partial function transferring one potential version to another.
Version is then constructed by applying a sequence of changes to a baseline.
This form of versioning is also known as change set model [CW98].

A version space (change space in the change based versioning) can be
represented as a matrix or grid where lines and columns represent versions
and changes (fig. 2.1a). Each change can be included or omitted in any
version. Fig. 2.1b illustrates a tree based representation. These two repre-
sentations explicitly name the changes included in particular version. This
is a improvement compared with state based models in which the changes
are not explicitly named. By merging changes, these must be deduced from
graph topology, which may become difficult [CW98].

Figure 2.1: Change space. Adopted from [CW98].

2.2 Aspect-Oriented Approach to Change-Based
Versioning

Aspect-oriented approach to change based versioning was presented by Dolog,
P. et al. [DVB01]. Presented approach suggests that a change could be rep-
resented as an aspect. Aspect-oriented paradigm can offer new benefits to
the change based model of versioning.

Main goal of aspect-oriented paradigm is a separation of crosscutting
concerns. There are many approaches to this paradigm. In this work it will

2.3. Version Model for Aspect Dependency Management 5

be described trough approach represented by AspectJ language [PARb], be-
cause its large community acceptance. To achieve the separation of concerns
new language constructs were created . Pointcut express a certain point or
set of points in control flow of a application. Upon pointcuts actions defined
in advices can be performed. Pointcuts and advices are defined in class-like
entity called aspect [PARa].

Using aspects to represent changes can have several benefits.

• Localization All the modifications coupled with a particular logical
change are centralized in an aspect.

• Modularity The entire change logic is also represented in the aspect.

• Pluggability Because target is not aware of the change, the change
can be easily plugged or unplugged from the system.

These benefits are important for change based versioning. For exam-
ple pluggability is crucial attribute for change based intensional versioning,
where changes are composed freely to construct a version.

2.3 Version Model for Aspect Dependency Man-
agement

In large systems use of aspect oriented paradigm can lead to large number of
aspects to be composed into resulting system. Among these aspects various
dependences can arise. These dependences can be hard to trace and lead to
unexpected behavior of target system. To cope with this problem a version
model for aspect dependency management was presented [PSC01].

This model describes a dependencies of grater scale and uses various
granularity levels. At lowest granularity level it describes structure of as-
pects and on higher level dependence among them. In this model a version
is a defined as a set of conditions, while condition expressed as a boolean
expression. Allowed operations are conjunction, disjunction and negation
e.g. V 1 = C1∧ (C2∨C3). At a higher level sets of aspects can be joined to
model a valid system configuration V 5 = V 1∧V 2∧!V 3)[PSC01]. This work
will study the interactions of implemented aspects which will represent such
modeled configurations.

Chapter 3

Aspect-Oriented Change
Realization Techniques

There are various techniques how a change can be represented in the aspect-
oriented paradigm [Beb07, DVB01, BVD07].1 Usually a aspect-oriented de-
sign pattern or idiom can be used to represent a change. This chapter will
summarize the most important techniques which can be used to implement
a particular change. All mentioned techniques are described generally which
means they can be used to implement changes in the several domains. Two
additional techniques were presented: Introducing Role to Class technique
(Section 3.2) and Introducing Regions technique (Section 3.3). These tech-
niques are based on aspect-oriented design patterns.

The rest of the chapter is organized as follows: Section 3.1 describes two
level change realization concept. Sections 3.2 - 3.9 represent actual change
realization techniques. Each technique is separated in own section.

3.1 General and Specific Changes

In this chapter techniques how to implement a changes will be described.
These techniques can be considered as general change types. General change
type can be altered to many specific changes which implement various change
requests. They are usually based on an aspect-oriented design pattern or
idiom and provide an implementation scheme. When a change request is
associated with the particular general change type, its realization becomes
clear.

It would be useful if the developer could get hint which general change
type to use for his specific change request. This could be achieved by main-
taining a catalog of changes in which each domain specific change type would

1This chapter is partially based on adapted text from paper Developing Applications
with Aspect-Oriented Change Realization (Appendix F) to which my contribution is ap-
proximately 10 % .

8 Chapter 3. Aspect-Oriented Change Realization Techniques

be defined as a specialization of one or more generally applicable changes.
Such catalogs began to emerge [BVD07]

To determine a change type to be applied, developer chooses a particular
change request, identifies individual changes in it, and determines their type.
Such approach is depicted in Figure 3.1. It was possible to identify domain
specific changes D1 and D2 in the Change Request 1. From the previously
identified and cataloged relationships between change types, it is possible to
identify their generally applicable change types are G1 and G2 [VBMD08].

Figure 3.1: Generally applicable and domain specific changes. Adopted
from [VBMD08].

A generally applicable change type is usually some aspect-oriented de-
sign pattern (consider G2 and AO Pattern 2). A domain specific change
realization can also be complemented by an aspect-oriented design patterns,
which is expressed by an association between them (consider D1 and AO
Pattern 1) [VBMD08].

Every generally applicable change has a known domain independent im-
plementation scheme (G2’s implementation scheme was omitted from the
figure). This implementation scheme has to be adapted to the context of a
particular domain specific change, which may be seen as a kind of refinement
(consider D1 Code and D2 Code) [VBMD08].

Building catalogs which provide described mappings is in some situations
unacceptable. The problem of selecting a suitable realizing change type can
be solved using multi-paradigm design [Vra05]. This will be further discussed
in chapter 6.

3.2 Introducing Role To Class

Using the aspect-oriented design pattern Director it is possible to introduce
one or several roles to any number of classes. This means it is possible
to introduce some additional behavior to participating classes. The code
of the pattern is separated in the aspects and no code is attached to the
participating classes. This provides such benefits as modularity, reusability

3.3. Introducing Regions 9

and pluggability. Using this pattern several object-oriented design patterns
can be implemented [Men08].

Figure 3.2: Scheme of the Director design pattern adapted from [Mil04].

Two aspects are used to implement the Director design pattern. The
first aspect is abstract and it should specify the roles. This is done using
Java interfaces. It also specifies any generic logic needed to support the
roles. The second aspect introduces the roles to the specific classes. It can
also provide any method definitions which are required and are not part of
the original classes [Mil04].

3.3 Introducing Regions

This technique uses Border Control design pattern [Mil04] to define some set
of regions to a system. Regions represent reasonable parts of the application
and can be reused by other aspects. This ensures the aspects are used only in
a correct scope. This approach is valuable also when additional changes are
expected. Changing a region definition in the Border Control then affects
all the aspects reusing this region which enables the region control in one
location. This change type is usually not used directly but its occurrence is
invoked by other change types.

Pattern uses single aspect in which regions are represented as point-
cuts. Following code is a template of Border Control design pattern adapted
from [Mil04]:

public aspect MyRegionSeparator {
public pointcut myTypes1(): within(mypackage1.+);
public pointcut myTypes2(): within(mypackage2.+);
public pointcut myTypes(): myTypes1() || myTypes2();
public pointcut myMainMethod()

10 Chapter 3. Aspect-Oriented Change Realization Techniques

: withincode(public void mypackage2.MyClass.main(..));
. . .
}

3.4 Class Exchange

Class exchange [Beb07] is a technique that uses aspect-oriented design pat-
tern Cuckoo’s Egg [Mil04]. Using the pattern it is possible to change the
type of the object being instantiated on a constructor call. New object must
be a subtype of the original object class, otherwise a class cast exception
will be thrown on the first attempt to instantiate the original class.

Here is simple template adapted from [Mil04]:

public aspect ClassExchange{ // Cuckoo’s Egg Aspect
public pointcut originalClassConstructorCall() : <call pointcut>

Object around() : originalClassConstructorCall(){
return new DesiredClass();

}
}

The pattern uses an aspect in which pointcut specifies join points of the
object constructor calls. The advice then changes the object being created
or performs some control logic over it. The pointcut can also obtain any ar-
guments supplied to the original constructor call [Mil04]. The logic included
in the advice can for example decide which object should be instantiated,
return the original object or modify its arguments [Beb07].

3.5 Method Substitution

Method Substitution [Beb07] is technique similar to the Class Exchange
mentioned in previous section. It is used to change, alter or even disable ex-
ecution of a particular method. Technique uses an aspect in which pointcut
specifies a method call and the around advice performs desired logic. Ad-
ditional parameters required by advice logic (target class of method call or
method arguments) can be captured by pointcut specifying the method call.
Sometimes it is sufficient only to alter the method arguments, in this case it
is possible to use the proceed() construct with the altered arguments in the
advice body. This is a method substitution template adapted from [Beb07]:

public aspect MethodSubstition {
pointcut methodCallsPointcut(TargetClass t, int a):

call(ReturnType TargetClass.method(int a)) && target(t) && args(a);

ReturnType around(TargetClass t, int a): methodCallsPointcut(t, a) {
if (. . .) {

. . .; // the new method logic

3.6. Member Introduction 11

} else {
proceed(t, a);

}
}

}

3.6 Member Introduction

Using AspectJ’s static crosscutting it is possible to introduce any field or
method to any class present in the system. Static crosscutting also enables
to declare a class to implement some interfaces or a inheritance relationship.
Such changes to class present in the system can be needed when adding a
new functionality to the system by another aspect. This way existing classes
can be altered and provide the additional support for new functions without
affecting their code. This simple template will demonstrate the Member
Introduction:

public aspect MemberIntroduction {
Modifiers Type TargetClass.NewMember; \\ field introduction
Modifiers ReturnType TargetClass.new(Arguments){ Body } \\ method introduction

declare parents : TargetClass implements SomeInterface;
\\ declaring a class to implemet an interface

declare parents : TargetClass extends SomeClass;
\\ declaring a class to extend another class

Static crosscutting can be also used to declare the compilation time
errors, warnings and soft exceptions. Soft exceptions provide simple solution
in case a code which throws a checked exception is added to some class by
an aspect. This class is not aware that an exception can be thrown by the
code added by the aspect so soft exception should be introduced.

3.7 Additional Parameter Checking

Additional parameter checking [Beb07] is a similar technique as the Method
Substitution (Section 3.5). This technique also specifies a pointcut that
defines some method call and captures required context. Around advice
than checks the captured arguments and can perform suitable action, for
example proceed with the method execution with modified arguments, or
throw an exception which can be later handled.

3.8 Additional Return Value Checking/Modifica-
tion

Sometimes it is desired to perform some additional actions or checks on
method return values. This can be achieved using Additional Return Value

12 Chapter 3. Aspect-Oriented Change Realization Techniques

Checking/Modification technique [Beb07]. This technique is using around
advice to obtain the return value of method represented by method call
pointcut. Obtained value can be later checked or processed. Following code
adopted from [Beb07] represents use of this technique.

public aspect AdditionalReturnValueProcessing {
pointcut methodCallsPointcut(TargetClass t, int a): . . .;
private ReturnType retValue;

ReturnType around(): methodCallsPointcut(/∗∗captured arguments ∗∗/) {
retValue = proceed();
processOutput(/∗ captured arguments ∗/);

return retValue;
}

3.9 Performing Action After Event

Performing action after event [Beb07] is a simple but frequent form of the
change realization. It is used when additional actions are needed after the
specific event. The event is specified by pointcut, for example method or
constructor execution/call or field modification. An after advice on specified
pointcut is then used to perform the desired actions.

public aspect PerformingActionAfterEvent {
pointcut SomeEvent(arguments): . . .;

after(/captured arguments /): SomeEvent(/Captured arguments /) {
performAction(/captured arguments /);

}

private void performAction(/arguments /) {
// action logic
}

}

Chapter 4

Solving Change Perplexity

This chapter will describe possible problems that can arise when changes
are represented by aspects in the system. With the growing number of
changes grows also the possibility of interaction between changes present in
the system. The interaction can have negative effects and can lead to an
unexpected behavior of the system. There are also other problems coupled
with a large number of changes represented by aspects present in the system.
These problems and their possible solutions will be discussed chapter.

The rest of the chapter is organized as follows: Section 4.1 proposes
solution when change of existing change is needed. Section 4.2 describes
situations in which order of aspect execution is important. Interaction can
be, to some extent, seen also between general change types (Section 4.3).
Some changes can rise by system evolution (Section 4.4). Section 4.5 de-
scribes logical error localization and section 4.6 outlines tool support for
representing changes as aspects.

4.1 Changing a Change

In this work a change is considered as an specific logical change request.
This means every change has a specific purpose that can be described and
later added as metadata to the aspect which represents the change. In other
words change improves or adds functionality to the system, it brings some
additional value to the system. Moreover, some of the small changes such as
the bug fixes cannot be represented by aspects. Main reason for this is that
destinations of such small changes may be too specific to be represented by
pointcuts because particular destinations in the code can not be identified
with join points [Faz06]. Such destinations are for example the right side
of the assignment or the cycle parameters. Thus, changes which represent
only bug corrections or trivial modifications should not be represented by
the aspects and applied directly to a baseline.

In case a change of the already applied change represented by aspect is

14 Chapter 4. Solving Change Perplexity

needed, two approaches are possible. It is possible to implement a change
of the applied change by a new change or modify the existing change in the
system [Beb07].

In this case same rules mentioned at the beginning of this section should
apply. If the change represents some bug fix it should be applied directly to
the old change. On the other hand, if this change has some logical meaning,
for example, it introduces some alternate function, but the original func-
tion may be also needed, it should be implemented as a new change and
represented by the new aspect.

Bug fixes applied directly to a baseline or directly to aspect representing
a logical change may be tracked by a secondary versioning system. Such
versioning system may be text based. In future a unified versioning system
could be created that would use versioning method according to type of
change.

4.2 Order of Aspect Execution

In a large system it is possible that two independent change representations
will perform an action upon the same join point. This is not a problem when
one change uses the before advice and another the after advice. Problems
may occur when changes represented by aspects use the same type of the
advice or combination before/around, around/after advice is used. In this
case it is unpredictable in which order the advices will be executed. This can
cause an unwanted system behavior. Only way how to solve this problem is
to explicitly specify the order in which the advices will be executed. This can
be achieved by declaring precedence among the aspects with the following
construct.

declare precedence : Pattern1, Pattern2, ..;

This construct explicitly declares that an aspect or aspects represented
by Pattern1 have higher precedence then aspects represented by Pattern2.
Use of wildcards is patterns is allowed. Only concrete aspects are considered
by the matching algorithm. Precedence of the advices in one aspect is
defined by lexical order in which the advices are defined.

With precedence set, order of advice execution is certain. The aspect
with the higher precedence:

• executes its before advice before the one with the lower precedence

• executes its after advice after the one with the lower precedence.

• encloses the around advice in the lower-precedence aspect with his
around advice.

4.3. Interaction Between General Change Types 15

114 CHAPTER 4
Advanced AspectJ

4.2.1 Ordering of advice

As you have just seen, with multiple aspects present in a system, pieces of advice
in the different aspects can often apply to a single join point. When this hap-
pens, AspectJ uses the following precedence rules to determine the order in
which the advice is applied. Later, we will see how to control precedence:

■ The aspect with higher precedence executes its before advice on a join
point before the one with lower precedence.

■ The aspect with higher precedence executes its after advice on a join point
after the one with lower precedence.

■ The around advice in the higher-precedence aspect encloses the around
advice in the lower-precedence aspect. This kind of arrangement allows
the higher-precedence aspect to control whether the lower-precedence
advice will run at all by controlling the call to proceed(). In fact, if the
higher-precedence aspect does not call proceed() in its advice body, not
only will the lower-precedence aspects not execute, but the advised join
point also will not be executed.

Figure 4.2 illustrates the precedence rules.

Figure 4.2 Ordering the execution of advice and join points. The darker areas represent the
higher-precedence advice. The around advice could be thought of as the higher-precedence
advice running the lower-precedence advice in a nested manner.
Figure 4.1: Illustration of precedence rules. Adopted from [Lad03].

These rules are depicted at the figure 4.1.
Along with adding a change to a system other changes in the system

should be examined. If two or more changes are connected to the same
join points a precedence of aspects, which represent the changes, should be
declared. This could seem as a great drawback when a possible large num-
ber of changes in the system is considered, but development environments
provide partial support for this problem. They automatically show which
aspects are advising some joint point.

4.3 Interaction Between General Change Types

General changes (Section 3.1) use in most cases the aspect-oriented design
patterns to achieve their purpose (Section 3). Subsequent interrelated ap-
plication of the aspect-oriented design patterns to a particular problem can
require additional changes to design patterns already present in the sys-
tem [Men07]. Thus, by combining general changes additional changes can
be required, which can be seen as an unwanted interaction. This section will
try to discuss which general change combinations are problematic.

Aspect-oriented design patterns were classified according their structure
into the pointcut, advice and inter-type declaration design patterns. Addi-
tional change of existing patterns is required when a pointcut design pattern
is combined with an advice or inter-type declaration pattern [Men07]. Point-
cut patterns are Wormhole pattern, Participant pattern and Border Control
pattern.

So far only Border Control pattern, from pointcut pattern category, ap-
pears between the general change types (Section 3). It is represented by

16 Chapter 4. Solving Change Perplexity

the Introducing Regions technique. General change types Introducing Role
to Class (Section 3.2) and Class Exchange (Section 3.4) use advice design
patterns to archive their purpose. The Member Introduction (Section 3.6)
uses similar method as the Policy design pattern which is an inter-type dec-
laration design pattern. Method Substitution (Section 3.5) uses the same
principle as the Cuckoo’s egg pattern which is an advice design pattern. The
remaining change types do not use explicitly an aspect-oriented design pat-
tern, but their structure is similar to the advice design patterns. Therefore,
all the remaining change types can be considered to belong to the advice
design pattern category. To sum up all change types except Introducing
Regions belong to the advice or inter-type design pattern category.

Mentioned implies that combining the Introducing Regions change type
with any other change types could cause unwanted interaction or in other
words additional modification of an already applied change types. This is
true only if specific changes represented by the general change types are
related, otherwise no interaction occurs. Also the direction of the general
change types application is important. If a design pattern from the pointcut
category is applied first to the system, it can be combined with design pat-
terns from any other category without changes [Men07]. This implies that if
the Introducing Regions change type is used before the other change types
no interaction occurs regardless to its relation with the other change types.

The list of general change types from section 3 is not complete. New
change types can arise. For these new change types will be important to
check if they are not from the pointcut design patterns category, which can
mean an unwanted interaction.

4.4 Changes Invoked by System Evolution

Considering a system with already applied changes, a problems may occur
when the base system implementation evolves [Bre08]. For example, con-
sider some method names are changed, parameters added or omitted. This
action could cause that the join point represented by this method is no
longer captured by certain pointcuts.

This problem can be considered only as minor, because it can be solved
trough development environments. Even today development environments
for some aspect-oriented languages are able to help mitigate the risk such
problems to minimum. Examples of the development environment functions
for AspectJ:

• Every line containing a join point which is advised is highlighted with
the small icon. So when the line is modified one can notice that line
contains a join point that is advised. List of all the aspects which
are connected with this join point can be seen in special perspective
window.

4.5. Logical Error Localization 17

• When an advice does not advices any join point developer will get a
compilation warning.

• For every advice the list of advised join points can be opened. This
is very useful because we can see explicitly to which join points the
specific advice is connected.

Developers using aspect-oriented languages with less sophisticated develop-
ment support should pay more attention to the mentioned problems, until
the more sophisticated environments become available.

4.5 Logical Error Localization

In a large systems with many changes already applied to a baseline the prob-
lem with a localization of the logical error can occur [Bre08]. Consider a
accounting class which uses some algorithm to create an index representing
customers credibility. This algorithm is later modified by the changes rep-
resented by aspects. If testing proves that a credibility index has a wrong
value, it is hard to distinguish where the logical error occurred.

Problem of logical error localization exists in all systems. In this case in
order to find the error, the baseline code and related change code must be
reviewed. This action is also supported by development environments. By
checking baseline code the advised join points are highlighted so the changes
related to these joint points can be immediately checked.

4.6 Representing Changes by Aspects—Tool Sup-
port

As mentioned in the sections 4.4, 4.5 development environments provide
support for the aspect-oriented paradigm. This support varies according
to used environment and also used language. Support is designed for any
aspects and it is based on lexical rules. Such kind of support enables for
example highlighting advised join points. While this kind of support is very
useful, for aspects representing a logical change additional support may be
desirable.

In the large systems complex dependences between aspects represent-
ing changes can arise. Since every change has its logical context it may
be desirable to express this context in unified way. This means every as-
pect representing a change would contain some metadata, which could be
collected and summarized as some perspective or view. Metadata could
contain a description of the change represented by the aspect and also de-
pendences to other changes represented by aspect. Such dependences would
contain information about the aspect precedence or explain the logical de-
pendence between changes (consider a change witch has meaning only if

18 Chapter 4. Solving Change Perplexity

another change is present in the system). Metadata could be expressed for
example in form of annotations. The perspective constructed from such
metadata will provide better overview of all changes present in the system,
capturing dependences among them.

Chapter 5

Interaction of Changes

This chapter will describe a technique which enables to discover possible
interactions of changes represented by aspects.1 This technique is based on
the feature modeling. Prior to representing changes by the feature model-
ing, possibility of transforming dependency graphs into the feature models
was examined. Dependency graphs can capture dependencies between the
concerns in a system. The concept of partial feature model of a system,
which is crucial for discovering possible interactions, will be proposed.

First, feature modeling (Section 5.1) and dependency graphs (Section 5.2)
are introduced. Section 5.3 describes how to represent dependency graphs
by the feature models. Also changes can be represented by the feature
model (Section 5.4) on which the direct dependencies can be captured (Sec-
tion 5.5). The last section 5.6 proposes a technique how to capture indirect
dependences. This technique uses proposed partial feature model of a sys-
tem.

5.1 Feature Modeling

Feature modeling is a conceptual domain modeling technique. It is used to
express concepts by their features taking into account feature interdependen-
cies and variability in order to capture the concept configurability [Vra05].
A domain represents an area of interest. Usually application domain and
solution domain are expressed by feature modeling.

Feature modeling can be used to capture commonality and variability in
the software product lines. From this point of view feature modeling is the
process of identifying externally visible characteristics of products [LKL02].
An interaction between the features of products in software product lines

1This chapter is partially based on adapted text from my paper Aspect-Oriented
Change Realizations and Their Interaction (Appendix E) to which my contribution is
approximately 35 % .

20 Chapter 5. Interaction of Changes

can occur. Some features may require presence of other features or features
are considered alternative.

Output from feature modeling process is feature model which consists
of feature diagrams, constraints, default dependency rules and information
associated with concepts and features. Feature diagram is a directed tree
whose root represents concept and all other nodes represent concept fea-
tures [Vra04b]. Feature diagrams can visually capture properties of a fea-
ture or dependencies between several features. For example features may be
depicted as mandatory or optional, two features may be depicted as alterna-
tive or or-features. Additional dependencies can be captured as constraints
of feature diagrams trough the predicate logic.

Changes implemented as aspects are modular and pluggable. They can
be considered as the features of the system which can be included or excluded
from the final configuration of the system. Therefore, feature modeling
approach seams suitable for modeling changes implemented as aspects.

Feature modeling used for modeling changes implemented by aspects is
based on the Feature modeling for multi-paradigm design [Vra04a] which
is based on widely accepted and simple Czarnecki–Eisenecker basic nota-
tion [CE00].2 Using feature modeling it is possible to express additional
informations about the changes such as:

• relation of a change to the concept—mandatory, optional

• relations between the changes on the same level of the feature diagram—
alternative changes, or changes

• relations between the changes on multiple levels of the feature diagram—
change of change, change only applicable when other change is present
in the system.

• openness for a new changes

Notation will be explained on the example of aspect paradigm from As-
pectJ solution domain feature model (Figure 5.1). This paradigm will be
widely referenced in next chapter.

