AspectJ Paradigm Model: A Basis for Multi-Paradigm Design for
Aspect]

Valentino Vranié

Ath May 2001

Abstract

Multi-paradigm design for C++ is a metaparadigm: it enables to select the appropriate
paradigm for a feature being modeled. Multi-paradigm design is based on scope, common-
ality, and variability analysis used to analyze and model both an application domain and
solution domain. Subsequently, a technique called transformational analysis is used to match
the application domain entities with the solution domain ones (called paradigms). The no-
tation employed in multi-paradigm design consists mainly of tables. This doesn’t seem to be
enough to express all the important aspects of a domain, whether an application or solution
one. Feature modeling seem to be a more suitable technique for this task. However, having
application and solution domain represented as feature models has a great impact on the
transformational analysis.

1 Introduction

This report is concerned with Aspect] paradigm model intended to be used in the multi-
paradigm design for AspectJ. As I explained in the previous report [5], SCV (scope, commonality,
and variability) analysis [1] is used to describe paradigms as commonality—variability pairings [3].
This way of describing paradigms is compact, but not clear.

Some paradigms build on other paradigms. Multi-paradigm design, based on scope, com-
monality, and variability analysis, provides no means to express these relationships between
paradigms. Therefore, in [5] I suggested to apply feature modeling instead of scope, com-
monality, and variability analysis. Feature modeling also supports explicit reasoning about
commonalities and variabilities. Actually it does so in a more general way.

To enable multi-paradigm design for AspectJ, the AspectJ paradigm model is needed. This
is a tough task because that model is to be used in the transformational analysis to map prob-
lem domain structures to language mechanisms. Hence I decided first to build an initial (and
incomplete) version of the AspectJ paradigm model and to try it on example to demonstrate
and explore how the transformational analysis will look like when feature modeling is used.

Before discussing the main issue mentioned above, this report provides a basic information
on feature modeling (Section 2). It proceeds with an analysis of the relationship between feature
modeling and techniques used in MPD (Section 3). Then it provides a partial AspectJ paradigm
model developed by applying feature modeling on AspectJ solution domain (Section 4) and
discusses the impact of incorporating feature modeling into MPD on transformational analysis
(Section 5). It ends with conclusions and further work proposals.

2 Feature Modeling

Feature modeling is a conceptual modeling technique used in domain engineering. Its origins
are in FODA, i.e. feature-oriented domain analysis, a domain analysis method developed at

the Software Engineering Institute. The version of the feature modeling referred to here is an
adaptation of the original version. It is described in [4].

The feature modeling is based on the notions of concept and feature. The concepts are the
way we perceive the world. It is not possible to define a concept precisely and cover all its
instances, except for some special cases, e.g. mathematical concepts (see [4] for more details on
conceptual modeling). The feature modeling makes it possible to explore the features concepts
have in order to better understand them.

The basic steps of feature modeling (a micro-cycle of feature modeling) are:

1. Recording the similarities between instances, i.e. common features.
2. Recording the differences between instances, i.e. variable features.
3. Organizing the features into feature diagrams.

4. Analysis of the feature combinations and interactions.

5. Recording all of the additional information regarding features.

The result of feature modeling is, as expected, a feature model. It consists of feature dia-
gram(s) and the information associated with the features like:

e semantic description

e rationale

e stakeholders and client programs

e exemplar systems

e constraints and default dependency rules

e availability sites, binding sites, and binding modes
e open/closed attribute

e priorities.

Feature diagrams (mentioned in step 3) are a key part of the feature model. They are used
to represent concepts. A feature diagram is a directed tree with the edge decorations. The root
represents a concept, and the rest of the nodes represent features.

Edges connect the node with its features. There are two types of edges used to distinguish
between mandatory features, ended by a filled circle, and optional features, ended by an empty
circle. As the names indicate, a concept instance must have all the mandatory features and can
have the optional features.

The edge decorations are drawn as arcs connecting subsets of the edges originating in the
same node. They are used to define a partitioning of the subnodes of the node the edges originate
from into alternative and or-features. A concept instance has exactly one feature from the set
of alternative features. A concept instance can have any subset or all of the features from the
set of or-features.

The nodes connected directly to the concept node are being denoted as its direct features; all
other features are its indirect features, sometimes denoted as subfeatures. The indirect features
can be included in the concept instance only if their parent node is included.

An example of a feature diagram with different types of features is presented in Fig. 1. fy,
fo, f3, and f4 are direct features of the concept ¢, while other features are its indirect features.