As a matter of simple fact, each aspect is named, which is modeled by a
mandatory feature Name (indicated by a filled circle ended edge). The as-
pect paradigm articulates related structure and behavior that crosscuts oth-
erwise possibly unrelated types. This is modeled by optional features Inter-
Type Declarations R©, Advices R©, and Pointcuts R© (indicated by empty cir-
cle ended edges). These features are references to equally named auxiliary
concepts that represent plural forms of respective concepts that actually rep-
resent paradigms in their own right (and their own feature models [Vra05]).

2This extension to the base feature modeling technique was chosen because it will be
used also in chapter 6 where multi-paradigm design with feature modeling is applied on
changes represented by aspects.

5.2. Dependency Graphs 21

To achieve its intent, an aspect may—similarly to a class—employ Meth-
ods R©, whereas the method is yet another paradigm, and Fields.

Aspect

Inter-Type
Declarations®

Instantiation
Policy

Aspects®

Static

Name

FinalAdvices®

Pointcuts®

Fields

Methods®

Singleton Per Object
Per Control Flow

Pointcut® Pointcut® Whole Below

Scope

Interfaces® Classes®

Inheritances®

Access®

Privileged

Abstract

final ∨ abstract

Figure 5.1: The AspectJ aspect paradigm (adopted from [Vra05]).

An aspect in AspectJ is instantiated automatically by occurrence of the
join points it addresses in accordance with Instantiation Policy which is ei-
ther Singleton, Per Object, or Per Control Flow. The features that represent
different instantiation policies are mandatory alternative features (indicated
by an arc over mandatory features), which means that exactly one of them
must selected. An aspect can be Abstract, in which case it can’t be instan-
tiated, so it can’t have Instantiation Policy either, which is again modeled
by mandatory alternative features.

An aspect can be declared to be Static or Final. It doesn’t have to be
none of these two, but it can’t both either, which is modeled by optional
alternative features of which only one may be selected (indicated by an arc
over optional features). An aspect can also be Privileged over other aspects
and it has its type of Access R©, which is modeled as another reference to a
separately expressed auxiliary concept. The constraint associated with the
aspect paradigm feature diagram means that the aspect is either Final, or
Abstract. All the features in the Aspect paradigm are bound at source time.

5.2 Dependency Graphs

In addition to study interactions of changes implemented by aspects it is
needed to capture a scope of the system in which the interactions are most
likely to occur. When applying a change in traditional fashion the pro-
posed change can interfere with many entities from a existing source code.
A change realized as an aspect modularizes the essence of proposed change
but still affects the system in one or several points specified by the aspect

22 Chapter 5. Interaction of Changes

pointcuts. In both cases it is needed to identify a part of the system where
proposed change can affect the existing entities. An approach of program
slicing [Wei81, GL91] can be used to achieve this goal.

A program slice narrows a behavior of the program to specified subset
of interest. Concern, on the other hand, represents a part of the system
behavior from larger scale and higher complexity. Usually several slices that
represent an elementary behavior can be grouped together to represent a
concern. Analyzing these concerns and slices can lead to better understand-
ing of dependencies among changes and their impact on system [RCRK08].
In the next section a technique that visualizes known dependencies among
concerns and their slices will be described.

Dependency graphs help to visualize the change propagation and de-
pendencies between concerns and their slices [RCRK08]. The dependency
graphs are constructed from semi-formal dependency equations. Each con-
cern can consist of temporal(ST), conditional (SC), business rule(SB) and
task oriented slices(STO). In the dependency graph concern slices are rep-
resented by nodes and dependencies by edges. There are three types of
dependencies which can be captured between the concern slices by the de-
pendency equations and graphs . A forward dependency means a concern
slice links or results to another concern slice. A backward dependency means
the concern slice uses or bases itself on previous slice. Parallel dependency
expresses the concern slices occur concurrently [RCRK08].

Figure 5.2 shows a simple dependency graph that captures dependen-
cies in case study of an tollgate system [RCRK08]. In this system owner of
the vehicle first registers with the bank and activates a gizmo trough ATM.
The toll is then automatically deducted when the payed motorway is used.
The forward dependency is represented by arrow, the backward dependency
by dashed arrow and the parallel dependency by two way arrow. Num-
bers in the graph express assigned weights of dependencies during change
propagation evaluation. Considered concern slice is depicted as dash-dotted.

Figure shows that considered register business rule concern slice RegisterB

is forward dependent on read and store gizmo information conditional con-
cern slice ReadStoreInfoC , which is forward dependent on debit concern’s
business rule and conditional slice DebitB∧C . Correctness and compatibility
concern slices CorrectnessC and CompatibilityB are parallel dependent on
debit concern slices. Calculate concern slices CalculateB∧C and read store
gizmo information concern slice ReadStoreInfoC are backward dependent on
debit concern slices [RCRK08].

One can notice that the read store gizmo information concern slice occurs
twice in dependency graph. This suggests that dependency graphs capture
also behavior. This issue will be addressed in the next section.

5.3. Transforming Dependency Graphs into Feature Models 23

RegisterB

ReadStoreInfoC

DebitB^C

ReadStoreInfoCCalculateB^C

CompatibilityB

CorrectnessC

0.7x

0.6

x

x

x 0.6

Figure 5.2: Dependency graph for register concern’s business rule slice.
Adapted from [RCRK08]

5.3 Transforming Dependency Graphs into Fea-
ture Models

Feature modeling is suitable for modeling changes implemented as aspects.3

Dependency graphs can be used to express change propagation, and depen-
dencies among concerns and their slices. This section will describe two dif-
ferent approaches of transformation of dependency graphs to feature models.
The first one captures the dependencies primary by the feature model hier-
archy (Section 5.3.1). The second one using the feature model constraints,
which is discussed in the next section. Feature diagrams are structural while
dependency graphs seam to capture behavior, too. Capturing of the behav-
ioral component of dependency graphs will be discussed (Section 5.3.3).

5.3.1 Dependencies Captured by Feature Diagrams

In this approach, concern slices are considered as features of the system.
Dependencies are modeled as relationships between features.

There are three types of dependencies between concern slices in concern
dependency graphs: forward, backward, and parallel. Forward dependency
represents what might follow from one concern slice. It can be understood
as optionally, thus the concern slice is forward dependent on some other
concern slice, this concern slice should be modeled as an optional feature of
the former concern slice.

Backward dependency is expressed by the tree topology: a backward

3This chapter builds on adapted text from my paper Dealing with Interaction of Aspect-
Oriented Change Realizations using Feature Modeling (Appendix G). I am the only author
of this paper.

24 Chapter 5. Interaction of Changes

dependent concern slice is a subfeature of the slice it depends on. At the
same time, there is a forward dependency in the opposite direction, which
is in compliance with available concern dependency graphs [RCRK08].

In terms of feature modeling, parallel dependency simply poses a con-
straint that two features that represent parallel dependent concern slices
must appear together in all possible system configurations. One way to
achieve this is to model either of them as a mandatory feature of the other
one.

RegisterB

ReadStoreInfoC

CalculateB^C

DebitB^C

CorrectnessC CompatibilityB

Figure 5.3: Dependencies captured by feature diagrams.

Figure 5.3 shows an example of transformed dependency graph from
Section 5.2. All the forward dependencies were modeled as optional features
of former concern slices. The two parallel dependencies CorrectnessC and
CompatibilityB were modeled as mandatory features of debit concern slice
DebitB∧C . The backward dependencies of CalculateB∧C and ReadStoreInfoC

concern slices are expressed by tree topology.
One can notice that calculate concern slices CalculateB∧C were not mod-

eled as forward dependent on read store gizmo information concern slice in
dependency graph from Figure 5.2. In the feature model representation
however, a forward dependency on the read store gizmo information con-
cern slice ReadStoreInfoC is modeled. From our observation a forward and
backward dependency very often occur together, therefore can be modeled
together. In special cases where such approach is undesirable dependencies
should be explicitly captured by additional constraints (Section 5.3.2).

5.3.2 Dependencies Captured by Additional Constraints

Concern slices can also be modeled in a more common style: as usual system
features. This way they would form feature hierarchies that correspond
to their position in the system hierarchy. However, dependencies between

5.3. Transforming Dependency Graphs into Feature Models 25

concern slices would have to be expressed as additional constraints. An
example is depicted in Fig. 5.4. Additional constraints can be expressed
using logic expressions [Vra05, Vra04b].

RegisterC⇒ReadStoreInfoB

CalculateB∧C ⇒ReadStoreInfoB, RegisterC

DebitB∧C ⇒CalculateB∧C , ReadStoreInfoB, RegisterC

RegisterB ReadStoreInfoC CalculateB^C DebitB^C

CorrectnessC CompatibilityB

System

Figure 5.4: Concern slices as usual system features

This approach is much more compatible with the intended use of the
transformed dependency graphs. In the same fashion changes implemented
by aspects can be modeled. Therefore, feature models in this form can be
used for modeling changes represented as aspects, existing concerns along
with the dependencies among them. Feature models offer strong means how
to express additional constraints which could occur in special occasions.

5.3.3 Capturing Behavioral Component of Dependency Graphs

Dependency graphs seam to address behavior, too. This can be seen also
from example in Figure 5.2 where the read store gizmo information concern
slice ReadStoreInfoC appears twice. This was noticed also in other studied
examples. Feature models are structural and cannot address such behavior.
The behavioral component of dependency graphs can be captured with state
charts.

State charts are also appropriate if dependency weights which were part
of the dependency graph should be preserved. These weights are assigned
to dependencies in process of change propagation evaluation. Figure 5.5
shows an example of state chart for register concern’s business rule slice.
Concern slices are depicted as states and dependencies and their weights
were depicted as transitions.

In this simple example only read store gizmo information concern slice
ReadStoreInfoC was duplicated in the original dependency graph. One can
notice that in the state chart is this concern slice represented by one state.

26 Chapter 5. Interaction of Changes

ReadStoreInfoC

DebitB^C

CorrectnessC

CompatibilityB

CalculateB^C

RegisterB

FD 0.7BD x

FD 0.6BD 0.6

BD 0.7

PD x

PD x

Figure 5.5: State chart for register concern’s business rule slice

5.4 Modeling Changes Implemented by Aspects

The changes applied to existing system can be represented also by the feature
modeling. This section will introduce such approach. A technique how to
interpret changes by feature diagrams will be described. Feature modeling
can help in several ways to discover additional constraints and interactions
among the changes represented by aspects.

Some changes can interact they may be mutually dependent. Changes
may also depend on the parts of the underlying system affected by other
changes. With increasing number of change requests, change interaction can
easily escalate into a serious problem: serious as feature interaction [VBMD08].

Change realizations in the sense of the approach presented so far actually
resemble features as coherent pieces of functionality. Moreover, they are
virtually pluggable and as such represent variable features. This brings us
to feature modeling as an appropriate technique for managing variability in
software development including variability among changes [VBMD08].

Modeling changes implemented by aspects using feature modeling will
be demonstrated on a example of an affiliate tracking software [BVD07]. In
a simplified schema of affiliate marketing, a customer visits an affiliate’s site
which refers him to the merchant’s site. When he buys something from the
merchant, the provision is given to the affiliate who referred the sale. A
general affiliate marketing software enables to manage affiliates, track sales
referred by these affiliates, and compute provisions for referred sales. It is
also able to send notifications about new sales, signed up affiliates, etc.

The general affiliate marketing software has to be adapted (customized),

5.4. Modeling Changes Implemented by Aspects 27

which involves a series of changes. Consider the following changes and their
respective realizations indicated by generally applicable change types:

• SMTP Server Backup A/B as Class Exchange: to have a backup server
for sending notifications, A/B variants represent different implemen-
tations

• Newsletter Sign Up as Performing Action After Event: to sign affiliate
to a newsletter when an he signs up to the tracking software

• Registration Constraint as Method substitution: to check whether the
affiliate who wants to register submitted valid e-mail address

• Restricted Administrator Account as Method substitution with Intro-
ducing regions to create account with restriction to use some resources

• Hide Options Unavailable to Restricted Administrator as Method Sub-
stitution: to restrict the users interface

• User Name Display Change as Method Substitution: to alter the pre-
sentation of name

• Account Registration Statistics as Performing Action After Event: to
gain statistical information about the affiliate registrations

SMTP Server
Backup A

Newsletter
Sign Up

User Name
Display Change

 Restricted
Administrator

Account

Hide Options Unavailable
to Restricted Administrator

Affiliate
Marketing

SMTP Server
Backup B

Account
Registration
Constraint

Account
Registration

Statistics

Figure 5.6: Feature diagram of changes in affiliate tracking software

When creating a feature diagram of the changes, the system to which
changes are applied to is considered to be a concept. Every change rep-
resented by aspect is then considered a feature of the underlying system
and added to the feature diagram. There are two possibilities how new
change can be added to the feature diagram. Both will be demonstrated
in Figure 5.6. First when there is no information that a change is in any
kind of relationship with other changes and second when such information
is present. In first scenario the change is connected directly to concern
which represents the system (Newsletter Sign Up). In second scenario ac-
cording to relationship information the change can be connected as subfea-
ture of already existing change (Hide Information Unavailable to Restricted

28 Chapter 5. Interaction of Changes

Administrator), depicted as an alternative of some change (SMTP Server
backup A and SMTP Server backup B) or the diagram has to be rearranged
if existing change should be treated as subfeature of added change. This is
basically the same approach as constructing the standard feature diagram
when considering the changes as features.

By this process it is possible to create a diagram of changes present in
the system. This diagram can be later analyzed and even expanded in search
of possible interactions of changes. This technique will be discussed in more
detail in following sections.

5.5 Direct Dependences and Interactions

Dependences and interactions expressed directly by a feature diagram of
changes implemented by aspects can appear in the form of an implementa-
tion or logical dependency.

After a base diagram of changes present in the system is constructed, by
following the technique described in the previous section, one can spot imme-
diately some patterns that can indicate a dependency or interaction among
depicted changes. One of most usual patterns is the feature–subfeature oc-
currence. When a change is listed as subfeature of another change it means
that there is some known relationship between these changes. The pattern
usually suggests that a change which is on the lower level in the diagram
tree has only meaning only when the change on the higher level is included
to the system. These situations are target of our interest and should be
analyzed in search for a potential interaction.

Another pattern is the or relationship occurrence. Also in this scenario
changes can have a similar functionality, which could lead to the interaction
of the changes.

By both mentioned patterns is possible to distinguish between a several
types of dependency that can occur. Two pointcuts could use a same join
points which could lead to the unwanted interaction of such changes. An-
other type of dependency can have only logical character. In this case two
changes can have a similar functionality or one change extends the function-
ality of the other, but they apply to different join points or even parts of the
system. In this case no interaction should occur. Sometimes it is possible to
distinguish between these cases immediately, otherwise is needed to proceed
further with the analysis and apply technique which is also used for indirect
dependences analysis (Section 5.6).

5.6 Indirect Dependences and Interactions

Additional dependences among changes can be discovered by the underlying
system exploration to which the changes are introduced. To achieve this goal

5.6. Indirect Dependences and Interactions 29

it is essential to know a model of the system itself. Modeling of the whole
system can be difficult and time consuming task. In some cases it could
be possible to find a new dependency without need to explore the whole
feature model of the system. Instead it is possible to construct a partial fea-
ture diagram which would be examined to the degree sufficient to evaluate
a dependency between underlying changes implemented by aspects. In the
following sections technique how to achieve this goal will be described. Sec-
tion 5.6.1 will describe Partial feature diagram construction. Section 5.6.2
will describe how to evaluate the found dependences and section 5.6.3 will
show how to derive constraints which will be added to the feature diagram.

5.6.1 The Partial Feature Model Construction

The process of constructing partial feature model is based on the feature
model in which aspect-oriented change realizations are represented by vari-
able features that extend an existing system represented as a concept (see
Section 5.4).

The concept node in this case is an abstract representation of the un-
derlying software system. Potential dependencies of the change realizations
are hidden inside of it. In order to reveal them, it is needed to factor out
concrete features from the concept. Starting at the features that represent
change realizations (leaves) one should proceed bottom up trying to iden-
tify their parent features until related changes are not grouped in common
subtrees. Figure 5.7 depicts this process.

[Application
Concept]

[Feature A]

[Change 1]

[Feature D]

[Feature E]

[Feature B]

[Change 6][Feature C]

[Change 5][Change4]

[Change 3][Change 2]

Figure 5.7: Constructing a partial feature model.

The process of partial feature model creation will be demonstrated on our

30 Chapter 5. Interaction of Changes

affiliate marketing software example (Section 5.4). Initial step for the process
is represented by model presented in figure 5.6. Following this initial stage,
it is needed to identify parent features of the change realization features as
the features of the underlying system that are affected by them (Figure 5.8).
During analysis was found:

• SMTP Server Backup A affects the SMTP Server Creation feature

• Newsletter Sign Up, Account Registration Statistics and Registration
Constraint change Affiliate Sign Up

• Restricted Administrator Account is changes of Banner management
and Campaign management

• User Name Display Change is changes of Displaying Grid Data

• Hide Operations Unavailable to Restricted Administrator is changes of
Displaying Menu Items

Knowing that Hide Operations Unavailable to Restricted Administrator
has meaning only when Restricted Administrator Account change was ap-
plied to the system, following constraint was set on model.

• Hide Operations Unavailable to Restricted Administrator⇒Restricted
Administration Account

Newsletter
Sign Up

[Displaying
Menu Items]

[Banner
Management]

Hide Options
Unavailable to

Restricted
Administrator

[Affiliate
Marketing]

[SMTP Server
Creation]

Account
Registration
Constraint

Account
Registration

Statistics

SMTP Server
Backup A

[Affiliate
Sign Up]

User Name
Display Change

[Displaying Grid
Data]

 Restricted
Administrator

Account

[Campaign
Management]

 Restricted
Administrator

Account

Figure 5.8: Affiliate marketing web application partial feature model.

All new features are marked as open representing that other features
not captured by the model are possible. In this simple example it was not
possible to find any other parent features so process of partial feature model
creation finishes after this single iteration.

To better explain this process another example from real application will
be described. Such system has a higher complexity and relations between

5.6. Indirect Dependences and Interactions 31

features will be more complicated. System used for example is a student
project management system called YonBan and it was developed at Slovak
University of Technology. Consider the following changes in YonBan and
their respective realizations indicated by generally applicable change types:

• Telephone Number Validating (realized as Performing Action After
Event): to validate a telephone number the user has entered

• Telephone Number Formatting (realized as Additional Return Value
Checking/Modification): to format a telephone number by adding
country prefix

• Project Registration Statistics (realized as One Way Integration): to
gain statistic information about the project registrations

• Project Registration Constraint (realized as Additional Parameter Check-
ing/Modification): to check whether the student who wants to register
a project has a valid e-mail address in his profile

• Exception Logging (realized as Performing Action After Event): to log
the exceptions thrown during the program execution

• Name Formatting (realized as Method Substitution): to change the
way how student names are formatted

These change realizations are captured in the initial feature diagram
presented Fig. 5.9. Since there was no relevant information about direct
dependencies among changes during their specification, there are no direct
dependencies among the features that represent them either. The concept of
the system as such is marked as open (indicated by square brackets), which
means that new variable subfeatures are expected at it. The main reason for
this is that only part of the analyzed system is shown, but another features
are present in the system too.

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

Figure 5.9: Initial stage of the YonBan partial feature model construction.

Figure 5.10 shows such changes identified in our case. Analysis dis-
covered that Name Formatting affects the Name Entering feature. Project
Registration Statistics and Project Registration Constraint change User Reg-
istration. Telephone Number Formatting and Telephone Number Validating

32 Chapter 5. Interaction of Changes

are changes of Telephone Number Entering. Exception Logging affects all
the features in the application, so it remains a direct feature of the concept.
All these newly identified features are open because of the incompleteness
of their subfeature sets.

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

[Telephone Number
Entering]

[User
Registration]

[Name
Entering]

Figure 5.10: Identifying parent features in YonBan partial feature model
construction.

The process is repeated until it is possible to identify parent features or
until all the changes are found in a common subtree of the feature diagram,
whichever comes first. This stage is reached within the following—and thus
last—iteration which is presented in Fig. 5.11: It was revealed that Tele-
phone Number Entering and Name Entering is a part of User Registration.

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

[Telephone Number
Entering]

[User
Registration]

[Name
Entering]

Figure 5.11: The final YonBan partial feature model.

5.6. Indirect Dependences and Interactions 33

5.6.2 Dependency Evaluation

The partial feature model constructed according to the technique presented
in previous section contains new a relationships and dependencies which
should be analyzed to continue the search for a possible change interactions.
If there is a knowledge how these changes are going to be implemented one
can start analyzing the relationships immediately and find out which of them
will cause interaction among changes. If there is no such knowledge, it is
possible, in this stage, to identify the potential locations where interactions
may occur. The location can be understood as a specific target in the code
or as an area defined by the concern slice or several concern slices.

Generally an interaction has highest probability to occur when two or
more changes are represented as direct subfeatures of one parent feature. In
this case the code altered by one change can be dependent on the code altered
by second change or vice versa. To deal with changes that are not direct
subfeatures of one feature whole area specified with all concerns present in
the subtree of the feature diagram containing analyzed changes should be
examined. In this process it is possible to use dependency graphs [RCRK08]
or program slicing [Wei81, GL91] to check for an undesirable interaction.
The main idea is that it is needed to check all the elements from the concerns
for possible interaction. The positive outcome from this modeling technique
is that the area where this interaction will with most probability occur is
delimited by concerns present in the subtree of the partial feature model.

If the implementation details of the changes are missing the analysis can
finish with result which represents a locations where can possible interactions
occur. This result is also very satisfying and can be very helpful in the
implementation phase. On the other hand it is possible to go further with
the analysis using the technique in which changes represented by aspects are
further analyzed. This approach uses methods from multi-paradigm design
with feature modeling4 [Vra04a] and will be presented in chapter 6.

5.6.3 Deriving Constraints

All additional informations about changes gained while analyzing change
interactions should be described in some way and distributed along with
the partial feature model itself. It is possible to express such information
by additional constraints, default dependency rules and notes. Constraints
and default dependency rules use a predicate logic to express additional
relations between features. The main difference between the constraints
and dependency rules is in their weight. While constraints must be satisfied
in each concept instance default dependency rules allow exceptions [Vra04a].
By note it is possible to introduce additional informations available about
a concern.

4MPDfm

34 Chapter 5. Interaction of Changes

Each of these notations should express different facts discovered through
dependency evaluation of the change interactions. If the change interaction
is considered strong, or hard to solve, one should consider setting a con-
straint upon related changes. If the discovered interaction has only logical
dimension, or the problem coupled with it can be solved (Chapter 4) note
should be set. Locations of possible interactions should be expressed at least
by a note.

Chapter 6

Change Realization Using
MPDfm

In this chapter change realization techniques (Chapter 3) will be intro-
duced as paradigms in sense of multi-paradigm design with feature modeling
(MPDfm).1 These new paradigms can be than used during transformational
analysis to map concepts (which represent changes) from application domain
to solution domain. Details gained trough transformational analysis are cru-
cial for final interaction evaluation.

Section 6.1 presents basic concepts of a particular multi-paradigm ap-
proach based on feature modeling. Section 6.2 will describe approach in
which generally applicable changes are seen as paradigms. In Section 6.3
transformational analysis process which uses new paradigms is explained.
Section 6.4 describes how to evaluate change interaction after new informa-
tions are gained trough transformational analysis.

6.1 Multi-Paradigm Design with Feature Model-
ing

In MPDfm, paradigms are understood as solution domain concepts that
correspond to programming language mechanisms (like inheritance or class).
Such paradigms are being denoted as small-scale to distinguish them from
the common concept of the (large-scale) paradigm as a particular approach
to programming (like object-oriented or procedural programming) [Vra05].

In MPDfm, feature modeling is used to express paradigms. A feature
model consists of a set of feature diagrams, information associated with con-
cepts and features, and constraints and default dependency rules associated

1This chapter builds on adapted text from my paper Aspect-Oriented Change Realiza-
tion Based on Multi-Paradigm Design with Feature Modeling (Appendix D) to which my
contribution is approximately 60 % .