Figure 1: A feature diagram.

f1 and fo are mandatory alternative features. f4 is an optional feature. f5, fs and f; are
mandatory or-features; they are also subfeatures of fy.

According to [4], a concept instance is described by a set of features from the feature diagram
of the concept. However, if the same feature is present in the feature diagram at several distinct
nodes, this is not sufficient to describe an instance. An element is either in the set or not, no
matter how many times it was included into the set.

Redrawing the feature diagrams of this type not to include duplicated nodes results in graphs
(more precisely, directed acyclic graphs). Such type of feature diagrams is actually mentioned
in [4] (in a footnote) the feature sets cannot be used to describe an instance of a concept whose
feature diagram is a graph. It is surprising when the authors do not recognize that some of the
examples they introduce later in the book falls into this category (e.g., Fig. 14-3 on page 634).

It is obvious that there are several solutions to this problem. Although this is not the intent
of this report, I would like to introduce a simple one. We can stay with sets, but the difference
is that each subtree of a feature diagram should be described by a set:

{TOOt’ {fl}’ {fQ}’ T {fn}}

The process proceeds recursively to the feature diagram leaves: each feature unless it is at
leaf, is the root of some subtree. For example, one of the instances of the concept from Fig. 1

in this notation could be written as: {c, {f1},{f3,{f5, fo} }, {fa}}-

3 Feature modeling and MPD

In [5] I suggested to use feature modeling instead of SCV analysis as a more general technique.
In this section we will take a closer look at how these two techniques correspond to each other.

In MPD, SCV analysis is applied to both application and solution domain; the results are
summarized in two kinds of tables, variability and family tables, respectively. Furthermore,
another technique denoted as variability dependency graphs is used in MPD. We will consider
both the variability and family tables, and variability dependency graphs in the context of
feature modeling in order to how the entities they are based on correspond to concepts and
features. Concepts and features are more general than the entities MPD is based on, as it is the
case with object-orientation, too. In OO, we can say that classes correspond to concepts.!

!Not vice versa, i.e. that concepts correspond to classes, as stated in [4, p. 736], since a concept can be, for
example, an aspect or something that cannot be modeled by a (single) class.

SCV analysis Feature modeling

scope = set of entities concept
commonality = assumption held uniformly across the scope common feature
variability = assumption true for only some elements in the scope | variable feature

Table 1: SCV analysis and feature modeling equivalents.

3.1 SCV Analysis

Feature diagrams are capable of expressing commonalities and variabilities among concept in-
stances. Let us see how they can be used in the context of SCV analysis, which is based around
the notion of commonality and variability. As we saw, there is a notion of common and variable
features in feature modeling. These can be distinguished by examining feature diagrams.

A common feature of a concept is a feature present in all concept instances, i.e. there must
be a path of mandatory? features leading from the concept to the feature. All other features are
variable, i.e. any optional, alternative or or-features is a variable feature. The features to which
variable features are attached are called variation point.

If we consider common features in a relative manner, then any node, be it a feature or
a concept, in a feature diagram can have its common features. Such features are denoted as
common subfeatures. A common subfeature of a node in feature diagram is a feature present in
all concept instances that have that node, i.e. there must be a path of mandatory features leading
from the feature to the subfeature. Clearly, common subfeatures include common features.

As it is apparent from Tab. 1, SCV analysis and feature modeling are not far from each
other. It is clear that the scope in SCV analysis is nothing but the exemplar representation of
a concept.? The SCV commonalities and variabilities map straightforwardly to common and
variable features of feature modeling, respectively. From the perspective of SCV analysis those
common subfeatures that are not common features fall into the variability category.

The feature modeling enables to represent SCV analysis commonalities and variabilities
hierarchically and thus to express relationships among variabilities. For a solution domain SCV
analysis this means enabling to express how are paradigms solution domain provides related.

3.2 Variability and Family Tables

Tab. 2 aligns feature modeling terms with its variability and family table counterparts. Clearly,
only a fraction of the information usually provided by a feature model covers most of the needs
of variability and family tables (compare Feature modeling column of Tab. 2 with the list of the
information associated with the features at the beginning of this section).

The parameters of variation are sometimes considered as subdomains (especially in variability
dependency graphs). This is consistent with the feature modeling; the feature can be viewed as
a concept itself if we decide to consider it as such (but until that it stays only a feature).

Two issues—binding time and instantiation—require a closer examination.