36 Chapter 6. Change Realization Using MPDfm

with feature diagrams. A feature diagram is usually understood as a di-
rected tree whose root represents a concept being modeled and the rest of
the nodes represent its features [Vp06].

The features may be common to all concept instances (feature configu-
rations) or variable, in which case they appear only in some of the concept
instances. Features are selected in a process of concept instantiation. Those
that have been selected are denoted as bound. The time at which this bind-
ing (or not binding) happens is called binding time. In paradigm modeling,
the set of binding times is given by the solution model. In AspectJ one can
distinguish among source time, compile time, load time, and runtime.

Each paradigm is considered to be a separate concept and as such pre-
sented in its own feature diagram that describes what is common to all
paradigm instances (its applications), and what can vary, how it can vary,
and when this happens. Recall the AspectJ aspect paradigm feature model
presented in Fig. 5.1.

In modeling change types as paradigms, each change type is considered
to be a concept and as such presented in a separate feature diagram created
according to the solution domain related information. Paradigms that may
be used in the paradigm being modeled should be referenced by it. If a
paradigm enables instantiation, it should be modeled as a feature (or fea-
tures). If the feature is variable, its binding time has to be selected among
the binding times identified in the solution domain. If none is appropriate,
a new binding time should be established.

Feature modeling is applied also to the application domain. The two
feature models, the application and solution domain one, enter the process
called transformational analysis in which application to solution domain
mapping is being established. This mapping is expressed in the form of
yet another feature model consisting of the paradigm instances annotated
with the information about corresponding application domain concepts and
features which determines the code skeleton.

Generally applicable changes may be seen as a kind of conceptually
higher language mechanisms and modeled as paradigms in the sense of
MPDfm. Two change types will be presented as paradigms in next sec-
tion. All general change types are presented as paradigms in Appendix A.

6.2 Generally Applicable Change Types as
Paradigms

Generally applicable change types are independent of the application domain
and may even apply to different aspect-oriented languages and frameworks
(with an adapted code scheme, of course). The expected number of generally
applicable changes that would cover all significant situations is not high.
In experiments, it was possible to cope with all situations using only six

6.2. Generally Applicable Change Types as Paradigms 37

generally applicable change types.
On the other hand, in the domain of web applications, eleven application

specific changes was identified, and they represent only its partial coverage.
Each such change requires a thorough exploration in order to discover all
possible realizations by generally applicable changes and design patterns
with conditions for their use, and it is not likely that someone would be
willing to invest effort into developing catalog of changes apart of the actual
change development.

The problem of selecting a suitable generally applicable change type
resembles the problem of the selection of a paradigm suitable to implement
a particular application domain concept. Here, the multi-paradigm design
can be employed. In Sect. 6.2.1 and 6.2.2, paradigm models of Method
Substitution and Performing Action After Event will be introduced. These
and feature models of all the rest of known generally applicable change types
are included in Appendix A.

6.2.1 Method Substitution

Figure 6.1 shows the Method Substitution change type feature model. Method
Substitution is used to change, alter or even disable execution of a particular
method or methods [BVD07]. It is implemented by an aspect (Aspect R©)
with a pointcut specifying the calls to the methods (Original Method Call)
to be altered by an around advice. Thus, two additional constraints were
set:

• Aspect.Pointcut

• Aspect.Advice.Around

Method Substitution

Original
Method Calls

Altering
FunctionalityAspect® Context

Method
Arguments

Target
Class

Proceed with
Original Methods

Check/Modify
Arguments

Check/Modify
Return Value

Figure 6.1: Method Substitution.

The target class of the method call and method arguments, which con-
stitute a part of the context of the method call, are made available using

38 Chapter 6. Change Realization Using MPDfm

appropriate primitive pointcuts target() and args(). Sometimes it is suffi-
cient only to alter the method arguments in which case it is possible to use
the proceed() statement with altered arguments in the advice body.

6.2.2 Performing Action After Event

Performing Action After Events [BVD07] is a simple but frequent form of
the change realization. It is used when additional actions are needed after
the specific event. The event is specified by pointcut, for example method or
constructor execution/call or field modification. An after advice on specified
pointcut is then used to perform the desired actions (Fig. 6.2). Thus, two
additional constraints was set:

• Aspect.Pointcut.Call

• Aspect.Advice.After

Performing Action
After Events

Action
After EventAspect® Context

Calls Executions Method
Arguments

Target
Class

Initializations

Field
Readings

Field
Writings

Advice
Executions

Events

Check/Modify
Return Value

Figure 6.2: Performing action after an event paradigm.

6.3 Transformational Analysis

Transformational analysis in multi-paradigm design is a process of find-
ing the correspondence and establish the mapping between the application
and solution domain concepts. The input to transformational analysis are
two feature models: the application domain one and the solution domain
one [Vra05]. In this case the application domain model is represented by the
application feature model (Section 5.4) and the solution domain model is
represented by the AspectJ solution domain model [Vra01] which is extended
by feature models of the generally applicable change types (Section 6.2). The
output of transformational analysis is a set of paradigm instances annotated
with application domain feature model concepts and features.

6.3. Transformational Analysis 39

Transformational analysis was covered in MPDfm approach [Vra05],
therefore transformational analysis in this thesis covers especially features
which represent changes. Transformation of changes from the application
domain feature model is driven by similar rules as transformation of the
features in the original MPDfm approach. The difference is how a concept
from application domain that represents a change is treated. First all new
direct usable paradigms (Section 6.2) should be chosen to be instantiated
over concept representing a change from application domain.

If this is not successful concept probably represents a new change type.
In this case original AspectJ direct paradigms should be chosen to be instan-
tiated over this concept, which is covered in the original transformational
analysis process [Vra05]1.

As a result from stated additional transformation steps are created.
These steps should be executed before the steps of original transformation
process as proposed in MPDfm.

1. If selected concern C from application domain model represents a
change, choose a direct usable paradigm representing generic change
type from solution domain P which has not been considered for C jet.

2. Try to instantiate P over C. If this is not successful go to next step.
Otherwise, record the paradigm instance created.

3. If there are no direct usable paradigms to select continue with transfor-
mational analysis according to the steps presented in MPDfm [Vra05]1

, else return to step 1.

Transformational analysis will be described on the affiliate marketing
software example (Section 5.4). Consider transformational analysis for the
Restricted Administrator Account feature. This change should provide an
additional check of access rights upon the execution of specified methods.
Methods should be executed only if access is granted. This scenario suites
best to the Method Substitution paradigm which can control the execution
of selected methods. Moreover, in case of access violation method substitu-
tion can provide subroutines to display error message or log access violation
event. Figure 6.3 represents the transformation of Restricted Administrator
Account feature. Target Class and Method Arguments were used to capture
additional context which is needed by Proceed with Original Methods when
access is granted. One can notice that Banner Management and Campaign
Management features were mapped to Original Method Call. Such associ-
ation means that this change will affect the behavior represented by these
features. Realizing and capturing such associations is crucial to change in-
teraction evaluation. This topic will be further discussed in the next section.

1Original transformation analysis from MPDfm approach is listed in appendix B.

40 Chapter 6. Change Realization Using MPDfm

In this particular example, one can notice that several different features
were mapped to the original method call paradigm. While this causes no
problem, because all these mappings can be expressed by the pointcut de-
clared in constraint, it is possible to make these mappings reusable with the
Introducing Regions paradigm. The pointcut or pointcuts would then be
declared in separate aspect representing introducing regions paradigm.

Transformational analysis for the Registration Constraint would be very
similar. Again the Method Substitution paradigm would be used. Original
Method Call would be mapped to Affiliate Sign Up And the original method
will be executed by the Proceed with Original Methods only when a valid
email was provided. Two additional constraints remained set:

• Aspect.Pointcut.Call

• Aspect.Advice.Around

Method Substitution

Original
Method Call

Proceed With
Original MethodsAspect®

Restricted
Administrator

Account

Campaigns
Management

If Access
Granted

Banner
Management

Context

Method
Arguments

Target
Class

Arguments For
Proceed Call

Figure 6.3: Restricted User Account transformational analysis

Another example is transformational analysis of the Newsletter Sign Up
paradigm. This change request should add new affiliate also to the existing
list of newsletter recipients. This can be best achieved as Performing Action
After Event (Figure 6.4). In this case Event was mapped to Affiliate Sign
Up paradigm which in this case represents execution of the affiliate sign
up method. Trough the Method Arguments data about new affiliate can
be accessed. From accessed data the e-mail address of an affiliate can be
gained. Finally address is added to the newsletter recipient list trough the
Action After Event paradigm. In similar manner also Registration Statistics
paradigm would be transformed. Two additional constraints remained set:

• Aspect.Pointcut

• Aspect.Advice.After

6.4. Interaction Evaluation 41

Performing Action
After Events

Events Action After
EventsAspect®

Newsletter
Sign Up

Execution

Affiliate
Sign Up

Add Affiliate
to Newsletter

Recipients

Context

Method
Arguments

Affiliate Data

Figure 6.4: Newsletter Sign Up transformational analysis

6.4 Interaction Evaluation

In previous section an example of transformational analysis was presented.
By this process concepts from application domain are mapped to solution
domain paradigms. From the change interaction point of view, very im-
portant are the mappings of pointcut paradigms. These mappings reveal
the destinations in application domain where change will affect the existing
source code.

The highest probability of interaction occurs by the situations in which
several changes affect the same destinations from an application domain.
Such situations could be identified while creating the partial feature model.
Notice the situation in figure 5.8 where three changes act as subfeature of
Affiliate Sign Up feature. Every situation should be evaluated and suitable
actions should be performed to avoid the interaction. Reason for further
evaluation rises from fact that not every collision of pointcuts leads to change
interaction. The details, which are needed to decide if interaction occurs or
not, are acquired along with transformational analysis.

For example, consider the Newsletter Sign Up and the Account Registra-
tion Statistics changes, despite they share a common pointcut Affiliate sign
up no interaction should occur. This is given by the fact that both changes
were mapped to Performing Action After Event paradigm which uses after
advice. In such situation it is important to evaluate if advices of changes
should be evaluated in particular order. By Account Registration Statistics
and Affiliate sign up changes such order is irrelevant.

Another problem can be caused by the Account Registration Constraint
change which uses the same pointcut. This change was mapped to the
Method Substitution paradigm through which it can disable the execution

42 Chapter 6. Change Realization Using MPDfm

of the method which registers a new affiliate. If the Newsletter Sign Up and
Account Registration Statistics changes use execution pointcut, everything
is all right. On the other hand, if these changes would use call pointcut their
advices would be still executed even when the registration method would not
be executed. This would cause an undesirable system behavior. Details such
as type of used pointcuts and other relevant data for interaction analysis is
acquired by transformational analysis process. In this way transformational
analysis makes interaction evaluation possible.

In most cases when interaction occurs it can be solved by adapting the
change implementation. If unsolvable interaction should occur, constraints
should be added upon application domain model which will ensure the in-
teracting changes will not occur together in any concept instance.

Chapter 7

Conclusion and Future Work

This thesis described the problems coupled with interaction of changes repre-
sented by aspects. To implement a change by aspect a general change type
(change realization technique) can be used. Important change realization
techniques were summarized (Chapter 3). Some techniques were changed
and two additional techniques were proposed. Work discussed several prob-
lems and their solutions coupled with the interaction of changes represented
by aspects (Chapter 4).

Interactions between the changes implemented by aspects can be traced
using a new approach that uses feature modeling technique. Using this
technique changes can be analyzed on different levels of abstraction. First,
a feature model of changes present in the system is created (Section 5.4).
With this model it is possible to capture direct interactions of changes. To
study additional interactions of changes, it is needed to construct a partial
feature diagram of the system (Section 5.6.1. From partial feature diagram
indirect interactions or locations of possible interactions can be derived.

To evaluate the possible interaction of changes it is needed to know
their implementation which depends on the used change realization type.
Selecting appropriate change type can be achieved using the multi-paradigm
design (Section 6). In this approach the change realization techniques are
considered paradigms of the AspectJ solution domain (Section 6.2). After
the transformation analysis interactions can be evaluated (Section 6.4).

As future work this approach should be evaluated on a systems of larger
scale. If the aspect-oriented paradigm popularity will grow it is possible
that a new design patterns or idioms will emerge in it. Using these new
design patterns and idioms additional change realization techniques can be
created, in which case, extension of this approach would be appropriate.

Bibliography

[Beb07] Michal Bebiak. Aspektovo-orientovaná implementácia zmien vo
webových aplikáciách. Master’s thesis, Slovenská technická uni-
verzita v Bratislave Fakulta Informatiky a Informacných Tech-
nológii, 2007.

[Bre08] Jakub Breier. On interaction among aspect-oriented change rep-
resentation. In Mária Bieliková, editor, IIT.SRC: Student Re-
search Conference 2008, pages 1–6. Slovak University of Tech-
nology, 2008.

[BVD07] Michal Bebjak, Valentino Vranić, and Peter Dolog. Evolution of
web applications with aspect-oriented design patterns. In Marco
Brambilla and Emilia Mendes, editors, Proc. of ICWE 2007
Workshops, 2nd International Workshop on Adaptation and
Evolution in Web Systems Engineering, AEWSE 2007, in con-
junction with 7th International Conference on Web Engineering,
ICWE 2007, pages 80–86, Como, Italy, July 2007.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Pro-
graming: Methods, Tools, and Applications. Addison-Wesley,
2000.

[CW98] Reidar Conradi and Bernhard Westfechtel. Version models for
software configuration management. ACM Computing Surveys,
30(2):232–282, 1998.

[DVB01] Peter Dolog, Valentino Vranić, and Mária Bieliková. Represent-
ing change by aspect. ACM SIGPLAN Notices, 36(12), Decem-
ber 2001.

[Faz06] Zoltán Fazekas. Improving Variability in Software Configura-
tion Mmanagement by Separation of Concerns. PhD thesis,
Slovenská technická univerzita v Bratislave Fakulta Informatiky
a Informacných Technológii, 2006.

46 Bibliography

[GL91] Keith Brian Gallagher and James R. Lyle. Using program slicing
in software maintenance. IEEE Trans. Softw. Eng., 17(8):751–
761, 1991.

[Lad03] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning, 2003.

[LKL02] Kwanwoo Lee, Kyo C. Kang, and Jaejoon Lee. Concepts and
guidelines of feature modeling for product line software engi-
neering. In Proceedings of the Seventh International Conference
on Software Reuse, pages 62–77, April 2002.

[Men07] Radoslav Menkyna. Towards combining aspect-oriented design
patterns. In Mária Bieliková, editor, IIT.SRC: Student Research
Conference 2007, pages 1–8. Slovak University of Technology,
2007.

[Men08] Radoslav Menkyna. The director as a connection between
object-oriented and aspect-oriented design patterns. In Mária
Bieliková, editor, IIT.SRC: Student Research Conference 2008,
pages 55–61. Slovak University of Technology, 2008.

[Mil04] Russell Miles. AspectJ Cookbook. O’Reilly, 2004.

[PARa] Xerox PARC. Aspect-oriented programming home page.
http://aosd.net/. Last accessed in april 2008.

[PARb] Xerox PARC. Aspectj home page.
http://www.eclipse.org/aspectj/. Last accessed in april
2008.

[PSC01] Elke Pulvermüller, Andreas Speck, and James O. Coplien. A ver-
sion model for aspect dependency management. Lecture Notes
in Computer Science, 2186:70–??, 2001.

[RCRK08] Safoora Omer Rashid, Ruzanna Chitchyan, Awais Rashid, and
Raffi Khatchadourian. Approach for change impact analysis of
aspectual requirements, march 2008. AOSD-Europe Deliverable
D110, AOSD-Europe-ULANC-40.

[VBMD08] Valentino Vranić, Michal Bebjak, Radoslav Menkyna, and Pe-
ter Dolog. Developing applications with aspect-oriented change
realization. In Proc. of 3rd IFIP TC2 Central and East Euro-
pean Conference on Software Engineering Techniques CEE-SET
2008, LNCS, Brno, Czech Republic, October 2008. Springer.
Postproceedings, to appear.

Bibliography 47

[Vp06] Valentino Vranić and Miloslav Š́ıpka. Binding time based con-
cept instantiation in feature modeling. In Maurizio Morisio,
editor, Proc. of 9th International Conference on Software Reuse
(ICSR 2006), LNCS 4039, pages 407–410, Turin, Italy, June
2006. Springer.

[Vra01] Valentino Vranić. AspectJ paradigm model: A basis for multi-
paradigm design for AspectJ. In Jan Bosch, editor, Proc. of 3rd
International Conference on Generative and Component-Based
Software Engineering (GCSE 2001), LNCS 2186, pages 48–57,
Erfurt, Germany, September 2001. Springer.

[Vra04a] Valentino Vranić. Multi-Pradigm Design with Feature Model-
ing. PhD thesis, Slovak University of Technology in Bratislava,
Slovakia, April 2004.

[Vra04b] Valentino Vranić. Reconciling feature modeling: A fea-
ture modeling metamodel. In Matias Weske and Peter Lig-
gsmeyer, editors, Proc. of 5th Annual International Conference
on Object-Oriented and Internet-Based Technologies, Concepts,
and Applications for a Networked World (Net.ObjectDays 2004),
LNCS 3263, pages 122–137, Erfurt, Germany, September 2004.
Springer.

[Vra05] Valentino Vranić. Multi-paradigm design with feature modeling.
Computer Science and Information Systems Journal (ComSIS),
2(1):79–102, June 2005.

[Wei81] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of
the 5th international conference on Software engineering, pages
439–449, Piscataway, NJ, USA, 1981. IEEE Press.

Appendix A

AspectJ Solution Domain
Extension

This appendix contains the feature models of change realization techniques
that can be considered direct usable paradigms of the AspectJ language
solution domain. By each feature model additional constraints will be listed.
These constraints define the structure of referenced Aspect.

A.1 Performing Action After Event (Figure A.1)

- Aspect.Pointcut

- Aspect.Advice.After

Performing Action
After Events

Action
After EventAspect® Context

Calls Executions Method
Arguments

Target
Class

Initializations

Field
Readings

Field
Writings

Advice
Executions

Events

Check/Modify
Return Value

Figure A.1: Feature diagram of Action after event paradigm.

A.2 Method Substitution (Figure A.2)

- Aspect.Pointcut.Call

- Aspect.Advice.Around

50 Appendix A. AspectJ Solution Domain Extension

Method Substitution

Original
Method Calls

Altering
FunctionalityAspect® Context

Method
Arguments

Target
Class

Proceed with
Original Methods

Check/Modify
Arguments

Check/Modify
Return Value

Figure A.2: Feature diagram of Method substitution paradigm.

A.3 Introducing Regions (Figure A.3)

- Aspect.Pointcut

Introducing Regions

Region 1 Region3

...

Region2Aspect®

Figure A.3: Feature diagram of Introducing regions paradigm.

A.4 Class Exchange (Figure A.4)

- Aspect.Pointcut

- Aspect.Advice.Around

A.5 Introducing Role to Class (Figure A.5)

- Aspect1.Abstract

- Aspect1.Interface

- Aspect2.Inter-Type Declaration

A.6. Member Introduction (Figure A.6) 51

Class Exchange

Original
Class Call

Shared
Methods

Alter Object
Creation

Aspect® Interface® Context

Constructor
Arguments

Target
Class

Check/Modify
Arguments

Replace
Object

Procced with
Object Creation

Figure A.4: Feature diagram of Class exchange paradigm.

Introducting
Role to Class

Generic
Logic BindingRole

1
Role

2

Role 2 to
Class y

Role 1 to
Class x

...

...

Specific Logic

Aspect1®

Aspect2®

Figure A.5: Feature diagram of Introducing role paradigm.

A.6 Member Introduction (Figure A.6)

- Aspect.Inter-Type Declaration

Member Introduction

Member 1

...

Member 2Aspect®

Field Method Field Method

Figure A.6: Feature diagram of Member introduction paradigm.

Appendix B

The Process of
Transformational Analysis

This appendix contains description of original transformational analysis pro-
cess which was adopted from [Vra05].

Transformational analysis is performed as follows. For each concept C
from the application domain feature model, the following steps are per-
formed:

1. Determine the structural paradigm corresponding to C:

(a) Select a structural paradigm P of the solution domain feature
model that has not been considered for C yet.

(b) If there are no more paradigms to select, there may be a level
mismatch: C may correspond to a paradigm feature, and not to
a paradigm itself. Unless C has been factored out as a concept
in step 1d, continue transformational analysis considering C only
as a feature of the concepts where it is referenced, and not as a
concept. Otherwise, the process has terminated unsuccessfully.

(c) Try to instantiate P over C at source time. If this couldn’t be per-
formed or if P ’s root doesn’t match with C’s root, go to step 1a.
Otherwise, record the paradigm instance created.

(d) If there are unmapped non-mediatory feature nodes of C left,
factor out them as concepts (introducing concept references in
place of the subtrees they headed) and perform the transforma-
tional analysis of them. Subsequently, regard them as concept
references in C’s feature diagram and reconsider the paradigm
instance created in step 1c.

2. If there are relationships (direct or indirect ones) between the concept
node of C and its non-mediatory features not yet mapped to rela-
tionships between the corresponding paradigm feature model nodes,

54 Appendix B. The Process of Transformational Analysis

determine the corresponding relationship paradigms for each such a
relationship:

(a) Select a relationship paradigm P of the solution domain feature
model that has not been considered for a given relationship in
C yet. If there are no more paradigms to select, the process has
terminated unsuccessfully.

(b) Try to instantiate P over the relationship in C at source time.
If this couldn’t be performed or if there are no P ’s nodes that
match with the C’s relationship nodes, go to step 2a. Otherwise,
record the paradigm instance created.

Paradigm instances could be presented in the overall solution instance
tree. However, this is not convenient since the solution instance tree would
be too big to cope with it, and it would not provide any additional benefits
compared to presenting paradigm instances individually.

A successful transformational analysis results in only one of the possible
solutions. Carrying out transformational analysis differently can lead to
another solution. Deciding which solution is the best is out of the scope of
this method.

Appendix C

Attached CD Contents

Attached CD contains electronic version of this document and four articles
from Appendix D to Appendix F.

Appendix D

Aspect-Oriented Change
Realization Based on
Multi-Paradigm Design with
Feature Modeling

This appendix contains:

Radoslav Menkyna and Valentino Vranić. Aspect-Oriented Change
Realization Based on Multi-Paradigm Design with Feature Mod-
eling. Paper in preparation. To be submitted to 4th IFIP TC2
Central and East European Conference on Software Engineering
Techniques CEE-SET 2009, May 2009.

The paper is going to be submitted to 4th IFIP TC2 Central and East
European Conference on Software Engineering Techniques CEE-SET 2009.
My contribution to this paper is approximately 60 %.

Aspect-Oriented Change Realization Based on
Multi-Paradigm Design with Feature Modeling

Radoslav Menkyna and Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology,
Ilkovičova 3, 84216 Bratislava 4, Slovakia
radu@ynet.sk, vranic@fiit.stuba.sk

Abstract. Aspect-oriented change realization based on a two-level change
type framework can be employed to deal with changes so they can be
realized in a modular, pluggable, and reusable way. In this paper, this
original idea is extended by enabling direct change manipulation using
multi-paradigm design with feature modeling. For this, generally applica-
ble change types are considered to be (small-scale) paradigms and ex-
pressed by feature models. Feature models of the Method Substitution
and Performing Action After Event change types are presented as ex-
amples. In this form, generally applicable change types enter an adapted
process of transformational analysis to determine their application by
their instantiation over an application domain feature model. The ap-
plication of the transformational analysis in identifying the details of
change interaction is presented.

1 Introduction

Changes of software applications exhibit crosscutting nature either intrinsically
by being related to many different parts of the application they affect or by their
perception as separate units that can be included or excluded from a particular
application build. It is exactly aspect-oriented programming that can provide
suitable means to capture this crosscutting nature of changes and to realize
them in a pluggable and reapplicable way [13].