Binding time

Binding mode in feature modeling corresponds to binding time in MPD. The difference is that
the set of binding times used in MPD is richer than the one used in feature modeling. This is
due to a fact that the binding times in MPD are the actual binding times, like compile time,

2This means only pure mandatory features, not mandatory alternative or or-features.
3The exemplar view of a concept is the one in which a concept is defined by the set of its instances. See [4]
for more on conceptual modeling.

Feature modeling H Variability tables Family tables

concept commonality domain | language mechanism
common feature commonality
variable feature variability

variation point parameter of variation

alternative features domain (range)

binding mode binding binding

semantic description, rationale || meaning

default dependency rules default (of range)

additional information instantiation

Table 2: Feature modeling and MPD variability and family tables.

run time, etc. Feature modeling provides us with more abstract binding times, namely static,
changeable, and dynamic binding. Each MPD (MPD for C++) binding time fall into one of
these categories, as follows:

e source time and compile time bindings are static binding;
e link (load) time binding is a changeable binding;
e run time binding is a dynamic binding.

The set of binding times depends on a solution domain. Different programming languages
provide different mechanisms; each mechanism has its binding time. Since the solution domain
is determining for transformational analysis, we will accept that binding mode attribute actually
holds a value for binding time.

The binding time applies only to variable features. The binding times of the features in
the application domain feature model is the earliest allowed binding time. This means that the
binding time in the implementation may be changed to a later one, but not to an earlier one.
The binding times of the features in the solution domain feature model are the exact binding
times.

The binding times of the variable features are indicated in feature diagrams at binding sites
(the parent features of those variable features) or directly at variable features in the form of
node annotations.

There is no notion of a unique binding time for a concept, as it is the case with a paradigm
in MPD. However, it is better to indicate binding time where it belongs—at variable features—
than to have to provide an explanation about binding what is the binding time about. In case
of such alternative or or-features whose binding time is the same, it is enough if we annotate
only the first feature.

Instantiation

The feature modeling provides no counterpart for the family table column “instantiation”. This
column indicates whether a language mechanism provides instantiation. This does not seem
to be a serious problem, since it is possible to provide this information among the rest of the
additional information as an attribute.

To avoid misunderstanding, the instantiation considered here is not the instantiation of
concepts. By definition it is possible to instantiate any concept. A concept is an idea and its
instances are the materialization of that idea. The instantiation discussed here has to do with
the instantiation of concept instances themselves. Consider, for example, the concept of class.

The instances of the concept of class are classes. But the classes themselves can be instantiated;
their instances are objects.

Let’s see what values are possible for the instantiation attribute. Possible values for in-
stantiation in MPD are: yes, no, not available (n/a), and optional. It seems that no and n/a
values are redundant: if a language mechanism does not provide instantiation, it can be only
because the instantiation is not available for that mechanism. The yes value indicates that a
mechanism is used only with instantiation, while optional means that it can be used both with
instantiation and without it (to make a use of the static fields and methods, a class doesn’t have
to be instantiated).

The instantiation attribute in solution feature modeling should take one of the three values
for each concept: yes, no, and optional. In application domain feature modeling, the informa-
tion whether the instantiation is needed should be provided with each feature. The mapping
possibilities for application domain structures to solution domain mechanisms would be then:

instantiation in application domain ‘ instantiation in solution domain

yes yes, optional
no no, optional

3.3 Variability Dependency Graphs

Variability dependency graphs are an auxiliary technique used in MPD to capture dependencies
between domains. It is used as a part of application domain analysis and, consequently, in
transformational analysis. It helps in exploring the circular dependencies among domains.

The notation of variability dependency graphs is trivial: the nodes represent domains and
the arrows represent the “depends on (a parameter of variation)” relationship. If we are to
translate this into the feature modeling terminology, then domain corresponds to a concept or
feature (considered as a concept).

Parts of variability dependency diagrams can be derived from the feature diagrams. Com-
monality domain depends on its parameters of variation, or—in feature modeling terminology—
concept depends on its variation points. But, generally speaking, the relationships between
domains in variability dependency graphs have a particular semantics while this is not so with
the relationships in feature diagrams. Moreover, the feature diagrams are trees, not general
graphs. All this suggests that variability dependency graphs should be kept as a separate nota-
tion. On the other hand, the variability dependency graphs have to be attached to the feature
model. In a complete feature model no important concept may be overlooked. Undoubtedly, the
domains depicted in the variability dependency graphs are important concepts. Therefore, for
each domain from the variability dependency graphs there should be a corresponding concept
or feature in the feature model.

3.4 Summary

To summarize, here is what is undoubtedly needed in MPD among the information associated
with the feature model (with explanation):

e Semantic description: the meaning of a feature

e Rationale: why the feature is included in the model and when to select it (if the feature
is variable)

e Constraints:

— mutual-exclusion: with what other feature is illegal to combine the feature

— requires: what other features are required by the feature
e Default dependency rules: default values
e Binding mode: as explained above
e Instantiation: as explained above

Open/closed attribute (the feature is open if new direct variable subfeatures are expected)
is redundant since it is already being indicated (by ellipsis) directly in feature diagrams.

All this information is recognized in MPD, but it is not structured this way. Structuring the
associated information this way eases the transition to full-fledged feature modeling.*

4 AspectJ Paradigms

It is not easy to provide a good feature model of an application domain, where this technique
is mostly applied. It is even harder to provide a good feature model of a solution domain,
where there is no previous experience in applying this technique (at least not published—to the
best author’s knowledge). Thus, it would be untrue to claim that a feature model of AspectJ
language as a solution domain, i.e. its paradigm model, presented here is complete and perfect.
The experience with its use will show how it could be improved.

AspectJ is an interesting programming language to explore in the sense of MPD because
it provides at least two large-scale paradigms: object-oriented and aspect-oriented. However,
large-scale view is not sufficient to make a full use of the programming language in the design.
We must turn to a finer granularity and find out what small-scale paradigms, i.e. language
mechanisms, AspectJ provides (we will call them simply paradigms in the following text). As
we discussed in previous sections, we employ feature modeling to describe these paradigms.

A whole feature model of AspectJ is presented in Appendix A. It consists of a feature
diagram and the information associated with it, as described in Section 3.2. Despite the fact
that feature diagrams are presented textually, the original expressiveness is fully preserved. Here
is the legend:

* mandatory feature
o optional feature
) alternative feature
1 or-feature
. indication that feature is open

In the information associated with the feature diagrams the following abbreviation have been
used:

SD semantic description
R rationale
C constraints

m mutually exclusive features

If there is a chance to get generative programming and MPD to work together, then this is a small step
towards it.

r required features
D default

SD and R are described textually, while m, r, and D are described by features connected
with logical adjuncts.

4.1 The Paradigms

The paradigms in the feature diagram are indicated by a capitalization of the initial letter (e.g.,
Class). In the text, the paradigm names are typeset in the boldface style. The root of the
feature diagram is AspectJ as a solution domain. It provides the paradigms that can be used,
which is indicated by modeling the paradigms as optional features.

The paradigm model establishes a paradigm hierarchy. Each paradigm is presented in a
separate diagram in order not to make a diagram too big and hard to maintain. It is the same
as if there was a single big feature diagram of AspectJ. However, in that case some subtrees
would have to be repeated.

4.2 Dependencies between Paradigms

Some paradigms depend on other paradigms. It is worth distinguishing between two types of
dependencies between paradigms: building upon and requiring.

A paradigm can build upon other paradigms. This is indicated directly in feature diagram,
since the paradigm that is built upon must be present as a feature in the feature diagram of the
paradigm that builds upon it. For example, class builds upon method).

Some paradigms can be used only in the context of some other paradigms, i.e. they require
the presence of other paradigms. Therefore, this is being indicated in the “Requires” part of
constraints description among the information associated with the feature diagram. As example,
consider class and method again: method cannot be used without a class. This situation
can only arise with the paradigms that are built upon, but not all such paradigms fall into
this category. For example, inheritance builds upon class, but class can be used without
inheritance).

5 Transformational Analysis

Transformational analysis—aligning application domain structures with the problem domain
ones—is a key part of MPD. While in Coplien’s MPD it was performed as a table comparison,
here it becomes a tree traverse.However, this is a very simplified view: the transformational
analysis is a complicated process. It can even have a back impact on the application domain
feature model.

As MPD for AspectJ (based on feature modeling) is in an early phase of development, I will
explore only the basic idea of the transformational analysis on an example. Then I will try to
make some general observations about the process of transformational analysis.