Particular mechanisms of aspect-oriented change introduction determine the
change type. Some of these change types have already been documented [1, 13],
so by just identifying the type of the change being requested, we can get a pretty
good idea of its realization. This is not an easy thing to do. One possibility is to
have a two-level change type model with some change types being close to the
application domain and other change types determining the realization, while
their mapping is being maintained in a kind of a catalog [13].

But what if such a catalog for a particular domain does not exist? To postpone
change realization and develop a whole catalog may be unacceptable with respect
to time and effort needed. The problem of selecting a suitable realizing change
type resembles paradigm selection in multi-paradigm design [12]. This other

way around—to treat change realization types as paradigms and employ multi-
paradigm design to select the appropriate one—is the topic of this paper.

We will first take a look at the two-level aspect-oriented change realization
model (Sect. 2). Then, a way of modeling change realization types as paradigms
using feature modeling will be introduced (Sect. 3). Expressing changes in the ap-
plication domain feature model will be presented, too (Sect. 4). Transformational
analysis—the process of finding a suitable paradigm—tailored to change realiza-
tion, will be introduced next (Sect. 5). Afterwards, it will be shown how trans-
formational analysis results can be used to identify change interaction (Sect. 6).
Related work overview (Sect. 7) and conclusions close the paper (Sect. 8).

2 Two-Level Change Realization Framework

In our earlier work [1, 13], we proposed a two-level aspect-oriented change real-
ization framework. Changes come in the form of change requests each of which
may consist of several changes. A change is understood there as a requirement
focused on a particular issue that is in domain terminology perceived as indivis-
ible.

Given a particular change, a developer determines the domain specific change
type that corresponds to it. Domain specific change types represent abstractions
and generalizations of changes expressed in the terminology of the particular
domain. A developer gets a clue to the change realization from the cataloged
mappings of domain specific changes to generally applicable change types.

Each generally applicable change type provides an example code of its real-
ization. It can also be a kind of an aspect-oriented design pattern or a domain
specific change can even be directly mapped to one or more aspect-oriented
design patterns.

As an example, consider some changes in the general affiliate marketing soft-
ware purchased by a merchant who runs his online music shop to advertise at
third party web sites (denoted as affiliates).1 This general affiliate marketing
software tracks customer clicks on the merchant’s commercials (e.g., banners)
placed in affiliate sites and whether they led to buying goods from the merchant
in which case the affiliate who referred the sale would get the provision.

Figure 1 shows two particular change requests with one of them demanding
a change denoted as Newsletter Sign Up: integration of the affiliate marketing
software with the third party newsletter used by the merchant, so that every
affiliate would be a member of the newsletter. When an affiliate signs up to the
affiliate marketing software, he should be signed up to the newsletter, too. Upon
deleting his account, the affiliate should be removed from the newsletter, too.

This is an instance of the One Way Integration change type [1], one of web
application domain specific change types. Its essence is the one way notification:
the integrating application notifies the integrated application of relevant events.
In this case, such events are the affiliate sign up and affiliate account deletion.

1 This is an extended scenario originally published in our earlier work [1, 13].

Fig. 1. Some changes in the affiliate marketing software.

The catalog of changes [13] would point us to the Performing Action After
Event generally applicable change type. As follows from its name, it describes
how to implement an action after an event in general. Since events are actu-
ally represented by methods, the desired action can be implemented in an after
advice [1]:

public aspect PerformActionAfterEvent {
pointcut methodCalls(TargetClass t, int a): . . .;
after(/∗ captured arguments ∗/): methodCalls(/∗ captured arguments ∗/) {

performAction(/∗ captured arguments ∗/);
}
private void performAction(/∗ arguments ∗/) { /∗ action logic ∗/ }

}

The after advice executes after the captured method calls. The actual action is
implemented as the performAction() method called by the advice.

To implement the newsletter sign up change, in the after advice we will make
a post to the newsletter sign up/sign out script and pass it the e-mail address
and name of the newly signed-up or deleted affiliate.

There is another change in Fig. 1 depicted as an instance of One Way Inte-
gration: Account Registration Statistics. This change belongs to another change
request comprising of changes related to account registration. Its intention is
to gain statistical information about the affiliate registrations and pass to the
corresponding application to perform its evaluation.

The change request related to account registration includes one more change:
Mandatory E-Mail Address on Account Registration. The aim of this change is
to prevent attempts to register without providing the e-mail address. This is
actually an instance of Introducing Additional Constraint on Fields. There are
several generally applicable change types that can be used to realize this change

and choosing among them depends on the implementation of the functionality to
be changed. Besides Performing Action After Event and Additional Parameter
Checking, but if we assume no form validation mechanism is present, even the
most general Method Substitution2 can be used to capture method calls:

public aspect MethodSubstition {
pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(TargetClass t, int a): methodCalls(t, a) {

if (. . .) {
. . . } // the new method logic

else
proceed(t, a);

}
}

3 Generally Applicable Change Types as Paradigms

Generally applicable change types are independent of the application domain and
may even apply to different aspect-oriented languages and frameworks (with an
adapted code scheme, of course). The expected number of generally applicable
changes that would cover all significant situations is not high. In our experiments,
we managed to cope with all situations using only six generally applicable change
types.

On the other hand, in the domain of web applications, we identified eleven ap-
plication specific changes, yet having it only partially covered. Each such change
requires a thorough exploration in order to discover all possible realizations by
generally applicable changes and design patterns with conditions for their use,
and it is not likely that someone would be willing to invest effort into developing
a catalog of changes apart of the momentarily needs.

The problem of selecting a suitable generally applicable change type resem-
bles the problem of the selection of a paradigm suitable to implement a par-
ticular application domain concept, which is a subject of multi-paradigm ap-
proaches [10]. Here, we will consider multi-paradigm design with feature model-
ing (MPDfm), which is based on an adapted Czarnecki–Eisenecker [5] feature
modeling notation [11].

Section 3.1 presents basic concepts of MPDfm. In Sect. 3.2 and 3.3, para-
digm models of Method Substitution and Performing Action After Event will be
introduced.

3.1 Multi-Paradigm Design with Feature Modeling

In MPDfm, paradigms are understood as solution domain concepts that cor-
respond to programming language mechanisms (like inheritance or class). Such

2 which we haven’t considered originally [13] as a possible realization of Introducing
Additional Constraint on Fields

paradigms are being denoted as small-scale to distinguish them from the common
concept of the (large-scale) paradigm as a particular approach to programming
(like object-oriented or procedural programming) [12].

In MPDfm, feature modeling is used to express paradigms. A feature model
consists of a set of feature diagrams, information associated with concepts and
features, and constraints and default dependency rules associated with feature
diagrams. A feature diagram is usually understood as a directed tree whose
root represents a concept being modeled and the rest of the nodes represent its
features [15].

The features may be common to all concept instances (feature configurations)
or variable, in which case they appear only in some of the concept instances.
Features are selected in a process of concept instantiation. Those that have been
selected are denoted as bound. The time at which this binding (or not binding)
happens is called binding time. In paradigm modeling, the set of binding times
is given by the solution model. In AspectJ we may distinguish among source
time, compile time, load time, and runtime.

Each paradigm is considered to be a separate concept and as such presented
in its own feature diagram that describes what is common to all paradigm in-
stances (its applications), and what can vary, how it can vary, and when this
happens. Consider the AspectJ aspect paradigm feature model shown in Fig. 2.
Each aspect is named, which is modeled by a mandatory feature Name (indicated
by a filled circle ended edge). The aspect paradigm articulates related structure
and behavior that crosscuts otherwise possibly unrelated types. This is modeled
by optional features Inter-Type Declarations R©, Advices R©, and Pointcuts R©
(indicated by empty circle ended edges). These features are references to equally
named auxiliary concepts that represent plural forms of respective concepts that
actually represent paradigms in their own right (and their own feature mod-
els [12]). To achieve its intent, an aspect may—similarly to a class—employ
Methods R©, whereas the method is yet another paradigm, and Fields.

An aspect in AspectJ is instantiated automatically by occurrence of the join
points it addresses in accordance with Instantiation Policy which is either Sin-
gleton, Per Object, or Per Control Flow. The features that represent different
instantiation policies are mandatory alternative features (indicated by an arc
over mandatory features), which means that exactly one of them must selected.
An aspect can be Abstract, in which case it can’t be instantiated, so it can’t
have Instantiation Policy either, which is again modeled by mandatory alterna-
tive features.

An aspect can be declared to be Static or Final. It doesn’t have to be none
of these two, but it can’t both either, which is modeled by optional alternative
features of which only one may be selected (indicated by an arc over optional
features). An aspect can also be Privileged over other aspects and it has its type
of Access R©, which is modeled as another reference to a separately expressed
auxiliary concept. The constraint associated with the aspect paradigm feature
diagram means that the aspect is either Final, or Abstract. All the features in
the Aspect paradigm are bound at source time.

final ∨ abstract

Fig. 2. The AspectJ aspect paradigm (adopted from [12]).

Feature modeling is applied also to the application domain. The two feature
models, the application and solution domain one, enter the process called trans-
formational analysis in which application to solution domain mapping is being
established. This mapping is expressed in the form of yet another feature model
consisting of the paradigm instances annotated with the information about cor-
responding application domain concepts and features which determines the code
skeleton.

Generally applicable changes may be seen as a kind of conceptually higher
language mechanisms and modeled as paradigms in the sense of MPDfm. From
the viewpoint of multi-paradigm design with feature modeling [12], change types
represent directly usable (they do not need an “envelope” paradigm like an advice
needs an aspect) relationship paradigms (they relate changing functionality with
changed functionality). We will consider the two change types we presented in
Sect. 2.

3.2 Method Substitution

Figure 3 shows the Method Substitution change type feature model. All the
features have source time binding. This change type enables to capture calls to
methods (Original Method Calls) with or without the context (Context) and
to alter the functionality they implement by the additional functionality it pro-
vides (Altering Functionality) which includes the possibility of affecting the ar-
guments (Check/Modify Return Arguments) or return value (Check/Modify Re-
turn Value), or even blocking the functionality of the methods whose calls have
been captured altogether (Proceed with Original Methods).

Constraints:

Aspect.Pointcut
Aspect.Advice.Around

Fig. 3. Method Substitution.

Note the Context feature subfeatures. They are or-features, which means at
least one them has to be selected.

Method Substitution is implemented by an aspect (Aspect R©) with a point-
cut specifying the calls to the methods to be altered by an around advice, which
is expressed by the constraints associated with its feature diagram (displayed in
Fig. 3, too).

3.3 Performing Action After Event

Figure 4 shows the Performing Action After Event change type feature model. All
the features have source time binding. This change type is used when additional
actions (Actions After Event) are needed after some events (Events) of method
calls or executions, initialization, field reading or writing, or advice execution
(modeled as or-features mentioned in the previous section) taking or not into
account their context (Context).

Constraints:

Aspect.Pointcut
Aspect.Advice.After

Fig. 4. Performing Action After Event.

Performing Action After Event is implemented by an aspect (Aspect R©)
with a pointcut specifying the events and an after advice of this pointcut used
to perform the desired actions, which is expressed by the constraints associated
with its feature diagram (displayed in Fig. 4, too).

4 Application Feature Model

We will present how change realizations can be expressed in the application
feature model on our running example of affiliate tracking software (introduced
in Sect. 2).

4.1 Feature Model of Changes

In our affiliate marketing example, we may consider the following changes:

– SMTP Server Backup A/B —to have a backup server for sending notifica-
tions (with two different implementations, A and B)

– Newsletter Sign Up —to sign up an affiliate to a newsletter when he signs
up to the tracking software

– Account Registration Constraint —to check whether the affiliate who wants
to register submitted a valid e-mail address

– Restricted Administrator Account —to create an account with a restriction
of using some resources

– Hide Options Unavailable to Restricted Administrator —to restrict the user
interface

– User Name Display Change — to adapt the order of displaying the first name
and surname

– Account Registration Statistics —to gain statistical information about the
affiliate registrations

These changes are captured in the initial feature diagram presented in Fig. 5.
The concept we model is our affiliate marketing software.3 All the changes are
modeled as optional features as they may, but don’t have to be applied. We may
consider the possibility of having different realizations of a change of which only
one may be applied. This is expressed by alternative features. In the example,
no Affiliate Marketing instance can contain both SMTP Server Backup A and
SMTP Server Backup B [13].

Fig. 5. Changes in the affiliate marketing software.

3 In general, there may be several concepts that represent the application domain.

Some change realizations make sense only in the context of some other change
realizations. In other words, such a change realization requires the other change
realizations. In our scenario, hiding options unavailable to a restricted adminis-
trator makes sense only if we have introduced a restricted administrator account.
This is modeled by having Hide Options Unavailable to Restricted Administra-
tor to be a subfeature of Restricted Administrator Account. For a subfeature to
be included in a concept instance, its parent feature must be included, too.

The feature–subfeature relationship represents a direct dependency between
two features. Such dependency can be an early indication of a possible interaction
between change realizations. However, with alternatives no interaction can occur
because an application instance can contain only one change realization.

4.2 Partial Feature Model Creation

Additional dependencies among changes can be discovered by the underlying
system exploration to which the changes are introduced. To achieve this goal it
is essential to know a model of the system itself. Modeling of the whole system
can be a difficult and time consuming task. In some cases it could be possible to
find new dependencies without the need to explore the whole feature model of
the system. Instead, it is possible to construct a partial feature model in which
new possible dependencies could be discovered.

The process of constructing a partial feature model is based on the feature
model in which aspect-oriented change realizations are represented by variable
features that extend the existing system represented by a concept node as an
abstract representation of the underlying software system. The potential depen-
dencies of change realizations are hidden inside of it. In order to reveal them, we
must factor out concrete features from the concept. Starting at the features that
represent change realizations (leaves), we proceed bottom up trying to identify
their parent features until related features become grouped in common sub-
trees [13].

In feature model from Fig. 5, we attempt to identify parent features of the
change realization features as the features of the underlying system that are
affected by them. The result of this is presented in Fig. 6. We found that:

– SMTP Server Backup A affects the SMTP Server Creation feature
– Newsletter Sign Up, Account Registration Statistics, and Account Registra-

tion Constraint change affect Affiliate Sign Up
– Restricted Administrator Account affects Banner Management and Cam-

paign Management
– User Name Display Change affects Displaying Grid Data

All these newly identified features are open because we are aware of the
incompleteness of the sets of their subfeatures.

At this stage, it is possible to identify potential locations at which the inter-
action may occur. Such locations are represented as features of the system to
which changes are introduced.

Constraints:

Hide Operations Unavailable to Restricted Administrator ⇒Restricted
Administration Account

Fig. 6. A partial feature model of the affiliate marketing application.

The highest probability of interaction is among sibling features (direct sub-
features of the same parent feature) which are potentially interdependent. This
is caused by the fact that changes represented by such features usually use the
same or similar pointcuts which can indeed lead to unwanted interaction. Such
locations should represent primary targets of evaluation during transformational
analysis, which is presented in the following section.

Interaction can occur also between indirect siblings or non-sibling features.
However, with the increasing distance between features (that represent changes),
the probability of interaction decreases.

5 Transformational Analysis

The input to transformational analysis in multi-paradigm design with feature
modeling [12] are two feature models: the application domain one and the solu-
tion domain one. Transformational analysis is a process of finding the correspon-
dence and establishing the mapping between the application and solution domain
concepts. It is performed as a paradigm instantiation over application domain
concepts at source time in which a paradigm is being instantiated in a bottom-
up fashion with inclusion of some of the paradigm nodes being stipulated by the
mapping of the nodes of one or more application domain concepts to them in
order to ensure the paradigm instances correspond to these application domain
concepts. The output of transformational analysis is a set of paradigm instances
annotated with application domain feature model concepts and features that
define code skeleton.

Transformational analysis can be used to determine how changes are to be
realized. For this, we need a feature model of the application, either whole, or at
least partial (see Sect. 4.2). The solution domain model would be represented by

a paradigm model of the target aspect-oriented language or framework extended
with generally applicable change types modeled as paradigms.

The original process of transformational analysis has to be modified to take
into account change types as paradigms. They have to be considered primarily
and only if they do not provide a satisfactory solution, solution domain para-
digms should be considered. If this happens, the concept probably represents
a new change type. In this case, original AspectJ direct paradigms should be
chosen to be instantiated over this concept, which is covered in the original
transformational analysis process [12].

Changes are considered to be application domain concepts. Since they are
modeled as single nodes, i.e. without subfeatures, the bottom-up instantiation
of paradigms over them provides no help in overcoming of the conceptual gap
between changes and change types. On the other hand, the solution space is
narrowed as it is known in advance that each change will be implemented as
an aspect. Moreover, the actual implementation of other application domain
features is known, so we can rely on them.

As an example, we will consider transformational analysis of several changes
in the affiliate marketing software (introduced in Sect. 4.1) with the AspectJ pa-
radigm model [9] extended by feature models of the generally applicable change
types (see Sect. 3) as a solution domain.

The Restricted Administrator Account change provides an additional check
of access rights upon execution of specified methods. Methods should be executed
only if access is granted. This scenario suites best to the Method Substitution
change type which can control the execution of selected methods. Moreover, in
case of access violation method substitution can provide subroutines to display
error message or log access violation event. Figure 7 represents the transforma-
tion of the Restricted Administrator Account change. Target Class and Method
Arguments were used to capture additional context which is needed by Proceed
with Original Methods when access is granted. Note that Banner Management
and Campaigns Management features were mapped to Original Method Calls.
Such association means that this change will affect the behavior represented by
these features. Realizing and capturing such associations is crucial to change
interaction evaluation (discussed in the next section).

Transformational analysis of the Account Registration Constraint would be
very similar. Again, the Method Substitution paradigm would be used. Original
Method Calls would be mapped to Affiliate Sign Up and the original method
will be executed by the Proceed with Original Methods only if a valid e-mail
address was provided.

The Newsletter Sign Up change adds a new affiliate to the existing list of
newsletter recipients. This can be best realized as Performing Action After Event
(Fig. 8). In this case, the Events feature is mapped to Affiliate Sign Up which
represents the execution of the affiliate sign up method. Through Method Argu-
ments, the data about a new affiliate can be accessed. From the accessed data,
the e-mail address of the affiliate can be retrieved. Finally, the e-mail address

Fig. 7. Transformational analysis of the Restricted User Account change.

is added to the newsletter recipient list through Action After Event. A similar
transformation would apply to the Registration Statistic change.

Fig. 8. Transformational analysis of the Newsletter Sign Up change.

6 Change Interaction

Change realizations can interact: they may be mutually dependent or some
change realizations may depend on the parts of the underlying system affected
by other change realizations [13]. It has been shown how the application domain
feature model can be analyzed to identify such interactions [14]. Transforma-
tional analysis results can improve this identifications.

From the change interaction point of view, mappings to features that repre-
sent target functionality (join points) affected by changes are very important.
The highest probability of interaction is when several changes affect the same
target functionality. Such situations could be identified in part already during
the creation of a partial feature model, but transformational analysis can reveal
more details needed to enable avoiding the interaction of change realizations.

Consider, for example, the Newsletter Sign Up and Account Registration
Statistics changes. Despite they share the target functionality (Affiliate Sign
Up), no interaction occurs. This is because both changes are realized using the
Performing Action After Event paradigm which employs an after() advice. In

such a situation, it is important to evaluate whether the execution order of the
advices is significant. In this particular case, the order is insignificant.

The Account Registration Constraint change represents a potential source of
interaction with Newsletter Sign Up and Account Registration Statistics because
it also targets the same functionality. This change is realized using the Method
Substitution paradigm through which it can disable the execution of the method
that registers a new affiliate. If the Newsletter Sign Up and Account Registra-
tion Statistics change realizations rely on method executions, not calls, i.e. they
employ an execution() pointcut, no interaction occurs. On the other hand, if
the realizations of these changes would rely on method calls, i.e. they would em-
ploy a call() pointcut, their advices would be executed even if the registration
method haven’t been executed, which is an undesirable system behavior.

In most cases, the interaction can be solved by adapting change realizations.
Unsolvable change interaction should be indicated in the application domain
model by constraints that will prevent affected changes of occurring together in
any application configuration.

7 Related Work

The impact of changes implemented by aspects has been studied using slicing in
concern slice dependency graphs [7]. Application domain feature model can be
derived from concern slice dependency graphs [8] [8]. Concern slice dependency
graphs provide in part also a dynamic view of change interaction that could be
expressed using a dedicated notation (such as UML state machine or activity
diagrams) and provided along with the feature model covering the structural
view.

Applying feature modeling to maintain change dependencies is similar to
constraints and preferences proposed in SIO software configuration management
system [4].

Even if the original application haven’t been a part of a product line, changes
modeled as features of the original application tend to form a kind of a product
line out of the original application. This could be seen as a kind of evolutionary
development of a new product line [2].

Aspect-oriented change realization in general is related to change-based ap-
proaches in version control. It targets the problem of the lack of programming
language awareness in changes realized in such approaches [6].

8 Conclusions and Further Work

The work reported here is a part of our ongoing efforts of comprehensively cover-
ing aspect-oriented change realization whose aim is to enable change realization
in a modular, pluggable, and reusable way.

In this paper, we extended the original idea of having two-level change type
framework to facilitate easier aspect-oriented change realization by enabling di-
rect change manipulation using multi-paradigm design with feature modeling

(MPDfm). There, we deal with generally applicable change types as (small-
scale) paradigms.

We introduced the paradigm models of the Method Substitution and Per-
forming Action After Event change types. We also developed paradigm models of
other change types not presented in this paper such as Enumeration Modification
with Additional Return Value Checking/Modification, Additional Return Value
Checking/Modification, Additional Parameter Checking or Performing Action
After Event, and Class Exchange.

We modified the process of the original transformational analysis in MPDfm
to include change types. We demonstrated how such transformational analysis
can help in identifying the details of change interaction.

Our further work includes investigating the possibility of extending feature
models of changes by expressing both application-specific and generally applica-
ble changes in the Theme notation of aspect-oriented analysis and design [3].
We also prepare further evaluation studies.

Acknowledgements The work was supported by the Scientific Grant Agency
of Slovak Republic (VEGA) grant No. VG 1/0508/09.

References

[1] M. Bebjak, V. Vranić, and P. Dolog. Evolution of web applications with aspect-
oriented design patterns. In M. Brambilla and E. Mendes, editors, Proc. of
ICWE 2007 Workshops, 2nd International Workshop on Adaptation and Evo-
lution in Web Systems Engineering, AEWSE 2007, in conjunction with 7th Inter-
national Conference on Web Engineering, ICWE 2007, pages 80–86, Como, Italy,
July 2007.

[2] J. Bosch. Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. Addison-Wesley, 2000.

[3] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design: The Theme
Approach. Addison-Wesley, 2005.

[4] R. Conradi and B. Westfechtel. Version models for software configuration man-
agement. ACM Computing Surveys, 30(2):232–282, June 1998.

[5] K. Czarnecki and U. W. Eisenecker. Generative Programing: Methods, Tools, and
Applications. Addison-Wesley, 2000.

[6] P. Dolog, V. Vranić, and M. Bieliková. Representing change by aspect. ACM
SIGPLAN Notices, 36(12):77–83, Dec. 2001.

[7] S. Khan and A. Rashid. Analysing requirements dependencies and change im-
pact using concern slicing. In Proc. of Aspects, Dependencies, and Interactions
Workshop (affiliated to ECOOP 2008), Nantes, France, July 2006.

[8] R. Menkyna. Dealing with interaction of aspect-oriented change realizations using
feature modeling. In M. Bieliková, editor, Proc. of 5th Student research Conference
in Informatics and Information Technologies , IIT.SRC 2009, Bratislava, Slovakia,
Apr. 2009.

[9] V. Vranić. AspectJ paradigm model: A basis for multi-paradigm design for As-
pectJ. In J. Bosch, editor, Proc. of 3rd International Conference on Generative
and Component-Based Software Engineering (GCSE 2001), LNCS 2186, pages
48–57, Erfurt, Germany, Sept. 2001. Springer.

[10] V. Vranić. Towards multi-paradigm software development. Journal of Computing
and Information Technology (CIT), 10(2):133–147, 2002.

[11] V. Vranić. Reconciling feature modeling: A feature modeling metamodel. In
M. Weske and P. Liggsmeyer, editors, Proc. of 5th Annual International Confer-
ence on Object-Oriented and Internet-Based Technologies, Concepts, and Applica-
tions for a Networked World (Net.ObjectDays 2004), LNCS 3263, pages 122–137,
Erfurt, Germany, Sept. 2004. Springer.

[12] V. Vranić. Multi-paradigm design with feature modeling. Computer Science and
Information Systems Journal (ComSIS), 2(1):79–102, June 2005.

[13] V. Vranić, M. Bebjak, R. Menkyna, and P. Dolog. Developing applications with
aspect-oriented change realization. In Proc. of 3rd IFIP TC2 Central and East
European Conference on Software Engineering Techniques CEE-SET 2008, LNCS,
Brno, Czech Republic, Oct. 2008. Springer. Postproceedings, to appear.

[14] V. Vranić, R. Menkyna, M. Bebjak, and P. Dolog. Aspect-oriented change real-
izations and their interaction. Submitted to e-Informatica Software Engineering
Journal, CEE-SET 2009 special issue.

[15] V. Vranić and M. Š́ıpka. Binding time based concept instantiation in feature
modeling. In M. Morisio, editor, Proc. of 9th International Conference on Software
Reuse (ICSR 2006), LNCS 4039, pages 407–410, Turin, Italy, June 2006. Springer.

Appendix E

Aspect-Oriented Change
Realizations and Their
Interaction

This appendix contains:

Valentino Vranić, Michal Bebjak, Radoslav Menkyna, and Pe-
ter Dolog. Submitted to e-Informatica Software Engineering
Journal, March 2009.

The paper represents special extended version of paper from appendix F. It
was submitted to e-Informatica Software Engineering Journal, March 2009.
Currently a review process is ongoing. My contribution to this paper is
approximately 35 %.

e-Informatica Software Engineering Journal, Volume 1, Issue 1, 2007

Aspect-Oriented Change Realizations and Their
Interaction

Valentino Vrani¢∗, Radoslav Menkyna∗, Michal Bebjak∗, Peter Dolog∗∗

*Institute of Informatics and Software Engineering, Faculty of Informatics and Information

Technologies, Slovak University of Technology in Bratislava, Slovakia

**Department of Computer Science, Aalborg University, Denmark

vranic@fiit.stuba.sk, radu@ynet.sk, mbebjak@gmail.com, dolog@cs.aau.dk

Abstract
With aspect-oriented programming, changes can be treated explicitly and directly at
the programming language level. An approach to aspect-oriented change realization
based on a two-level change type model is presented in this paper. In this approach,
aspect-oriented change realizations are mainly based on aspect-oriented design patterns
or themselves constitute pattern-like forms in connection to which domain independent
change types can be identi�ed. However, it is more convenient to plan changes in a
domain speci�c manner. Domain speci�c change types can be seen as subtypes of gen-
erally applicable change types. These relationships can be maintained in a form of a
catalog. Some changes can actually a�ect existing aspect-oriented change realizations,
which can be solved by adapting the existing change implementation or by implementing
an aspect-oriented change realization of the existing change without having to modify
its source code. As demonstrated partially by the approach evaluation, the problem of
change interaction may be avoided to a large extent by using appropriate aspect-oriented
development tools, but for a large number of changes, dependencies between them have
to be tracked. Constructing partial feature models in which changes are represented by
variable features is su�cient to discover indirect change dependencies that may lead to
change interaction.

1 Introduction

Change realization consumes enormous e�ort and time during software evolution. Once
implemented, changes get lost in the code. While individual code modi�cations are usually
tracked by a version control tool, the logic of a change as a whole vanishes without a proper
support in the programming language itself.

By its capability to separate crosscutting concerns, aspect-oriented programming en-
ables to deal with change explicitly and directly at programming language level. Changes
implemented this way are pluggable and�to the great extent�reapplicable to similar ap-
plications, such as applications from the same product line.

Customization of web applications represents a prominent example of that kind. In
customization, a general application is being adapted to the client's needs by a series of
changes. With each new version of the base application, all the changes have to be applied
to it. In many occasions, the di�erence between the new and old application does not
a�ect the structure of changes, so if changes have been implemented using aspect-oriented

2 Valentino Vrani¢, Radoslav Menkyna, Michal Bebjak, Peter Dolog

programming, they can be simply included into the new application build without any
additional e�ort.

Even conventionally realized changes may interact, i.e. they may be mutually de-
pendent or some change realizations may depend on the parts of the underlying system
a�ected by other change realizations. This is even more remarkable in aspect-oriented
change realization due to pervasiveness of aspect-oriented programming as such.

We have already reported brie�y our initial work in change realization using aspect-
oriented programming [1]. In this paper,1 we present our improved view of the approach to
change realization based on a two-level change type model. Section 2 presents our approach
to aspect-oriented change realization. Section 3 describes brie�y the change types we have
discovered so far in the web application domain. Section 4 discusses how to deal with
a change of a change. Section 5 proposes a feature modeling based approach of dealing
with change interaction. Section 6 describes the approach evaluation and outlooks for tool
support. Section 7 discusses related work. Section 8 presents conclusions and directions of
further work.

2 Changes as Crosscutting Requirements

A change is initiated by a change request made by a user or some other stakeholder.
Change requests are speci�ed in domain notions similarly as initial requirements are. A
change request tends to be focused, but it often consists of several di�erent�though usually
interrelated�requirements that specify actual changes to be realized. By decomposing a
change request into individual changes and by abstracting the essence out of each such
change while generalizing it at the same time, a change type applicable to a range of the
applications that belong to the same domain can be de�ned.

We will present our approach by a series of examples on a common scenario.2 Suppose
a merchant who runs his online music shop purchases a general a�liate marketing soft-
ware [11] to advertise at third party web sites denoted as a�liates. In a simpli�ed schema
of a�liate marketing, a customer visits an a�liate's site which refers him to the merchant's
site. When he buys something from the merchant, the provision is given to the a�liate
who referred the sale. A general a�liate marketing software enables to manage a�liates,
track sales referred by these a�liates, and compute provisions for referred sales. It is also
able to send noti�cations about new sales, signed up a�liates, etc.

The general a�liate marketing software has to be adapted (customized), which involves
a series of changes. We will assume the a�liate marketing software is written in Java, so
we can use AspectJ, the most popular aspect-oriented language, which is based on Java,
to implement some of these changes.

In the AspectJ style of aspect-oriented programming, the crosscutting concerns are
captured in units called aspects. Aspects may contain �elds and methods much the same
way the usual Java classes do, but what makes possible for them to a�ect other code are
genuine aspect-oriented constructs, namely: pointcuts, which specify the places in the code

1This paper represents an extended version of our paper presented at CEE-SET 2008 [28].
2This is an adapted scenario published in our earlier work [1].

Aspect-Oriented Change Realizations and Their Interaction 3

to be a�ected, advices, which implement the additional behavior before, after, or instead
of the captured join point (a well-de�ned place in the program execution)�most often
method calls or executions�and inter-type declarations, which enable introduction of new
members into types, as well as introduction of compilation warnings and errors.

2.1 Domain Speci�c Changes

One of the changes of the a�liate marketing software would be adding a backup SMTP
server to ensure delivery of the noti�cations to users. Each time the a�liate marketing
software needs to send a noti�cation, it creates an instance of the SMTPServer class which
handles the connection to the SMTP server.

An SMTP server is a kind of a resource that needs to be backed up, so in general,
the type of the change we are talking about could be denoted as Introducing Resource
Backup. This change type is still expressed in a domain speci�c way. We can clearly
identify a crosscutting concern of maintaining a backup resource that has to be activated
if the original one fails and implement this change in a single aspect without modifying
the original code:

public class SMTPServerM extends SMTPServer {
. . .

}
. . .
public aspect SMTPServerBackupA {

public pointcut SMTPServerConstructor(URL url, String user, String password):
call(SMTPServer.new(..)) && args (url, user, password);

SMTPServer around(URL url, String user, String password):
SMTPServerConstructor(url, user, password) {
return getSMTPServerBackup(proceed(url, user, password));

}
private SMTPServer getSMTPServerBackup(SMTPServer obj) {

if (obj.isConnected()) {
return obj;

}
else {

return new SMTPServerM(obj.getUrl(), obj.getUser(),
obj.getPassword());

}
}

}

The around() advice captures constructor calls of the SMTPServer class and their ar-
guments. This kind of advice takes complete control over the captured join point and its
return clause, which is used in this example to control the type of the SMTP server being
returned. The policy is implemented in the getSMTPServerBackup() method: if the original
SMTP server can't be connected to, a backup SMTP server class SMTPServerM instance
is created and returned.

We can also have another aspect�say SMTPServerBackupB�intended for another appli-
cation con�guration that would implement a di�erent backup policy or simply instantiate
a di�erent backup SMTP server.

4 Valentino Vrani¢, Radoslav Menkyna, Michal Bebjak, Peter Dolog

2.2 Generally Applicable Changes

Looking at this code and leaving aside SMTP servers and resources altogether, we notice
that it actually performs a class exchange. This idea can be generalized and domain details
abstracted out of it bringing us to the Class Exchange change type [1] which is based on
the Cuckoo's Egg aspect-oriented design pattern [20]:

public class AnotherClass extends MyClass {
. . .

}
. . .
public aspect MyClassSwapper {

public pointcut myConstructors(): call(MyClass.new());
Object around(): myConstructors() {

return new AnotherClass();
}

}

2.3 Applying a Change Type

It would be bene�cial if the developer could get a hint on using the Cuckoo's Egg pattern
based on the information that a resource backup had to be introduced. This could be
achieved by maintaining a catalog of changes in which each domain speci�c change type
would be de�ned as a specialization of one or more generally applicable changes.

When determining a change type to be applied, a developer chooses a particular change
request, identi�es individual changes in it, and determines their type. Figure 1 shows an
example situation. Domain speci�c changes of the D1 and D2 type have been identi�ed in
the Change Request 1. From the previously identi�ed and cataloged relationships between
change types we would know their generally applicable change types are G1 and G2.

Figure 1: Generally applicable and domain speci�c changes.

A generally applicable change type can be a kind of an aspect-oriented design pattern
(consider G2 and AO Pattern 2). A domain speci�c change realization can also be comple-
mented by an aspect-oriented design pattern (or several ones), which is expressed by an
association between them (consider D1 and AO Pattern 1).

Aspect-Oriented Change Realizations and Their Interaction 5

Each generally applicable change has a known domain independent code scheme (G2's
code scheme is omitted from the �gure). This code scheme has to be adapted to the context
of a particular domain speci�c change, which may be seen as a kind of re�nement (consider
D1 Code and D2 Code).

3 Catalog of Changes

To support the process of change selection, the catalog of changes is needed in which
the generalization�specialization relationships between change types would be explicitly
established. The following list sums up these relationships between change types we have
identi�ed in the web application domain (the domain speci�c change type is introduced
�rst):

• One Way Integration: Performing Action After Event

• Two Way Integration: Performing Action After Event

• Adding Column to Grid: Performing Action After Event

• Removing Column from Grid: Method Substitution

• Altering Column Presentation in Grid: Method Substitution

• Adding Fields to Form: Enumeration Modi�cation with Additional Return Value
Checking/Modi�cation

• Removing Fields from Form: Additional Return Value Checking/Modi�cation

• Introducing Additional Constraint on Fields: Additional Parameter Checking or Per-
forming Action After Event

• Introducing User Rights Management: Border Control with Method Substitution

• User Interface Restriction: Additional Return Value Checking/Modi�cations

• Introducing Resource Backup: Class Exchange

We have already described Introducing Resource Backup and the corresponding gen-
erally applicable change, Class Exchange. Here, we will brie�y describe the rest of the
domain speci�c change types we identi�ed in the web application domain along with the
corresponding generally applicable changes. The generally applicable change types are de-
scribed where they are �rst mentioned to make sequential reading of this section easier. In
a real catalog of changes, each change type would be described separately.

6 Valentino Vrani¢, Radoslav Menkyna, Michal Bebjak, Peter Dolog

3.1 Integration Changes

Web applications often have to be integrated with other systems. Suppose that in our
example the merchant wants to integrate the a�liate marketing software with the third
party newsletter which he uses. Every a�liate should be a member of the newsletter.
When an a�liate signs up to the a�liate marketing software, he should be signed up to
the newsletter, too. Upon deleting his account, the a�liate should be removed from the
newsletter, too.

This is a typical example of the One Way Integration change type [1]. Its essence is
the one way noti�cation: the integrating application noti�es the integrated application
of relevant events. In our case, such events are the a�liate sign-up and a�liate account
deletion.

Such integration corresponds to the Performing Action After Event change type [1].
Since events are actually represented by methods, the desired action can be implemented
in an after advice:

public aspect PerformActionAfterEvent {
pointcut methodCalls(TargetClass t, int a): . . .;
after(/∗ captured arguments ∗/): methodCalls(/∗ captured arguments ∗/) {

performAction(/∗ captured arguments ∗/);
}
private void performAction(/∗ arguments ∗/) { /∗ action logic ∗/ }

}

The after advice executes after the captured method calls. The actual action is imple-
mented as the performAction() method called by the advice.

To implement the one way integration, in the after advice we will make a post to the
newsletter sign-up/sign-out script and pass it the e-mail address and name of the newly
signed-up or deleted a�liate. We can seamlessly combine multiple one way integrations to
integrate with several systems.

The Two Way Integration change type can be seen as a double One Way Integration.
A typical example of such a change is data synchronization (e.g., synchronization of user
accounts) across multiple systems. When a user changes his pro�le in one of the systems,
these changes should be visible in all of them. In our example, introducing a forum for
a�liates with synchronized user accounts for a�liate convenience would represent a Two
Way Integration.

3.2 Introducing User Rights Management

In our a�liate marketing application, the marketing is managed by several co-workers with
di�erent roles. Therefore, its database has to be updated from an administrator account
with limited permissions. A restricted administrator should not be able to decline or delete
a�liates, nor modify the advertising campaigns and banners that have been integrated with
the web sites of a�liates. This is an instance of the Introducing User Rights Management
change type.

Suppose all the methods for managing campaigns and banners are located in the
campaigns and banners packages. The calls to these methods can be viewed as a region

Aspect-Oriented Change Realizations and Their Interaction 7

prohibited to the restricted administrator. The Border Control design pattern [20] enables
to partition an application into a series of regions implemented as pointcuts that can later
be operated on by advices [1]:

pointcut prohibitedRegion(): (within(application.Proxy) && call(void ∗.∗(..)))
|| (within(application.campaigns.+) && call(void ∗.∗(..)))
|| within(application.banners.+)
|| call(void A�liate.decline(..)) || call(void A�liate.delete(..));

}

What we actually need is to substitute the calls to the methods in the region with our
own code that will let the original methods execute only if the current user has su�cient
rights. This can be achieved by applying the Method Substitution change type which is
based on an around advice that enables to change or completely disable the execution of
methods. The following pointcut captures all method calls of the method called method()

belonging to the TargetClass class:

pointcut allmethodCalls(TargetClass t, int a):
call(ReturnType TargetClass.method(..)) && target(t) && args(a);

Note that we capture method calls, not executions, which gives us the �exibility in
constraining the method substitution logic by the context of the method call. The call()
pointcut captures all the calls of TargetClass.method(), the target() pointcut is used to
capture the reference to the target object, and the method arguments (if we need them)
are captured by an args() pointcut. In the example code, we assume method() has one
integer argument and capture it with this pointcut.

The following example captures the method() calls made within the control �ow of any
of the CallingClass methods:

pointcut speci�cmethodCalls(TargetClass t, int a):
call(ReturnType TargetClass.method(a)) && target(t) && args(a)
&& c�ow(call(∗ CallingClass.∗(..)));

This embraces the calls made directly in these methods, but also any of the method() calls
made further in the methods called directly or indirectly by the CallingClass methods.

By making an around advice on the speci�ed method call capturing pointcut, we can
create a new logic of the method to be substituted:

public aspect MethodSubstition {
pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(TargetClass t, int a): methodCalls(t, a) {

if (. . .) {
. . . } // the new method logic

else

proceed(t, a);
}

}

3.3 User Interface Restriction

It is quite annoying when a user sees, but can't access some options due to user rights
restrictions. This requires a User Interface Restriction change type to be applied. We

8 Valentino Vrani¢, Radoslav Menkyna, Michal Bebjak, Peter Dolog

have created a similar situation in our example by a previous change implementation that
introduced the restricted administrator (see Sect. 3.2). Since the restricted administrator
can't access advertising campaigns and banners, he shouldn't see them in menu either.

Menu items are retrieved by a method and all we have to do to remove the banners and
campaigns items is to modify the return value of this method. This may be achieved by
applying a Additional Return Value Checking/Modi�cation change which checks or modi�es
a method return value using an around advice:

public aspect AdditionalReturnValueProcessing {
pointcut methodCalls(TargetClass t, int a): . . .;
private ReturnType retValue;
ReturnType around(): methodCalls(/∗ captured arguments ∗/) {

retValue = proceed(/∗ captured arguments ∗/);
processOutput(/∗ captured arguments ∗/);
return retValue;

}
private void processOutput(/∗ arguments ∗/) {

// processing logic
}

}

In the around advice, we assign the original return value to the private attribute of the
aspect. Afterwards, this value is processed by the processOutput() method and the result
is returned by the around advice.

3.4 Grid Display Changes

It is often necessary to modify the way data are displayed or inserted. In web applications,
data are often displayed in grids, and data input is usually realized via forms. Grids usually
display the content of a database table or collation of data from multiple tables directly.
Typical changes required on grid are adding columns, removing them, and modifying their
presentation. A grid that is going to be modi�ed must be implemented either as some
kind of a reusable component or generated by row and cell processing methods. If the
grid is hard coded for a speci�c view, it is di�cult or even impossible to modify it using
aspect-oriented techniques.

If the grid is implemented as a data driven component, we just have to modify the
data passed to the grid. This corresponds to the Additional Return Value Checking/Mod-
i�cation change (see Sect. 3.3). If the grid is not a data driven component, it has to be
provided at least with the methods for processing rows and cells.

Adding Column to Grid can be performed after an event of displaying the existing
columns of the grid which brings us to the Performing Action After Event change type
(see Sect. 3.1). Note that the database has to re�ect the change, too. Removing Column
from Grid requires a conditional execution of the method that displays cells, which may
be realized as a Method Substitution change (see Sect. 3.2).

Alterations of a grid are often necessary due to software localization. For example,
in Japan and Hungary, in contrast to most other countries, the surname is placed before
the given names. The Altering Column Presentation in Grid change type requires pre-
processing of all the data to be displayed in a grid before actually displaying them. This

Aspect-Oriented Change Realizations and Their Interaction 9

may be easily achieved by modifying the way the grid cells are rendered, which may be
implemented again as a Method Substitution (see Sect. 3.2):

public aspect ChangeUserNameDisplay {
pointcut displayCellCalls(String name, String value):

call(void UserTable.displayCell(..)) || args(name, value);
around(String name, String value): displayCellCalls(name, value) {

if (name == "<the name of the column to be modi�ed>") {
. . . // display the modi�ed column

} else {
proceed(name, value);

}
}

}

3.5 Input Form Changes

Similarly to tables, forms are often subject to modi�cations. Users often want to add or
remove �elds from forms or pose additional constraints on their input �elds. Note that
to be possible to modify forms using aspect-oriented programming they may not be hard
coded in HTML, but generated by a method. Typically they are generated from a list of
�elds implemented by an enumeration.

Going back to our example, assume that the merchant wants to know the genre of the
music which is promoted by his a�liates. We need to add the genre �eld to the generic
a�liate sign-up form and his pro�le form to acquire the information about the genre to
be promoted at di�erent a�liate web sites. This is a change of the Adding Fields to Form
type. To display the required information, we need to modify the a�liate table of the
merchant panel to display genre in a new column. This can be realized by applying the
Enumeration Modi�cation change type to add the genre �eld along with already mentioned
Additional Return Value Checking/Modi�cation in order to modify the list of �elds being
returned (see Sect. 3.3).

The realization of the Enumeration Modi�cation change type depends on the enumera-
tion type implementation. Enumeration types are often represented as classes with a static
�eld for each enumeration value. A single enumeration value type is represented as a class
with a �eld that holds the actual (usually integer) value and its name. We add a new
enumeration value by introducing the corresponding static �eld:

public aspect NewEnumType {
public static EnumValueType EnumType.NEWVALUE =

new EnumValueType(10, "<new value name>");
}

The �elds in a form are generated according to the enumeration values. The list of
enumeration values is typically accessible via a method provided by it. This method has
to be addressed by an Additional Return Value Checking/Modi�cation change.

For Removing Fields from Form, an Additional Return Value Checking/Modi�cation
change is su�cient. Actually, the enumeration value would still be included in the enu-
meration, but this would not a�ect the form generation.

10 Valentino Vrani¢, Radoslav Menkyna, Michal Bebjak, Peter Dolog

If we want to introduce additional validations on form input �elds in an application
without a built-in validation, which constitutes an Introducing Additional Constraint on
Fields change, an Additional Parameter Checking change can be applied to methods that
process values submitted by the form. This change enables to introduce an additional
validation or constraint on method arguments. For this, we have to specify a pointcut that
will capture all the calls of the a�ected methods along with their context similarly as in
Sect. 3.2. Their arguments will be checked by the check() method called from within an
around advice which will throw WrongParamsException if they are not correct:

public aspect AdditionalParameterChecking {
pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(/∗ arguments ∗/) throws WrongParamsException:

methodCalls(/∗ arguments ∗/) {
check(/∗ arguments ∗/);
return proceed(/∗ arguments ∗/);

}
void check(/∗ arguments ∗/) throws WrongParamsException {

if (arg1 != <desired value>)
throw new WrongParamsException();

}
}

Adding a new validator to an application that already has a built-in validation is
realized by simply including it in the list of validators. This can be done by implementing
the Performing Action After Event change (see Sect. 3.1), which would add the validator
to the list of validators after the list initialization.

4 Changing a Change

Sooner or later there will be a need for a change whose realization will a�ect some of the
already applied changes. There are two possibilities to deal with this situation: a new
change can be implemented separately using aspect-oriented programming or the a�ected
change source code could be modi�ed directly. Either way, the changes remain separate
from the rest of the application.

The possibility to implement a change of a change using aspect-oriented programming
and without modifying the original change is given by the aspect-oriented programming
language capabilities. Consider, for example, advices in AspectJ. They are unnamed, so
can't be referred to directly. The primitive pointcut adviceexecution(), which captures
execution of all advices, can be restricted by the within() pointcut to a given aspect, but
if an aspect contains several advices, advices have to be annotated and accessed by the
@annotation() pointcut, which was impossible in AspectJ versions that existed before Java
was extended with annotations.

An interesting consequence of aspect-oriented change realization is the separation of
crosscutting concerns in the application which improves its modularity (and thus makes
easier further changes) and may be seen as a kind of aspect-oriented refactoring. For
example, in our a�liate marketing application, the integration with a newsletter�identi�ed
as a kind of One Way Integration�actually was a separation of integration connection,

Aspect-Oriented Change Realizations and Their Interaction 11

which may be seen as a concern of its own. Even if these once separated concerns are further
maintained by direct source code modi�cation, the important thing is that they remain
separate from the rest of the application. Implementing a change of a change using aspect-
oriented programming and without modifying the original change is interesting mainly if
it leads to separation of another crosscutting concern.

5 Capturing Change Interaction by Feature Models

Some change realizations can interact : they may be mutually dependent or some change
realizations may depend on the parts of the underlying system a�ected by other change
realizations. With increasing number of changes, change interaction can easily escalate
into a serious problem: serious as feature interaction.