5.1 An Example: Text Editing Buffers

Text editing buffers® [3] maintain the logical copies of the file contents during editing in a text
editor. The text editing buffer represents the state of the file being edited. It caches changes
until user saves the text editing buffer into the file. A simple text editing buffers maintains a

"The example discussed here is an adapted version of text editing buffers example used throughout [3].

copy of the entire file, while more sophisticated text editing buffers employ some kind of working
set management, e.g. a paging or swapping scheme.

All text editing buffers can load and save their contents into the file. They maintain a record
of the number of lines and characters of their contents, the cursor position, etc. Text editing
buffers differ in the file formats used and working set management performed. Moreover, they
can differ in the character set.

The feature model is presented in Appendix B. Only the topmost features are provided with
the associated information (structured as explained in Section 4). In the text, the feature names
are distinguished by typesetting in the SMALL CAPITALS STYLE.

Now that we have feature models of both application and solution domains, we can proceed
with transformational analysis. We start with the unchangeable part of the application domain,
i.e. the topmost common features. This is the level where we can expect some basic class or
classes, so let’s compare these features to those of the class paradigm. Number of lines, number
of characters, and cursor position correspond to fields. Yield data, replace data, load file, and
save file correspond to method paradigm. Accordingly, text editing buffer should be a class.

We proceed with other features, that are, apparently, variation points. The first one is
FiLE. All the files are read and written. There are several types of files and each one is read
and written in a specific way. However, what is being read and written remains the same: FILE
NAME and CONTENTS. We would probably expect to get the status of reading and writing. Thus
we reached the leaves of the FILE subtree. If we compare these leaves to those of AspectJ feature
diagram, they best map to arguments and return value. This brings us to method paradigm for
read and write features.

We go up one level and discover that DATABASE, RCS FILE, TTY, and UNIX FILE features
match with class paradigm. Accordingly, we expect that FILE would be a class too; so we match
it with class paradigm. The relationship between FILE and its types matches with inheritance.
Analogously, CHARACTER SET would be a class, and each its type would be a subclass of this
class.

The situation is similar with WORKING SET MANAGEMENT. We can determine each type of
WORKING SET MANAGEMENT as a class. But there is one difference: when we try to match it
with Inheritance further, we discover that we can match a whole TEXT EDITING BUFFER with
BASE TYPE (because of YIELD DATA, REPLACE DATA). So the WORKING SET MANAGEMENT
would be a primary differentiator.

DEBUGGING CODE is somewhat special. We would like to be able to turn it on and off
easily (debug and production versions, respectively). It is intended for FILE, CHARACTER
SET, and WORKING SET MANAGEMENT; there is a special debug code for each one of them.
For example, we would like to know when the file is being read from and written to. We
already matched FILE with class and reading and writing with method, so it seems we must
look for such a paradigm that can influence the methods execution. There is only one such
paradigm: advice. As advice is available only in aspect paradigm, the FILE DEBUGGING
CODE, CHARACTER SET DEBUGGING CODE, and WORKING SET MANAGEMENT DEBUGGING
CoDE will be aspects. FILE DEBUGGING CODE will provide two advices, for reading and writing
a file, and CHARACTER SET DEBUGGING CODE only one, as only a name of character set being
used has to be announced.

Things are slightly more complicated with WORKING SET MANAGEMENT DEBUGGING
CODE, as we are interested in the general operations of working set management, as well as
in each its type specific operations (not listed in the feature diagram). We can try inheritance
here: WORKING SET MANAGEMENT DEBUGGING CODE matches with a base aspect, while each
of its or-subfeatures match with a sub-aspect.

5.2 Transformational Analysis Outline

The text editing buffers example disclosed some regularities in the process of transformational
analysis. The mapping was performed from leaves to root. Rarely we considered the leaves
alone. Mostly a feature with its subfeatures was considered together, and we searched the
solution domain tree for such a structure. Multiple nodes from the application domain can
match to a single solution domain node if its name is in plural. Matching of leaves is done
according to the type of the leaves, e.g. among the leaves that are mandatory or-nodes, it is a
match if one or more leaves finds their match.

The mapping is interdependent. If two features depend on each other, then it matters
what paradigm the first feature was matched with. This means that the order in which the
application domain features are mapped is significant. In other words, matching feature with
paradigm constrains further design.

Up to now, nothing has been said about how the actual matching of two nodes is performed
This can be compared to the matching between the domain commonality and parameters of
variation in the variability table to the commonalities and variabilities in the family table.
The first ones must be generalized prior to matching. Two nodes match if they conceptually
represent the same thing; do they—it is up to developer to decide. However, the conceptual
gap is significantly smaller because we are not forced to make such decisions at so high level of
abstraction as in the original MPD.