Change realizations in the sense of the approach presented so far actually resemble fea-
tures as coherent pieces of functionality. Moreover, they are virtually pluggable and as such
represent variable features. This brings us to feature modeling as an appropriate technique
for managing variability in software development including variability among changes. This
section will show how to model aspect-oriented changes using feature modeling.

5.1 Representing Change Realizations

There are several feature modeling notations [26] of which we will stick to a widely accepted
and simple Czarnecki�Eisenecker basic notation [5]. Further in this section, we will show
how feature modeling can be used to manage change interaction with elements of the
notation explained as needed.

Aspect-oriented change realizations can be perceived as variable features that extend
an existing system. Figure 2 shows the change realizations from our a�liate marketing
scenario a feature diagram. A feature diagram is commonly represented as a tree whose
root represents a concept being modeled. Our concept is our a�liate marketing software.
All the changes are modeled as optional features (marked by an empty circle ended edges)
that can but do not have to be included in a feature con�guration�known also as concept
instance�for it to be valid. Recall adding a backup SMTP server discussed in Sect. 2.1.
We considered a possibility of having another realization of this change, but we don't want
both realizations simultaneously. In the feature diagram, this is expressed by alternative
features (marked by an arc), so no A�liate Marketing instance will contain both SMTP
Server Backup A and SMTP Server Backup B.

A change realization can be meaningful only in the context of another change realiza-
tion. In other words, such a change realization requires the other change realization. In
our scenario, hiding options unavailable to a restricted administrator makes sense only if
we introduced a restricted administrator account (see Sect. 3.3 and 3.2). Thus, the Hide
Options Unavailable to Restricted Administrator feature is a subfeature of the Restricted
Administrator Account feature. For a subfeature to be included in a concept instance its
parent feature must be included, too.

12 Valentino Vrani¢, Radoslav Menkyna, Michal Bebjak, Peter Dolog

SMTP Server
Backup A

Newsletter
Sign Up

User Name
Display Change

 Restricted
Administrator Account

Hide Options Unavailable
to Restricted Administrator

Affiliate
Marketing

SMTP Server
Backup B

Figure 2: A�liate marketing software change realizations in a feature diagram.

5.2 Identifying Direct Change Interactions

Direct change interactions can be identi�ed in a feature diagram with change realizations
modeled as features of the a�ected software concept. Each dependency among features
represents a potential change interaction. A direct change interaction may occur among
alternative features or a feature and its subfeatures: such changes may a�ect the common
join points. In our a�liate marketing scenario, alternative SMTP backup server change
realizations are an example of such changes. Determining whether changes really interact
requires analysis of dependant feature semantics with respect to the implementation of the
software being changed. This is beyond feature modeling capabilities.

Indirect feature dependencies may also represent potential change interactions. Addi-
tional dependencies among changes can be discovered by exploring the software to which
the changes are introduced. For this, it is necessary to have a feature model of the software
itself, which is seldom the case. Constructing a complete feature model can be too costly
with respect to expected bene�ts for change interaction identi�cation. However, only a
part of the feature model that actually contains edges that connect the features under
consideration is needed in order to reveal indirect dependencies among them.

5.3 Partial Feature Model Construction

The process of constructing partial feature model is based on the feature model in which
aspect-oriented change realizations are represented by variable features that extend an
existing system represented as a concept (see Sect. 5.1).

The concept node in this case is an abstract representation of the underlying software
system. Potential dependencies of the change realizations are hidden inside of it. In order
to reveal them, we must factor out concrete features from the concept. Starting at the
features that represent change realizations (leaves) we proceed bottom up trying to identify
their parent features until related changes are not grouped in common subtrees. Figure 3
depicts this process.

The process will be demonstrated on YonBan, a student project management system
developed at Slovak University of Technology. We will consider the following changes in
YonBan and their respective realizations indicated by generally applicable change types:

Aspect-Oriented Change Realizations and Their Interaction 13

[Application
Concept]

[Feature A]

[Change 1]

[Feature D]

[Feature E]

[Feature B]

[Change 6][Feature C]

[Change 5][Change4]

[Change 3][Change 2]

Figure 3: Constructing a partial feature model.

• Telephone Number Validating (realized as Performing Action After Event): to vali-
date a telephone number the user has entered

• Telephone Number Formatting (realized as Additional Return Value Checking/Mod-
i�cation): to format a telephone number by adding country pre�x

• Project Registration Statistics (realized as One Way Integration): to gain statistic
information about the project registrations

• Project Registration Constraint (realized as Additional Parameter Checking/Modi-
�cation): to check whether the student who wants to register a project has a valid
e-mail address in his pro�le

• Exception Logging (realized as Performing Action After Event): to log the exceptions
thrown during the program execution

• Name Formatting (realized as Method Substitution): to change the way how student
names are formatted

These change realizations are captured in the initial feature diagram presented Fig. 4.
Since there was no relevant information about direct dependencies among changes during
their speci�cation, there are no direct dependencies among the features that represent
them either. The concept of the system as such is marked as open (indicated by square
brackets), which means that new variable subfeatures are expected at it. This is so because
we show only a part of the analyzed system knowing there are other features there.

Following this initial stage, we attempt to identify parent features of the change realiza-
tion features as the features of the underlying system that are a�ected by them. Figure 5

14 Valentino Vrani¢, Radoslav Menkyna, Michal Bebjak, Peter Dolog

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

Figure 4: Initial stage of the YonBan partial feature model construction.

shows such changes identi�ed in our case. We found that Name Formatting a�ects the
Name Entering feature. Project Registration Statistic and Project Registration Constraint
change User Registration. Telephone Number Formatting and Telephone Number Validat-
ing are changes of Telephone Number Entering. Exception Logging a�ects all the features
in the application, so it remains a direct feature of the concept. All these newly identi�ed
features are open because we are aware of the incompleteness of their subfeature sets.

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

[Telephone Number
Entering]

[User
Registration]

[Name
Entering]

Figure 5: Identifying parent features in YonBan partial feature model construction.

We continue this process until we are able to identify parent features or until all the
changes are found in a common subtree of the feature diagram, whichever comes �rst. In
our example, we reached this stage within the following�and thus last�iteration which
is presented in Fig. 6: we realized that Telephone Number Entering is a part of User
Registration.

5.4 Dependency Evaluation

Dependencies among change realization features in a partial feature model constitute po-
tential change realization interactions. A careful analysis of the feature model can reveal
dependencies we have overlooked during its construction.

Sibling features (direct subfeatures of the same parent feature) are potentially interde-
pendent. This problem can occur also among the features that are�to say so�indirect
siblings, so we have to analyze these, too. Speaking in terms of change implementation,
the code that implements the parent feature altered by one of the sibling change features

Aspect-Oriented Change Realizations and Their Interaction 15

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

[Telephone Number
Entering]

[User
Registration]

[Name
Entering]

Figure 6: The �nal YonBan partial feature model.

can be dependent on the code altered by another sibling change feature or vice versa. The
feature model points us to the locations of potential interaction.

In our example, we have a partial feature model (recall Fig. 6) and we understand the
way the changes should be implemented based on their type (see Sect. 5.3). Project Regis-
tration Constraint and Project Registration Statistic change are both direct subfeatures of
User Registration. The two aspects that would implement these changes would advise the
same project registration method, and this indeed can lead to interaction. In such cases,
precedence of aspects should be set (in AspectJ, dominates inter-type declaration enables
this). Another possible problem in this particular situation is that the Project Registra-
tion Constraint change can disable the execution of the project registration method. If
the Project Registration Statistic change would use an execution() pointcut, everything
would be all right. On the other hand, if the Project Registration Statistic change would
use a call() pointcut, the registration statistic advice would be still executed even when
the registration method would not be executed. This would cause an undesirable system
behavior where also registrations canceled by Project Registration Constraint would be
counted in statistic. The probability of a mistake when a call() pointcut is used instead
of the execution() pointcut is higher if the Project Registration Statistic change would be
added �rst.

Telephone Number Formatting and Telephone Number Validating are another example
of direct subfeatures. In this case, the aspects that would implement these changes apply to
di�erent join points, so apparently, no interaction should occur. However, a detailed look
uncovers that Telephone Number Formatting change alters the value which the Telephone
Number Validating change has to validate. This introduces a kind of logical dependency
and to this point the two changes interact. For instance, altering Telephone Number For-
matting to format the number in a di�erent way may require adapting Telephone Number
Validating.

16 Valentino Vrani¢, Radoslav Menkyna, Michal Bebjak, Peter Dolog

We saw that the dependencies between changes could be as complex as feature de-
pendencies in feature modeling and accordingly represented by feature diagrams. For
dependencies appearing among features without a common parent, additional constraints
expressed as logical expressions [27] could be used. These constraints can be partly em-
bedded into feature diagrams by allowing them to be directed acyclic graphs instead of
just trees [10].

Some dependencies between changes may exhibit only recommending character, i.e.
whether they are expected to be included or not included together, but their application
remains meaningful either way. An example of this are features that belong to the same
change request. Again, feature modeling can be used to model such dependencies with
so-called default dependency rules that may also be represented by logical expressions [27].

6 Evaluation and Tool Support Outlooks

We have successfully applied the aspect-oriented approach to change realization to intro-
duce changes into YonBan, the student project management system discussed in previous
section. YonBan is based on J2EE, Spring, Hibernate, and Acegi frameworks. The Yon-
Ban architecture is based on the Inversion of Control principle and Model-View-Controller
pattern.

We implemented all the changes listed in Sect. 5.3. No original code of the system had
to be modi�ed. Except in the case of project registration statistics and project registration
constraint, which where well separated from the rest of the code, other changes would
require extensive code modi�cations if they have had been implemented the conventional
way.

As we discussed in Sect 5.4, we encountered one change interaction: between the tele-
phone number formatting and validating. These two changes are interrelated�they would
probably be part of one change request�so it comes as no surprise they a�ect the same
method. However, no intervention was needed in the actual implementation.

We managed to implement the changes easily even without a dedicated tool, but to
cope with a large number of changes, such a tool may become crucial. Even general aspect-
oriented programming support tools�usually integrated with development environments�
may be of some help in this. AJDT (AspectJ Development Tools) for Eclipse is a prominent
example of such a tool. AJDT shows whether a particular code is a�ected by advices, the
list of join points a�ected by each advice, and the order of advice execution, which all are
important to track when multiple changes a�ect the same code. Advices that do not a�ect
any join point are reported in compilation warnings, which may help detect pointcuts
invalidated by direct modi�cations of the application base code such as identi�er name
changes or changes in method arguments.

A dedicated tool could provide a much more sophisticated support. A change imple-
mentation can consist of several aspects, classes, and interfaces, commonly denoted as
types. The tool should keep a track of all the parts of a change. Some types may be shared
among changes, so the tool should enable simple inclusion and exclusion of changes. This is

Aspect-Oriented Change Realizations and Their Interaction 17

related to change interaction, which can be addressed by feature modeling as we described
in the previous section.

7 Related Work

The work presented in this paper is based on our initial e�orts related to aspect-oriented
change control [8] in which we related our approach to change-based approaches in version
control. We concluded that the problem with change-based approaches that could be solved
by aspect-oriented programming is the lack of programming language awareness in change
realizations.

In our work on the evolution of web applications based on aspect-oriented design pat-
terns and pattern-like forms [1], we reported the fundamentals of aspect-oriented change
realizations based on the two level model of domain speci�c and generally applicable change
types, as well as four particular change types: Class Exchange, Performing Action After
Event, and One/Two Way Integration.

Applying feature modeling to maintain change dependencies (see Sect. 4) is similar to
constraints and preferences proposed in SIO software con�guration management system [4].
However, a version model for aspect dependency management [23] with appropriate aspect
model that enables to control aspect recursion and strati�cation [2] would be needed as
well.

We tend to regard changes as concerns, which is similar to the approach of facilitating
con�gurability by separation of concerns in the source code [9]. This approach actually
enables a kind of aspect-oriented programming on top of a versioning system. Parts of the
code that belong to one concern need to be marked manually in the code. This enables to
easily plug in or out concerns. However, the major drawback, besides having to manually
mark the parts of concerns, is that�unlike in aspect-oriented programming�concerns
remain tangled in code.

Others have explored several issues generally related to our work, but none of these
works aims at actual capturing changes by aspects. These issues include database schema
evolution with aspects [12] or aspect-oriented extensions of business processes and web
services with crosscutting concerns of reliability, security, and transactions [3]. Also,
an increased changeability of components implemented using aspect-oriented program-
ming [17, 18, 22] and aspect-oriented programming with the frame technology [19], as
well as enhanced reusability and evolvability of design patterns achieved by using generic
aspect-oriented languages to implement them [24] have been reported. The impact of
changes implemented by aspects has been studied using slicing in concern graphs [15].

While we do see potential of aspect-orientation for con�guration and recon�guration
of applications, our current work does not aim at automatic adaptation in application
evolution, such as event triggered evolutionary actions [21], evolution based on active
rules [6], adaptation of languages instead of software systems [16], or as an alternative to
version model based context-awareness [7, 13].

18 Valentino Vrani¢, Radoslav Menkyna, Michal Bebjak, Peter Dolog

8 Conclusions and Further Work

In this paper, we have described our approach to change realization using aspect-oriented
programming and proposed a feature modeling based approach of dealing with change
interaction. We deal with changes at two levels distinguishing between domain speci�c
and generally applicable change types. We described change types speci�c to web appli-
cation domain along with corresponding generally applicable changes. We also discussed
consequences of having to implement a change of a change.

The approach does not require exclusiveness in its application: a part of the changes
can be realized in a traditional way. In fact, the approach is not appropriate for realization
of all changes, and some of them can't be realized by it at all. This is due to a technical
limitation given by the capabilities of the underlying aspect-oriented language or frame-
work. Although some work towards addressing method-level constructs such as loops has
been reported [14], this is still uncommon practice. What is more important is that relying
on the inner details of methods could easily compromise the portability of changes across
the versions since the stability of method bodies between versions is questionable.

Change interaction can, of course, be analyzed in code, but it would be very bene�cial
to deal with it already during modeling. We showed that feature modeling can successfully
be applied whereby change realizations would be modeled as variable features of the ap-
plication concept. Based on such a model, change dependencies could be tracked through
feature dependencies. In the absence of a feature model of the application under change,
which is often the case, a partial feature model can be developed at far less cost to serve
the same purpose.

For further evaluation, it would be interesting to develop catalogs of domain speci�c
change types of other domains like service-oriented architecture for which we have a suitable
application developed in Java available [25]. Although the evaluation of the approach has
shown the approach can be applied even without a dedicated tool support, we believe that
tool support is important in dealing with change interaction, especially if their number is
high.

By applying the multi-paradigm design with feature modeling [27] to select the generally
applicable changes (understood as paradigms) appropriate to given application speci�c
changes we may avoid the need for catalogs of domain speci�c change types or we can even
use it to develop them. This constitutes the main course of our further research.

Acknowledgements The work was supported by the Scienti�c Grant Agency of Slovak
Republic (VEGA) grant No. VG 1/0508/09.

References

[1] M. Bebjak, V. Vrani¢, and P. Dolog. Evolution of web applications with aspect-oriented design
patterns. In M. Brambilla and E. Mendes, editors, Proc. of ICWE 2007 Workshops, 2nd Inter-
national Workshop on Adaptation and Evolution in Web Systems Engineering, AEWSE 2007,
in conjunction with 7th International Conference on Web Engineering, ICWE 2007, pages
80�86, Como, Italy, July 2007.

Aspect-Oriented Change Realizations and Their Interaction 19

[2] E. Bodden, F. Forster, and F. Steimann. Avoiding in�nite recursion with strati�ed aspects.
In R. Hirschfeld et al., editors, Proc. of NODe 2006, LNI P-88, pages 49�64, Erfurt, Germany,
Sept. 2006. GI.

[3] A. Char�, B. Schmeling, A. Heizenreder, and M. Mezini. Reliable, secure, and transacted web
service compositions with AO4BPEL. In 4th IEEE European Conf. on Web Services (ECOWS
2006), pages 23�34, Zürich, Switzerland, Dec. 2006. IEEE Computer Society.

[4] R. Conradi and B. Westfechtel. Version models for software con�guration management. ACM
Computing Surveys, 30(2):232�282, June 1998.

[5] K. Czarnecki and U. W. Eisenecker. Generative Programing: Methods, Tools, and Applica-
tions. Addison-Wesley, 2000.

[6] F. Daniel, M. Matera, and G. Pozzi. Combining conceptual modeling and active rules for the
design of adaptive web applications. In Workshop Proc. of 6th Int. Conf. on Web Engineering
(ICWE 2006), New York, NY, USA, 2006. ACM Press.

[7] F. Dantas, T. Batista, N. Cacho, and A. Garcia. Towards aspect-oriented programming
for context-aware systems: A comparative study. In Proc. of 1st International Workshop
on Software Engineering for Pervasive Computing Applications, Systems, and Environments,
SEPCASE'07, Minneapolis, USA, May 2007. IEEE.

[8] P. Dolog, V. Vrani¢, and M. Bieliková. Representing change by aspect. ACM SIGPLAN
Notices, 36(12):77�83, Dec. 2001.

[9] Z. Fazekas. Facilitating con�gurability by separation of concerns in the source code. Journal
of Computing and Information Technology (CIT), 13(3):195�210, Sept. 2005.

[10] R. Filkorn and P. Návrat. An approach for integrating analysis patterns and feature diagrams
into model driven architecture. In P. Vojtá², M. Bieliková, and B. Charron-Bost, editors,
Proc. 31st Conference on Current Trends in Theory and Practice of Informatics (SOFSEM
2005), LNCS 3381, Liptovský Jan, Slovakia, Jan. 2005. Springer.

[11] S. Goldschmidt, S. Junghagen, and U. Harris. Strategic A�liate Marketing. Edward Elgar
Publishing, 2003.

[12] R. Green and A. Rashid. An aspect-oriented framework for schema evolution in object-oriented
databases. In Proc. of the Workshop on Aspects, Components and Patterns for Infrastructure
Software (in conjunction with AOSD 2002), Enschede, Netherlands, Apr. 2002.

[13] M. Grossniklaus and M. C. Norrie. An object-oriented version model for context-aware data
management. In M. Weske, M.-S. Hacid, and C. Godart, editors, Proc. of 8th Interna-
tional Conference on Web Information Systems Engineering, WISE 2007, LNCS 4831, Nancy,
France, Dec. 2007. Springer.

[14] B. Harbulot and J. R. Gurd. A join point for loops in AspectJ. In Proc. of 5th International
Conference on Aspect-Oriented Software Development, AOSD 2006, pages 63�74, Bonn, Ger-
many, 2006. ACM.

[15] S. Khan and A. Rashid. Analysing requirements dependencies and change impact using
concern slicing. In Proc. of Aspects, Dependencies, and Interactions Workshop (a�liated to
ECOOP 2008), Nantes, France, July 2006.

[16] J. Kollár, J. Porubän, P. Václavík, J. Bandáková, and M. Forgá£. Functional approach to
the adaptation of languages instead of software systems. Computer Science and Information
Systems Journal (ComSIS), 4(2), Dec. 2007.

20 Valentino Vrani¢, Radoslav Menkyna, Michal Bebjak, Peter Dolog

[17] A. A. Kvale, J. Li, and R. Conradi. A case study on building COTS-based system using aspect-
oriented programming. In 2005 ACM Symposium on Applied Computing, pages 1491�1497,
Santa Fe, New Mexico, USA, 2005. ACM.

[18] J. Li, A. A. Kvale, and R. Conradi. A case study on improving changeability of COTS-based
system using aspect-oriented programming. Journal of Information Science and Engineering,
22(2):375�390, Mar. 2006.

[19] N. Loughran, A. Rashid, W. Zhang, and S. Jarzabek. Supporting product line evolution with
framed aspects. InWorkshop on Aspects, Componentsand Patterns for Infrastructure Software
(held with AOSD 2004, International Conference on Aspect-Oriented Software Development),
Lancaster, UK, Mar. 2004.

[20] R. Miles. AspectJ Cookbook. O'Reilly, 2004.

[21] F. Molina-Ortiz, N. Medina-Medina, and L. García-Cabrera. An author tool based on SEM-
HP for the creation and evolution of adaptive hypermedia systems. In Workshop Proc. of 6th
Int. Conf. on Web Engineering (ICWE 2006), New York, NY, USA, 2006. ACM Press.

[22] O. Papapetrou and G. A. Papadopoulos. Aspect-oriented programming for a component based
real life application: A case study. In 2004 ACM Symposium on Applied Computing, pages
1554�1558, Nicosia, Cyprus, 2004. ACM.

[23] E. Pulvermüller, A. Speck, and J. O. Coplien. A version model for aspect dependency manage-
ment. In Proc. of 3rd Int. Conf. on Generative and Component-Based Software Engineering
(GCSE 2001), LNCS 2186, pages 70�79, Erfurt, Germany, Sept. 2001. Springer.

[24] T. Rho and G. Kniesel. Independent evolution of design patterns and application logic with
generic aspects�a case study. Technical Report IAI-TR-2006-4, University of Bonn, Bonn,
Germany, Apr. 2006.

[25] V. Rozinajová, M. Braun, P. Návrat, and M. Bieliková. Bridging the gap between service-
oriented and object-oriented approach in information systems development. In D. Avison,
G. M. Kasper, B. Pernici, I. Ramos, and D. Roode, editors, Proc. of IFIP 20th World Com-
puter Congress, TC 8, Information Systems, Milano, Italy, Sept. 2008. Springer Boston.

[26] V. Vrani¢. Reconciling feature modeling: A feature modeling metamodel. In M. Weske
and P. Liggsmeyer, editors, Proc. of 5th Annual International Conference on Object-
Oriented and Internet-Based Technologies, Concepts, and Applications for a Networked World
(Net.ObjectDays 2004), LNCS 3263, pages 122�137, Erfurt, Germany, Sept. 2004. Springer.

[27] V. Vrani¢. Multi-paradigm design with feature modeling. Computer Science and Information
Systems Journal (ComSIS), 2(1):79�102, June 2005.

[28] V. Vrani¢, M. Bebjak, R. Menkyna, and P. Dolog. Developing applications with aspect-
oriented change realization. In Proc. of 3rd IFIP TC2 Central and East European Conference
on Software Engineering Techniques CEE-SET 2008, LNCS, Brno, Czech Republic, 2008.

Appendix F

Developing Applications
with Aspect-Oriented
Change Realization

This appendix contains:

Valentino Vranić, Michal Bebjak, Radoslav Menkyna, and Pe-
ter Dolog. Developing applications with aspect-oriented change
realization. In Proc. of 3rd IFIP TC2 Central and East Euro-
pean Conference on Software Engineering Techniques CEE-SET
2008, LNCS, Brno, Czech Republic, October 2008. Springer.
Postproceedings, to appear.

The paper was accepted to 3rd IFIP TC2 Central and East European Confer-
ence on Software Engineering Techniques CEE-SET 2008. My contribution
to this paper is approximately 10 %.

Developing Applications with Aspect-Oriented
Change Realization

Valentino Vranić1, Michal Bebjak1, Radoslav Menkyna1, and Peter Dolog2

1 Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology,
Ilkovičova 3, 84216 Bratislava 4, Slovakia

vranic@fiit.stuba.sk, mbebjak@gmail.com, radu@ynet.sk

2 Department of Computer Science
Aalborg University

Selma Lagerlöfs Vej 300, DK-9220 Aalborg EAST, Denmark
dolog@cs.aau.dk

Abstract. An approach to aspect-oriented change realization is pro-
posed in this paper. With aspect-oriented programming changes can
be treated explicitly and directly at the programming language level.
Aspect-oriented change realizations are mainly based on aspect-oriented
design patterns or themselves constitute pattern-like forms in connection
to which domain independent change types can be identified. However,
it is more convenient to plan changes in a domain specific manner. Do-
main specific change types can be seen as subtypes of generally applicable
change types. This relationship can be maintained in a form of a catalog.
Further changes can actually affect the existing aspect-oriented change
realizations, which can be solved by adapting the existing change imple-
mentation or by implementing an aspect-oriented change realization of
the existing change without having to modify its source code. Separating
out the changes this way can lead to a kind of aspect-oriented refactoring
beneficial to the application as such. As demonstrated partially by the
approach evaluation, the problem of change interaction may be avoided
to the large extent by using appropriate aspect-oriented development
tools, but for a large number of changes, dependencies between them
have to be tracked, which could be supported by feature modeling.

Keywords: change, aspect-oriented programming, generally applicable
changes, domain specific changes, change interaction

1 Introduction

To quote a phrase, change is the only constant in software development. Change
realization consumes enormous effort and time. Once implemented, changes get
lost in the code. While individual code modifications are usually tracked by a
version control tool, the logic of a change as a whole vanishes without a proper
support in the programming language itself.

By its capability to separate crosscutting concerns, aspect-oriented program-
ming enables to deal with change explicitly and directly at programming lan-
guage level. Changes implemented this way are pluggable and—to the great
extent—reapplicable to similar applications, such as applications from the same
product line.

Customization of web applications represents a prominent example of that
kind. In customization, a general application is being adapted to the client’s
needs by a series of changes. With each new version of the base application all
the changes have to be applied to it. In many occasions, the difference between
the new and old application does not affect the structure of changes, so if changes
have been implemented using aspect-oriented programming, they can be simply
included into the new application build without any additional effort.

We have already reported briefly our initial efforts in change realization us-
ing aspect-oriented programming [1]. In this paper, we present our improved
view of the approach to change realization and the change types we discovered.
Section 2 presents our approach to aspect-oriented change realization. Section 3
introduces the change types we have discovered so far in the web application
domain. Section 4 discusses how to deal with a change of a change. Section 5
describes the approach evaluation and identifies the possibilities of coping with
change interaction with tool support. Section 6 discusses related work. Section 7
presents conclusions and directions of further work.

2 Changes as Crosscutting Requirements

A change is initiated by a change request made by a user or some other stake-
holder. Change requests are specified in domain notions similarly as initial re-
quirements are. A change request tends to be focused, but it often consists of
several different—though usually interrelated—requirements that specify actual
changes to be realized. By decomposing a change request into individual changes
and by abstracting the essence out of each such change while generalizing it at
the same time, a change type applicable to a range of the applications that
belong to the same domain can be defined.

We will introduce our approach by a series of examples on a common sce-
nario.3 Suppose a merchant who runs his online music shop purchases a general
affiliate marketing software [9] to advertise at third party web sites denoted as
affiliates. In a simplified schema of affiliate marketing, a customer visits an af-
filiate’s site which refers him to the merchant’s site. When he buys something
from the merchant, the provision is given to the affiliate who referred the sale.
A general affiliate marketing software enables to manage affiliates, track sales
referred by these affiliates, and compute provisions for referred sales. It is also
able to send notifications about new sales, signed up affiliates, etc.

The general affiliate marketing software has to be adapted (customized),
which involves a series of changes. We will assume the affiliate marketing software

3 This is an adapted scenario published in our earlier work [1].

is written in Java and use AspectJ, the most popular aspect-oriented language,
which is based on Java, to implement some of these changes.

In the AspectJ style of aspect-oriented programming, the crosscutting con-
cerns are captured in units called aspects. Aspects may contain fields and meth-
ods much the same way the usual Java classes do, but what makes possible
for them to affect other code are genuine aspect-oriented constructs, namely:
pointcuts, which specify the places in the code to be affected, advices, which
implement the additional behavior before, after, or instead of the captured join
point (a well-defined place in the program execution)—most often method calls
or executions—and inter-type declarations, which enable introduction of new
members into types, as well as introduction of compilation warnings and errors.

2.1 Domain Specific Changes

One of the changes of the affiliate marketing software would be adding a backup
SMTP server to ensure delivery of the notifications to users. Each time the
affiliate marketing software needs to send a notification, it creates an instance
of the SMTPServer class which handles the connection to the SMTP server.

An SMTP server is a kind of a resource that needs to be backed up, so
in general, the type of the change we are talking about could be denoted as
Introducing Resource Backup. This change type is still expressed in a domain
specific way. We can clearly identify a crosscutting concern of maintaining a
backup resource that has to be activated if the original one fails and implement
this change in a single aspect without modifying the original code:

class AnotherSMTPServer extends SMTPServer {
. . .

}
public aspect BackupSMTPServer {

public pointcut SMTPServerConstructor(URL url, String user, String password):
call(SMTPServer.new(..)) && args (url, user, password);

SMTPServer around(URL url, String user, String password):
SMTPServerConstructor(url, user, password) {
return getSMTPServerBackup(proceed(url, user, password));

}
SMTPServer getSMTPServerBackup(SMTPServer obj) {

if (obj.isConnected()) {
return obj;

}
else {

return new AnotherSMTPServer(obj.getUrl(), obj.getUser(),
obj.getPassword());

}
}

}

The around() advice captures constructor calls of the SMTPServer class and
their arguments. This kind of advice takes complete control over the captured
join point and its return clause, which is used in this example to control the

type of the SMTP server being returned. The policy is implemented in the
getSMTPServerBackup() method: if the original SMTP server can’t be con-
nected to, a backup SMTP server class instance is created and returned.

2.2 Generally Applicable Changes

Looking at this code and leaving aside SMTP servers and resources altogether,
we notice that it actually performs a class exchange. This idea can be generalized
and domain details abstracted out of it bringing us to the Class Exchange change
type [1] which is based on the Cuckoo’s Egg aspect-oriented design pattern [16]:

public class AnotherClass extends MyClass {
. . .

}
public aspect MyClassSwapper {

public pointcut myConstructors(): call(MyClass.new());
Object around(): myConstructors() {

return new AnotherClass();
}

}

2.3 Applying a Change Type

It would be beneficial if the developer could get a hint on using the Cuckoo’s Egg
pattern based on the information that a resource backup had to be introduced.
This could be achieved by maintaining a catalog of changes in which each domain
specific change type would be defined as a specialization of one or more generally
applicable changes.

When determining a change type to be applied, a developer chooses a par-
ticular change request, identifies individual changes in it, and determines their
type. Figure 1 shows an example situation. Domain specific changes of the D1
and D2 type have been identified in the Change Request 1. From the previously
identified and cataloged relationships between change types, we would know
their generally applicable change types are G1 and G2.

Fig. 1. Generally applicable and domain specific changes.

A generally applicable change type can be a kind of an aspect-oriented design
pattern (consider G2 and AO Pattern 2). A domain specific change realization
can also be complemented by an aspect-oriented design patterns, which is ex-
pressed by an association between them (consider D1 and AO Pattern 1).

Each generally applicable change has a known domain independent code
scheme (G2’s code scheme is omitted from the figure). This code scheme has to
be adapted to the context of a particular domain specific change, which may be
seen as a kind of refinement (consider D1 Code and D2 Code).

3 Catalog of Changes

To support the process of change selection, the catalog of changes is needed
in which the generalization–specialization relationships between change types
would be explicitly established. The following list sums up these relationships
between change types we have identified in the web application domain (the
domain specific change type is introduced first):

– One Way Integration: Performing Action After Event
– Two Way Integration: Performing Action After Event
– Adding Column to Grid: Performing Action After Event
– Removing Column from Grid: Method Substitution
– Altering Column Presentation in Grid: Method Substitution
– Adding Fields to Form: Enumeration Modification with Additional Return

Value Checking/Modification
– Removing Fields from Form: Additional Return Value Checking/Modifica-

tion
– Introducing Additional Constraint on Fields: Additional Parameter Check-

ing or Performing Action After Event
– Introducing User Rights Management: Border Control with Method Substi-

tution
– User Interface Restriction: Additional Return Value Checking/Modifications
– Introducing Resource Backup: Class Exchange

We have already described Introducing Resource Backup and the correspond-
ing generally applicable change, Class Exchange. Here, we will briefly describe
the rest of the domain specific change types we identified in the web application
domain along with the corresponding generally applicable changes. The generally
applicable change types are described where they are first mentioned to make
the sequential reading of this section easier. A real catalog of changes would
require to describe each change type separately.

3.1 Integration Changes

Web applications often have to be integrated with other systems. Suppose that
in our example the merchant wants to integrate the affiliate marketing software
with the third party newsletter which he uses. Every affiliate should be a member

of the newsletter. When an affiliate signs up to the affiliate marketing software,
he should be signed up to the newsletter, too. Upon deleting his account, the
affiliate should be removed from the newsletter, too.

This is a typical example of the One Way Integration change type [1]. Its
essence is the one way notification: the integrating application notifies the inte-
grated application of relevant events. In our case, such events are the affiliate
sign-up and affiliate account deletion.

Such integration corresponds to the Performing Action After Event change
type [1]. Since events are actually represented by methods, the desired action
can be implemented in an after advice:

public aspect PerformActionAfterEvent {
pointcut methodCalls(TargetClass t, int a): . . .;
after(/∗ captured arguments ∗/): methodCalls(/∗ captured arguments ∗/) {

performAction(/∗ captured arguments ∗/);
}
private void performAction(/∗ arguments ∗/) { /∗ action logic ∗/ }

}

The after advice executes after the captured method calls. The actual action is
implemented as the performAction() method called by the advice.

To implement the one way integration, in the after advice we will make a
post to the newsletter sign-up/sign-out script and pass it the e-mail address and
name of the newly signed-up or deleted affiliate. We can seamlessly combine
multiple one way integrations to integrate with several systems.

The Two Way Integration change type can be seen as a double One Way
Integration. A typical example of such a change is data synchronization (e.g.,
synchronization of user accounts) across multiple systems. When a user changes
his profile in one of the systems, these changes should be visible in all of them. In
our example, introducing a forum for affiliates with synchronized user accounts
for affiliate convenience would represent a Two Way Integration.

3.2 Introducing User Rights Management

In our affiliate marketing application, the marketing is managed by several co-
workers with different roles. Therefore, its database has to be updated from an
administrator account with limited permissions. A limited administrator should
not be able to decline or delete affiliates, nor modify the advertising campaigns
and banners that have been integrated with the web sites of affiliates. This is an
instance of the Introducing User Rights Management change type.

Suppose all the methods for managing campaigns and banners are located
in the campaigns and banners packages. The calls to these methods can be
viewed as a region prohibited to the restricted administrator. The Border Control
design pattern [16] enables to partition an application into a series of regions
implemented as pointcuts that can later be operated on by advices [1]:

pointcut prohibitedRegion(): (within(application.Proxy) && call(void ∗.∗(..)))
|| (within(application.campaigns.+) && call(void ∗.∗(..)))

|| within(application.banners.+)
|| call(void Affiliate.decline(..)) || call(void Affiliate.delete(..));

}

What we actually need is to substitute the calls to the methods in the region
with our own code that will let the original methods execute only if the current
user has sufficient rights. This can be achieved by applying the Method Substitu-
tion change type which is based on an around advice that enables to change or
completely disable the execution of methods. The following pointcut captures all
method calls of the method called method() belonging to the TargetClass class:

pointcut allmethodCalls(TargetClass t, int a):
call(ReturnType TargetClass.method(..)) && target(t) && args(a);

Note that we capture method calls, not executions, which gives us the flexibility
in constraining the method substitution logic by the context of the method call.

The pointcut call(ReturnType TargetClass.method(..)) captures all the calls
of TargetClass.method(). The target() pointcut is used to capture the reference
to the target class. The method arguments can be captured by an args() point-
cut. In the example code above, we assume method() has one integer argument
and capture it with this pointcut.

The following example captures the method() calls made within the control
flow of any of the CallingClass methods:

pointcut specificmethodCalls(TargetClass t, int a):
call(ReturnType TargetClass.method(a)) && target(t) && args(a)
&& cflow(call(∗ CallingClass.∗(..)));

This embraces the calls made directly in these methods, but also any of the
method() calls made further in the methods called directly or indirectly by the
CallingClass methods.

By making an around advice on the specified method call capturing pointcut,
we can create a new logic of the method to be substituted:

public aspect MethodSubstition {
pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(TargetClass t, int a): methodCalls(t, a) {

if (. . .) {
. . . } // the new method logic

else
proceed(t, a);

}
}

3.3 User Interface Restriction

It is quite annoying when a user sees, but can’t access some options due to
user rights restrictions. This requires a User Interface Restriction change type
to be applied. We have created a similar situation in our example by a pre-
vious change implementation that introduced the restricted administrator (see

Sect. 3.2). Since the restricted administrator can’t access advertising campaigns
and banners, he shouldn’t see them in menu either.

Menu items are retrieved by a method and all we have to do to remove the
banners and campaigns items is to modify the return value of this method. This
may be achieved by applying a Additional Return Value Checking/Modification
change which checks or modifies a method return value using an around advice:

public aspect AdditionalReturnValueProcessing {
pointcut methodCalls(TargetClass t, int a): . . .;
private ReturnType retValue;
ReturnType around(): methodCalls(/∗ captured arguments ∗/) {

retValue = proceed(/∗ captured arguments ∗/);
processOutput(/∗ captured arguments ∗/);
return retValue;

}
private void processOutput(/∗ arguments ∗/) {

// processing logic
}

}

In the around advice, we assign the original return value to the private attribute
of the aspect. Afterwards, this value is processed by the processOutput() method
and the result is returned by the around advice.

3.4 Grid Display Changes

It is often necessary to modify the way data are displayed or inserted. In web
applications, data are often displayed in grids, and data input is usually realized
via forms. Grids usually display the content of a database table or collation of
data from multiple tables directly. Typical changes required on grid are adding
columns, removing them, and modifying their presentation. A grid that is going
to be modified must be implemented either as some kind of a reusable component
or generated by row and cell processing methods. If the grid is hard coded for a
specific view, it is difficult or even impossible to modify it using aspect-oriented
techniques.

If the grid is implemented as a data driven component, we just have to modify
the data passed to the grid. This corresponds to the Additional Return Value
Checking/Modification change (see Sect. 3.3). If the grid is not a data driven
component, it has to be provided at least with the methods for processing rows
and cells.

Adding Column to Grid can be performed after an event of displaying the
existing columns of the grid which brings us to the Performing Action After
Event change type (see Sect. 3.1). Note that the database has to reflect the
change, too. Removing Column from Grid requires a conditional execution of
the method that displays cells, which may be realized as a Method Substitution
change (see Sect. 3.2).

Alterations of a grid are often necessary due to software localization. For
example, in Japan and Hungary, in contrast to most other countries, the surname

is placed before the given names. The Altering Column Presentation in Grid
change type requires preprocessing of all the data to be displayed in a grid
before actually displaying them. This may be easily achieved by modifying the
way the grid cells are rendered, which may be implemented again as a Method
Substitution (see Sect. 3.2):

public aspect ChangeUserNameDisplay {
pointcut displayCellCalls(String name, String value):

call(void UserTable.displayCell(..)) || args(name, value);
around(String name, String value): displayCellCalls(name, value) {

if (name == ”<the name of the column to be modified>”) {
. . . // display the modified column

} else {
proceed(name, value);

}
}

}

3.5 Input Form Changes

Similarly to tables, forms are often subject to modifications. Users often want
to add or remove fields from forms or perform additional checks of the form
inputs, which constitute Adding Fields to Form, Removing Fields from Form,
and Introducing Additional Constraint on Fields change types, respectively. Note
that to be possible to modify forms using aspect-oriented programming they may
not be hard coded in HTML, but generated by a method. Typically, they are
generated from a list of fields implemented by an enumeration.

Going back to our example, assume that the merchant wants to know the
genre of the music which is promoted by his affiliates. We need to add the genre
field to the generic affiliate sign-up form and his profile form to acquire the
information about the genre to be promoted at different affiliate web sites. This is
a change of the Adding Fields to Form type. To display the required information,
we need to modify the affiliate table of the merchant panel to display genre in
a new column. This can be realized by applying the Enumeration Modification
change type to add the genre field along with already mentioned Additional
Return Value Checking/Modification in order to modify the list of fields being
returned (see Sect. 3.3).

The realization of the Enumeration Modification change type depends on
the enumeration type implementation. Enumeration types are often represented
as classes with a static field for each enumeration value. A single enumeration
value type is represented as a class with a field that holds the actual (usually
integer) value and its name. We add a new enumeration value by introducing
the corresponding static field:

public aspect NewEnumType {
public static EnumValueType EnumType.NEWVALUE =

new EnumValueType(10, ”<new value name>”);
}

The fields in a form are generated according to the enumeration values. The
list of enumeration values is typically accessible via a method provided by it.
This method has to be addressed by an Additional Return Value Checking/-
Modification change.

An Additional Return Value Checking/Modification change is sufficient to re-
move a field from a form. Actually, the enumeration value would still be included
in the enumeration, but this would not affect the form generation.

If we want to introduce additional validations on the form input data to the
system without built-in validation, an Additional Parameter Checking change
can be applied to methods that process values submitted by the form. This
change enables to introduce an additional check or constraint on method argu-
ments. For this, we have to specify a pointcut that will capture all the calls of
the affected methods along with their context similarly as in Sect. 3.2. Their
arguments will be checked by the check() method called from within an around
advice which will throw WrongParamsException if they are not correct:

public aspect AdditionalParameterChecking {
pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(/∗ arguments ∗/) throws WrongParamsException:

methodCalls(/∗ arguments ∗/) {
check(/∗ arguments ∗/);
return proceed(/∗ arguments ∗/);

}
void check(/∗ arguments ∗/) throws WrongParamsException {

if (arg1 != <desired value>)
throw new WrongParamsException();

}
}

Adding a new validator to a system that already has built-in validation is realized
by simply adding it to the list of validators. This can be done by implementing
Performing Action After Event change (see Sect. 3.1), which would implement
the addition of the validator to the list of validators after the list initialization.

4 Changing a Change

Sooner or later there will be a need for a change whose realization will affect
some of the already applied changes. There are two possibilities to deal with this
situation: a new change can be implemented separately using aspect-oriented
programming or the affected change source code could be modified directly.
Either way, the changes remain separate from the rest of the application.

The possibility to implement a change of a change using aspect-oriented
programming and without modifying the original change is given by the aspect-
oriented programming language capabilities. Consider, for example, advices in
AspectJ. They are unnamed, so can’t be referred to directly. The primitive
pointcut adviceexecution(), which captures execution of all advices, can be re-
stricted by the within() pointcut to a given aspect, but if an aspect contains sev-
eral advices, advices have to be annotated and accessed by the @annotation()

pointcut, which was impossible in AspectJ versions that existed before Java was
extended with annotations.

An interesting consequence of aspect-oriented change realization is the sepa-
ration of crosscutting concerns in the application which improves its modularity
(and thus makes easier further changes) and may be seen as a kind of aspect-
oriented refactoring. For example, in our affiliate marketing application, the inte-
gration with a newsletter—identified as a kind of One Way Integration—actually
was a separation of integration connection, which may be seen as a concern of
its own. Even if these once separated concerns are further maintained by direct
source code modification, the important thing is that they remain separate from
the rest of the application. Implementing a change of a change using aspect-
oriented programming and without modifying the original change is interesting
mainly if it leads to separation of another crosscutting concern.

5 Evaluation and Tool Support Outlooks

We have successfully applied the aspect-oriented approach to change realization
to introduce changes into YonBan, a student project management system devel-
oped at Slovak University of Technology. It is based on J2EE, Spring, Hibernate,
and Acegi frameworks. The YonBan architecture is based on the Inversion Of
Control principle and Model-View-Controller pattern. We implemented the fol-
lowing changes in YonBan:

– Telephone number validator as Performing Action After Event
– Telephone number formatter as Additional Return Value Checking/Modifi-

cation
– Project registration statistics as One Way Integration
– Project registration constraint as Additional Parameter Checking/Modifica-

tion
– Exception logging as Performing Action After Event
– Name formatter as Method Substitution

No original code of the system had to be modified. Except in the case of
project registration statistics and project registration constraint, which where
well separated from the rest of the code, other changes would require extensive
code modifications if they have had been implemented the conventional way.

We encountered one change interaction: between the telephone number for-
matter and validator. These two changes are interrelated—they would probably
be part of one change request—so it comes as no surprise they affect the same
method. However, no intervention was needed.

We managed to implement the changes easily even without a dedicated tool,
but to cope with a large number of changes, such a tool may become crucial.
Even general aspect-oriented programming support tools—usually integrated
with development environments—may be of some help in this. AJDT (AspectJ
Development Tools) for Eclipse is a prominent example of such a tool. AJDT
shows whether a particular code is affected by advices, the list of join points

affected by each advice, and the order of advice execution, which all are im-
portant to track when multiple changes affect the same code. Advices that do
not affect any join point are reported in compilation warnings, which may help
detect pointcuts invalidated by direct modifications of the application base code
such as identifier name changes or changes in method arguments.

A dedicated tool could provide a much more sophisticated support. A change
implementation can consist of several aspects, classes, and interfaces, commonly
denoted as types. The tool should keep a track of all the parts of a change. Some
types may be shared among changes, so the tool should enable simple inclusion
and exclusion of changes. This is related to change interaction which is exhib-
ited as dependencies between changes. A simplified view of change dependencies
is that a change may require another change or two changes may be mutually
exclusive, but the dependencies between changes could be as complex as fea-
ture dependencies in feature modeling and accordingly represented by feature
diagrams and additional constraints expressed as logical expressions [22] (which
can be partly embedded into feature diagrams by allowing them to be directed
acyclic graphs instead of just trees [8]).

Some dependencies between changes may exhibit only recommending char-
acter, i.e. whether they are expected to be included or not included together, but
their application remains meaningful either way. An example of this are features
that belong to the same change request. Again, feature modeling can be used to
model such dependencies with so-called default dependency rules that may also
be represented by logical expressions [22].

6 Related Work

The work presented in this paper is based on our initial efforts related to aspect-
oriented change control [6] in which we related our approach to change-based
approaches in version control. We identified that the problem with change-based
approaches that could be solved by aspect-oriented programming is the lack of
programming language awareness in change realizations.

In our work on the evolution of web applications based on aspect-oriented de-
sign patterns and pattern-like forms [1], we reported the fundamentals of aspect-
oriented change realizations based on the two level model of domain specific and
generally applicable change types, as well as four particular change types: Class
Exchange, Performing Action After Event, and One/Two Way Integration.

Applying feature modeling to maintain change dependencies (see Sect. 4)
is similar to constraints and preferences proposed in SIO software configura-
tion management system [4]. However, a version model for aspect dependency
management [19] with appropriate aspect model that enables to control aspect
recursion and stratification [2] would be needed as well.

We tend to regard changes as concerns, which is similar to the approach of
facilitating configurability by separation of concerns in the source code [7]. This
approach actually enables a kind of aspect-oriented programming on top of a ver-
sioning system. Parts of the code that belong to one concern need to be marked

manually in the code. This enables to easily plug in or out concerns. However,
the major drawback, besides having to manually mark the parts of concerns, is
that—unlike in aspect-oriented programming—concerns remain tangled in code.

Others have explored several issues generally related to our work, but none
of this work aims at capturing changes by aspects. These issuse include data-
base schema evolution with aspects [10] or aspect-oriented extensions of business
processes and web services with crosscutting concerns of reliability, security, and
transactions [3]. Also, an increased changeability of components implemented us-
ing aspect-oriented programming [13, 14, 18] and aspect-oriented programming
with the frame technology [15], as well as enhanced reusability and evolvability
of design patterns achieved by using generic aspect-oriented languages to im-
plement them [20] have been reported. The impact of changes implemented by
aspects has been studied using slicing in concern graphs [11].

While we do see potential of configuration and reconfiguration of applications,
our work does not aim at automatic adaptation in application evolution, such
as event triggered evolutionary actions [17], evolution based on active rules [5],
or adaptation of languages instead of software systems [12].

7 Conclusions and Further Work

In this paper, we have described our approach to change realization using aspect-
oriented programming. We deal with changes at two levels distinguishing be-
tween domain specific and generally applicable change types. We introduced
change types specific to web application domain along with corresponding gen-
erally applicable changes. We also discussed consequences of having to implement
a change of a change.

Although the evaluation of the approach has shown the approach can be
applied even without a dedicated tool support, we believe that tool support is
important in dealing with change interaction, especially if their number is high.
Our intent is to use feature modeling. With changes modeled as features, change
dependencies could be tracked through feature dependencies. For further evalu-
ation, it would be interesting to expand domain specific change types to other
domains like service-oriented architecture for which we have available suitable
application developed in Java [21].

Acknowledgements The work was supported by the Scientific Grant Agency
of Slovak Republic (VEGA) grant No. VG 1/3102/06. We would like to thank
Michael Grossniklaus for sharing his observations regarding our work with us.

References

[1] M. Bebjak, V. Vranić, and P. Dolog. Evolution of web applications with aspect-
oriented design patterns. In M. Brambilla and E. Mendes, editors, Proc. of

ICWE 2007 Workshops, 2nd International Workshop on Adaptation and Evo-
lution in Web Systems Engineering, AEWSE 2007, in conjunction with 7th Inter-
national Conference on Web Engineering, ICWE 2007, pages 80–86, Como, Italy,
July 2007.

[2] E. Bodden, F. Forster, and F. Steimann. Avoiding infinite recursion with stratified
aspects. In R. Hirschfeld et al., editors, Proc. of NODe 2006, LNI P-88, pages
49–64, Erfurt, Germany, Sept. 2006. GI.

[3] A. Charfi, B. Schmeling, A. Heizenreder, and M. Mezini. Reliable, secure, and
transacted web service compositions with AO4BPEL. In 4th IEEE European
Conf. on Web Services (ECOWS 2006), pages 23–34, Zürich, Switzerland, Dec.
2006. IEEE Computer Society.

[4] R. Conradi and B. Westfechtel. Version models for software configuration man-
agement. ACM Computing Surveys, 30(2):232–282, June 1998.

[5] F. Daniel, M. Matera, and G. Pozzi. Combining conceptual modeling and active
rules for the design of adaptive web applications. In Workshop Proc. of 6th Int.
Conf. on Web Engineering (ICWE 2006), New York, NY, USA, 2006. ACM Press.

[6] P. Dolog, V. Vranić, and M. Bieliková. Representing change by aspect. ACM
SIGPLAN Notices, 36(12):77–83, Dec. 2001.

[7] Z. Fazekas. Facilitating configurability by separation of concerns in the source
code. Journal of Computing and Information Technology (CIT), 13(3):195–210,
Sept. 2005.

[8] R. Filkorn and P. Návrat. An approach for integrating analysis patterns and
feature diagrams into model driven architecture. In P. Vojtáš, M. Bieliková, and
B. Charron-Bost, editors, Proc. 31st Conference on Current Trends in Theory and
Practice of Informatics (SOFSEM 2005), LNCS 3381, Liptovský Jan, Slovakia,
Jan. 2005. Springer.

[9] S. Goldschmidt, S. Junghagen, and U. Harris. Strategic Affiliate Marketing. Ed-
ward Elgar Publishing, 2003.

[10] R. Green and A. Rashid. An aspect-oriented framework for schema evolution in
object-oriented databases. In Proc. of the Workshop on Aspects, Components and
Patterns for Infrastructure Software (in conjunction with AOSD 2002), Enschede,
Netherlands, Apr. 2002.

[11] S. Khan and A. Rashid. Analysing requirements dependencies and change im-
pact using concern slicing. In Proc. of Aspects, Dependencies, and Interactions
Workshop (affiliated to ECOOP 2008), Nantes, France, July 2006.

[12] J. Kollár, J. Porubän, P. Václav́ık, J. Bandáková, and M. Forgáč. Functional
approach to the adaptation of languages instead of software systems. Computer
Science and Information Systems Journal (ComSIS), 4(2), Dec. 2007.

[13] A. A. Kvale, J. Li, and R. Conradi. A case study on building COTS-based sys-
tem using aspect-oriented programming. In 2005 ACM Symposium on Applied
Computing, pages 1491–1497, Santa Fe, New Mexico, USA, 2005. ACM.

[14] J. Li, A. A. Kvale, and R. Conradi. A case study on improving changeability of
COTS-based system using aspect-oriented programming. Journal of Information
Science and Engineering, 22(2):375–390, Mar. 2006.

[15] N. Loughran, A. Rashid, W. Zhang, and S. Jarzabek. Supporting product line
evolution with framed aspects. In Workshop on Aspects, Componentsand Patterns
for Infrastructure Software (held with AOSD 2004, International Conference on
Aspect-Oriented Software Development), Lancaster, UK, Mar. 2004.

[16] R. Miles. AspectJ Cookbook. O’Reilly, 2004.

[17] F. Molina-Ortiz, N. Medina-Medina, and L. Garćıa-Cabrera. An author tool based
on SEM-HP for the creation and evolution of adaptive hypermedia systems. In
Workshop Proc. of 6th Int. Conf. on Web Engineering (ICWE 2006), New York,
NY, USA, 2006. ACM Press.

[18] O. Papapetrou and G. A. Papadopoulos. Aspect-oriented programming for a
component based real life application: A case study. In 2004 ACM Symposium on
Applied Computing, pages 1554–1558, Nicosia, Cyprus, 2004. ACM.

[19] E. Pulvermüller, A. Speck, and J. O. Coplien. A version model for aspect depen-
dency management. In Proc. of 3rd Int. Conf. on Generative and Component-
Based Software Engineering (GCSE 2001), LNCS 2186, pages 70–79, Erfurt, Ger-
many, Sept. 2001. Springer.

[20] T. Rho and G. Kniesel. Independent evolution of design patterns and applica-
tion logic with generic aspects—a case study. Technical Report IAI-TR-2006-4,
University of Bonn, Bonn, Germany, Apr. 2006.

[21] V. Rozinajová, M. Braun, P. Návrat, and M. Bieliková. Bridging the gap between
service-oriented and object-oriented approach in information systems develop-
ment. In D. Avison, G. M. Kasper, B. Pernici, I. Ramos, and D. Roode, editors,
Proc. of IFIP 20th World Computer Congress, TC 8, Information Systems, Mi-
lano, Italy, Sept. 2008. Springer Boston.

[22] V. Vranić. Multi-paradigm design with feature modeling. Computer Science and
Information Systems Journal (ComSIS), 2(1):79–102, June 2005.

Appendix G

Dealing with Interaction of
Aspect-Oriented Change
Realizations using Feature
Modeling

Radoslav Menkyna. Dealing with interaction of aspect-oriented
change realizations using feature modeling. In Mária Bieliková,
editor, IIT.SRC: Student Research Conference 2009, pages 54–
61. Slovak University of Technology in Bratislava, 2009.

The paper was accepted to IIT.SRC: Student Research Conference 2009. It
was actively presented on the conference and was proposed for award from
Slovak literal fund.

Dealing with Interaction of Aspect-Oriented
Change Realizations using Feature Modeling

Radoslav MENKYNA∗

Slovak University of Technology
Faculty of Informatics and Information Technologies

Ilkovičova 3, 842 16 Bratislava, Slovakia
xmenkyna@is.stuba.sk

Abstract. The realization of changes by aspects in the existing projects
can lead to their interaction. A change propagation in the system can be
examined using dependency graphs. This paper proposes an approach
which represents the changes and their dependencies using feature mod-
eling. This modeling technique is more suitable for the given approach
because changes represented as aspects can be seen as the new features
of the existing system. Two approaches how to transform dependency
graph to the feature model were proposed. Intended use of this approach
was outlined.

1 Introduction

Feature modeling seams suitable for modeling changes represented as aspects. In order
to examine the interaction of changes with the existing system or among each other it is
needed to capture scope where interaction occurs. Such scope can be expressed by the
concerns and concern slices. Dependency graphs can be used to capture change propa-
gation and dependencies among concerns present in the system [6]. If it is possible to
transform dependency graphs into feature models, one modeling technique would cap-
ture aspect-oriented change realizations along with existing concerns and dependencies
between them. This is crucial for studying interaction of changes.

The rest of the paper is organized as follows. Section 2 describes an approach in
which the changes are represented as aspects. Section 3 discusses a possible interaction

∗ Master study programme in field: Software Engineering
Supervisor: Dr. Valentino Vranić, Institute of Informatics and Software Engineering,Faculty
of Informatics and Information Technologies STU in Bratislava

IIT.SRC 2009, Bratislava, April 29, 2009, pp. 1–8.

2 Radoslav Menkyna

of changes and its connection with the concerns and program slices. Section 4 describes
dependency graphs and feature modeling. Section 5 proposes transformation of depen-
dency graphs to the feature models. Section 7 represents a conclusion and outlines the
future work.

2 Aspect-Oriented Change Realization

Changes of the existing software project can be realized by aspects [2]. To support this
approach several change realization techniques were presented [1].

Main goal of aspect-oriented paradigm is a separation of crosscutting concerns. The
AspectJ language can be considered as main approach to this paradigm, because its large
community acceptance. To achieve the separation of concerns new language constructs
were created . Pointcut expresses set of points in control flow of an application. Upon
pointcuts actions defined in advices can be performed. Pointcuts and advices are defined
in class-like entity called aspect.

Like crosscutting concern also change usually affects several points in existing
code, therefore use of aspects to represent changes can have several benefits. All the
modifications coupled with a particular change are centralized in an aspect. The entire
change logic is also represented in the aspect. Because target is usually not aware of the
change, the change can be easily plugged or unplugged from the system. This means
aspect-oriented change realizations are modular and pluggable.

Several change realization techniques were described [1] to support the use of aspects
to represent a change. A change realization technique usually uses an aspect-oriented
idiom or design pattern to represent a change. These techniques are described generally
which means they can be used to implement changes in several domains.

3 Interaction of Changes

Scope of system in which interaction occurs can be captured by concerns or program
slices. This section will explain these terms and point out some problems coupled with
the interaction of changes represented by aspects.

With the growing number of changes grows also the possibility of interaction between
the changes present in the system. The interaction can have negative effects and can
lead to an unexpected behavior of the system. There are various reasons why different
changes represented as aspects interact. Aspects that use same pointcuts can execute
in wrong order. Pointcuts no longer capture desired join points because of system
evolution. Also subsequent interrelated application of the aspect-oriented design patterns
to a particular problem can require additional changes to design patterns already present
in the system [5]. Thus, by combining change techniques additional changes can be
required, which can be seen as an unwanted interaction.

In addition to study interactions of changes implemented by aspects it is needed to
capture a scope of the system in which the interactions are most likely to occur. When
applying a change in traditional fashion the proposed change can interfere with many

Dealing with Interaction of Aspect-Oriented Change Realizations using Feature Modeling 3

entities from a existing source code. A change realized as an aspect modularizes the
essence of proposed change but still affects the system in one or several points specified
by the aspect pointcuts. In both cases it is needed to identify a part of the system where
proposed change can affect the existing entities. An approach of program slicing [3, 9]
can be used to achieve this goal.

A program slice narrows a behavior of the program to specified subset of interest.
Concern, on the other hand, represents a part of the system behavior from larger scale
and higher complexity. Usually several slices that represent an elementary behavior can
be grouped together to represent a concern. Analyzing these concerns and slices can lead
to better understanding of dependencies among changes and their impact on system [6].
In the next section a technique that visualizes known dependencies among concerns and
their slices will be described.

4 Dependency Graphs and Feature modeling

Dependency graphs help to visualize the change propagation and dependencies between
concerns and their slices [6]. The dependency graphs are constructed from semi-
formal dependency equations. Each concern can consist of temporal(ST), conditional
(SC), business rule(SB) and task oriented slices(STO). In the dependecy graph concern
slices are represented by nodes and dependencies by edges. There are three types of
dependencies which can be captured between the concern slices by the dependency
equations and graphs . A forward dependency means a concern slice links or results
to another concern slice. A backward dependency means the concern slice uses or
bases itself on previous slice. Parallel dependency expresses the concern slices occur
concurrently [6].

Figure 1 shows a simple dependency graph that captures dependences in case study
of an tollgate system [6]. In this system owner of the vehicle first registers with
the bank and activates a gizmo trough ATM. The toll is then automatically deducted
when the payed motorway is used. The forward dependency is represented by arrow,
the backward dependency by dashed arrow and the parallel dependency by two way
arrow. Numbers in the graph express assigned weights of dependencies during change
propagation evaluation. Considered concern slice is depicted as dash-dotted.

Figure shows that considered register business rule concern slice RegisterB is
forward dependent on read and store gizmo information conditional concern slice
ReadStoreInfoC , which is forward dependent on debit concern’s business rule and con-
ditional slice DebitB∧C . Correctness and compatibility concern slices CorrectnessC

and CompatibilityB are parallel dependent on debit concern slices. Calculate concern
slices CalculateB∧C and read store gizmo information concern slice ReadStoreInfoC are
backward dependent on debit concern slices [6].

One can notice that the read store gizmo information concern slice occurs twice in
dependency graph. This suggests that dependency graphs capture also behavior. This
issue will be addressed in the next section.

Changes implemented as aspects are modular and pluggable. They can be considered

4 Radoslav Menkyna

RegisterB

ReadStoreInfoC

DebitB^C

ReadStoreInfoCCalculateB^C

CompatibilityB

CorrectnessC

0.7x

0.6

x

x

x 0.6

Figure 1. Dependency graph for register concern’s business rule slice. Adapted from [6]

as the features of the system which can be included or excluded from the final config-
uration of the system. Therefore, feature modeling approach is suitable for modeling
changes implemented as aspects.

Feature modeling can be used to capture commonality and variability in the software
product lines [4]. A interaction between the features of products in software product
lines can occur. Some features may require presence of other features or features are
considered alternative. Aspect-oriented change representations can also be suitable
for implementing variable features of software product line. It is important that these
approaches share common modeling technique.

A feature model consists of feature diagrams, constraints, default dependency rules
and information associated with concepts and features. Feature diagram is a directed
tree whose root represents concept and all other nodes represent concept features [7].
Feature diagrams can visually capture properties of a feature or dependencies between
several features. For example features may be depicted as mandatory or optional, two
features may be depicted as alternative or or-features. Additional dependencies can be
captured as constraints of feature diagrams trough the predicate logic.

5 Transforming Dependency Graphs into Feature Models

Feature modeling is suitable for modeling changes implemented as aspects. Dependency
graphs can be used to express change propagation, and dependencies among concerns
and their slices. This section will describe two different approaches of transformation of
dependency graphs to feature models. The first one captures the dependencies primary
by the feature model hierarchy (Section 5.1). The second one using the feature model
constraints, which is discussed in the next section. Feature diagrams are structural
while dependency graphs seam to capture behavior, too. Capturing of the behavioral
component of dependency graphs will be discussed (Section 5.3).

Dealing with Interaction of Aspect-Oriented Change Realizations using Feature Modeling 5

5.1 Dependencies Captured by Feature Diagrams

In this approach, concern slices are considered as features of the system. Dependencies
are modeled as relationships between features.

There are three types of dependencies between concern slices in concern dependency
graphs: forward, backward, and parallel. Forward dependency represents what might
follow from one concern slice. It can be understood as optionally, thus the concern slice
is forward dependent on some other concern slice, this concern slice should be modeled
as an optional feature of the former concern slice.

Backward dependency is expressed by the tree topology: a backward dependent
concern slice is a subfeature of the slice it depends on. At the same time, there is a
forward dependency in the opposite direction, which is in compliance with available
concern dependency graphs [6].

In terms of feature modeling, parallel dependency simply poses a constraint that
two features that represent parallel dependent concern slices must appear together in all
possible system configurations. One way to achieve this is to model either of them as a
mandatory feature of the other one.

RegisterB

ReadStoreInfoC

CalculateB^C

DebitB^C

CorrectnessC CompatibilityB

Figure 2. Dependencies captured by feature diagrams.

Figure 2 shows an example of transformed dependency graph from Section 4. All
forward dependencies were modeled as optional features of former concern slices. Two
parallel dependencies CorrectnessC and CompatibilityB were modeled as mandatory
features of debit concern slice DebitB∧C . The backward dependencies of CalculateB∧C

and ReadStoreInfoC concern slices are expressed by tree topology.
One can notice that calculate concern slices CalculateB∧C were not modeled as

forward dependent on read store gizmo information concern slice in dependency graph
from Figure 1. In the feature model representation however, a forward dependency on
the read store gizmo information concern slice ReadStoreInfoC is modeled. From our
observation a forward and backward dependency very often occur together, therefore can

6 Radoslav Menkyna

be modeled together. In special cases where such approach is undesirable dependencies
should be explicitly captured by additional constraints (Section 5.2).

5.2 Dependencies Captured by Additional Constraints

Concern slices can also be modeled in a more common style: as usual system features.
This way they would form feature hierarchies that correspond to their position in the
system hierarchy. However, dependencies between concern slices would have to be
expressed as additional constraints. An example is depicted in Fig. 3. Additional
constraints can be expressed using logic expressions [7, 8].

RegisterC⇒ReadStoreInfoB

CalculateB∧C ⇒ReadStoreInfoB, RegisterC

DebitB∧C ⇒CalculateB∧C , ReadStoreInfoB, RegisterC

RegisterB ReadStoreInfoC CalculateB^C DebitB^C

CorrectnessC CompatibilityB

System

Figure 3. Concern slices as usual system features

This approach is much more compatible with the intended use of the transformed de-
pendency graphs. In the same fashion changes implemented by aspects can be modeled.
Therefore, feature models in this form can be used for modeling changes represented as
aspects, existing concerns along with the dependencies among them. Feature models
offer strong means how to express additional constraints which could occur in special
occasions.

5.3 Capturing Behavioral Component of Dependency Graphs

Dependency graphs seam to address behavior, too. This can be seen also from example in
Figure 1 where the read store gizmo information concern slice ReadStoreInfoC appears
twice. This was noticed also in other studied examples. Feature models are structural
and cannot address such behavior. The behavioral component of dependency graphs can
be captured with state charts.

State charts are also appropriate if dependency weights which were part of the
dependency graph should be preserved. These weights are assigned to dependencies in

Dealing with Interaction of Aspect-Oriented Change Realizations using Feature Modeling 7

process of change propagation evaluation. Figure 4 shows an example of state chart
for register concern’s business rule slice. Concern slices are depicted as states and
dependencies and their weights were depicted as transitions.

In this simple example only read store gizmo information concern slice ReadStoreInfoC

was duplicated in the original dependency graph. One can notice that in the state chart
is this concern slice represented by one state.

ReadStoreInfoC

DebitB^C

CorrectnessC

CompatibilityB

CalculateB^C

RegisterB

FD 0.7BD x

FD 0.6BD 0.6

BD 0.7

PD x

PD x

Figure 4. State chart for register concern’s business rule slice

6 Related Work

This paper proposed two approaches how to transform the dependency graphs into
feature models. This is important when dealing with the interaction of aspect-oriented
change representations. No other approach of such transformation was found.

Feature models can be used also to capture commonality and variability in the
software product lines [4]. They were also successfully used in multi paradigm design
for modeling domains [7]. These two approaches are closely connected with aspect-
oriented change representations, therefore common modeling technique is essential for
future work.

7 Conclusion and Future Work

In this paper, two possible approaches of transforming dependency graphs into feature
models have been proposed. The first one captures dependencies primarily by feature

8 Radoslav Menkyna

diagrams, while the second one does this by additional constraints. It has also been
demonstrated how the behavioral component of a dependency graph and weights of
dependencies can be captured by state charts.

Capturing dependencies by additional constraints is compatible with feature mod-
eling of changes represented as aspects. This is very important for identifying and
evaluating interactions of changes represented by aspects. Feature modeling approach
could be used as a unifying modeling technique for modeling aspect-oriented change
realizations and dependencies among them.

The future work will be focused on proposition of a feature modeling based technique
for identifying interactions of aspect-oriented change realizations on different levels of
abstraction during system evolution.

References

[1] Bebjak, M.: Aspektovo-Orientovaná Implementácia Zmien vo Webových Ap-
likáciách. Master’s thesis, Slovenská technická univerzita v Bratislave Fakulta
Informatiky a Informacných Technológii, 2007.

[2] Dolog, P., Vranić, V., Bieliková, M.: Representing change by aspect. SIGPLAN
Not., 2001, vol. 36, no. 12, pp. 77–83.

[3] Gallagher, K.B., Lyle, J.R.: Using Program Slicing in Software Maintenance. IEEE
Trans. Softw. Eng., 1991, vol. 17, no. 8, pp. 751–761.

[4] Lee, K., Kang, K.C., Lee, J.: Concepts and Guidelines of Feature Modeling for
Product Line Software Engineering. In: Proceedings of the Seventh International
Conference on Software Reuse, 2002, pp. 62–77.

[5] Menkyna, R.: Towards Combining Aspect-Oriented Design Patterns. In Bieliková,
M., ed.: IIT.SRC: Student Research Conference 2007, Slovak University of Tech-
nology, 2007, pp. 1–8.

[6] Rashid, S.O., Chitchyan, R., Rashid, A., Khatchadourian, R.: Approach for Change
Impact Analysis of Aspectual Requirements, march 2008, AOSD-Europe Deliver-
able D110, AOSD-Europe-ULANC-40.

[7] Vranić, V.: Reconciling Feature Modeling: A Feature Modeling Metamodel. In
Weske, M., Liggsmeyer, P., eds.: Proc. of 5th Annual International Conference on
Object-Oriented and Internet-Based Technologies, Concepts, and Applications for a
Networked World (Net.ObjectDays 2004). LNCS 3263, Erfurt, Germany, Springer,
2004, pp. 122–137.

[8] Vranić, V.: Multi-Paradigm Design with Feature Modeling. Computer Science and
Information Systems Journal (ComSIS), 2005, vol. 2, no. 1, pp. 79–102.

[9] Weiser, M.: Program slicing. In: ICSE ’81: Proceedings of the 5th international
conference on Software engineering, Piscataway, NJ, USA, IEEE Press, 1981, pp.
439–449.

	Introduction
	Change Versioning
	Change Based Versioning
	Aspect-Oriented Approach to Change-Based Versioning
	Version Model for Aspect Dependency Management

	Aspect-Oriented Change Realization Techniques
	General and Specific Changes
	Introducing Role To Class
	Introducing Regions
	Class Exchange
	Method Substitution
	Member Introduction
	Additional Parameter Checking
	Additional Return Value Checking/Modification
	Performing Action After Event

	Solving Change Perplexity
	Changing a Change
	Order of Aspect Execution
	Interaction Between General Change Types
	Changes Invoked by System Evolution
	Logical Error Localization
	Representing Changes by Aspects---Tool Support

	Interaction of Changes
	Feature Modeling
	Dependency Graphs
	Transforming Dependency Graphs into Feature Models
	Dependencies Captured by Feature Diagrams
	Dependencies Captured by Additional Constraints
	Capturing Behavioral Component of Dependency Graphs

	Modeling Changes Implemented by Aspects
	Direct Dependences and Interactions
	Indirect Dependences and Interactions
	The Partial Feature Model Construction
	Dependency Evaluation
	Deriving Constraints

	Change Realization Using MPDfm
	Multi-Paradigm Design with Feature Modeling
	Generally Applicable Change Types as Paradigms
	Method Substitution
	Performing Action After Event

	Transformational Analysis
	Interaction Evaluation

	Conclusion and Future Work
	AspectJ Solution Domain Extension
	Performing Action After Event (Figure A.1)
	Method Substitution (Figure A.2)
	Introducing Regions (Figure A.3)
	Class Exchange (Figure A.4)
	Introducing Role to Class (Figure A.5)
	Member Introduction (Figure A.6)

	The Process of Transformational Analysis
	Attached CD Contents
	Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling
	Aspect-Oriented Change Realizations and Their Interaction
	Developing Applications with Aspect-Oriented Change Realization
	Dealing with Interaction of Aspect-Oriented Change Realizations using Feature Modeling