6 Conclusions and Further Research

Some serious insufficiencies were identified in MPD [5] regarding the paradigm model, both
the concrete one (i.e., C++) and conceptually (i.e. the techniques employed for developing a
paradigm model), and the transformational analysis.

In this report, an AspectJ paradigm model was presented as a feature model of AspectJ.
The model provides a basis for further research on multi-paradigm design for AspectJ and its
subsequent improvements are expected.

The development of Aspect]J paradigm model is based on an extensive comparison of feature
modeling and multi-paradigm design (for C++) presented in Section 3.

The use of the AspectJ paradigm model— a new transformational analysis—was demon-
strated on text editing buffers example (Section 5).

There is a lot of open issues suitable for further research. The main include (subtasks are
expected in each):

e The relationship of MPD’s negative variability table and feature modeling.
e Incorporating MPD’s variability dependency graphs into transformational analysis

e Noting the results of transformational analysis.

Despite the difference in the solution domain, multi-paradigm design for AspectJ can and
should be confronted with multi-paradigm design for C++. Since the multi-paradigm design of
text editing buffers example for C++ is available in [3], and the multi-paradigm design of the
same example for AspectJ was presented here, the two could be compared®

References

[1] James Coplien, Daniel Hoffman, and David Weiss. Commonality and variability in software
engineering. IEEE Software, 15(6), November 1998. Available at [2].

61 plan to do so for the STJA paper.

10

James O. Coplien. Home page. http://www.bell-labs.com/people/cope. Accessed on
February 5, 2000.

James O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.

Krysztof Czarnecki and Ulrich Eisenecker. Generative Programing: Principles, Techniques,
and Tools. Addison-Wesley, 2000.

Valentino Vranié. A new basis for multi-paradigm design. Technical report, Slovak University
of Technology, March 2001.

11

A AspectJ Paradigm Model

Aspect]J

(o}

o O o o

Method
*

) *
) *

Method
Class
Interface
Aspect
Inheritance

arguments
* type
iES
* value

1%

return value
* type

iES

* value

1%

static <compile time>
non-static <run time>

Overloading

*
*

Class

Method name
Method arguments
]* number <source time>

] 1% ... <run time>
1* type
1% ... <run time>

Method body
I*x ... <compile time>

return value <source time>

fields <source time>
* state
I* ... <run time>

Methods <source time>

inner
)* in Class
)* in Method
)* named
)* anonymous

Overloading

Interface

iES
1%

constants <source time>
declarations of Methods <source time>

12

Aspect
1* Introductions
1% Advices

* fields
* state
1% ... <run time>
* Methods
o inner

)* in Class
)* in Method

Introduction
* Types
I* Classes <compile time>
J* Interfaces <compile time>

)* field
)* Method

Advice
1* before
1% after
1* around

* body

* pointcut
]* static join points
] 1* Classes

]]* Method executions
] 1* Method calls
] I* ... <compile time>
]
]* dynamic join points
J* objects
J* Method receptions
1+ ... <run time>
o context
Inheritance
* base type
)* Class
)* Interface
)* Aspect
* subtype
)* Class
)* Interface
)* Aspect

)* implements
)* extends

Method

SD:

R:
C:
m:
r: Class or Aspect
Overloading
SD:
R:
C:
m:
r: Method
Class

SD: Class groups related data (fields) and operations (methods). (Here we consider classes
without inheritance.)

R: Encapsulation of structure and behavior.

C:
m:
r:
Interface
SD:
R:
C:
m:
r:
Aspect
SD:
R:
C:
m:
r: Class V Interface
Introduction
SD:
R:
C:
m:
r: Aspect
Advice

14

SD:

R:
C:
m:
r: Aspect
Inheritance
SD:
R:
C:
m:

e subtype = Class = basetype # Aspect
e subtype = Inter face = basetype # Aspect A basetype = Class
e subtype = Aspect = basetype # Inter face

e basetype = Class = subtype = Class N extends(basetype)

e basetype = Interface = (subtype = Class N implements(basetype)) V
(subtype = Inter face A extends(basetype))

e basetype = Aspect = subtype = Aspect N extends(basetype)

B Text Editing Buffers Feature Model

Text Editing Buffer
* File
* read
¥ file name
* file contents
* status

* write
¥ file name
¥ file contents
* status

)* database <run time>

) * read

) * file name

) * file contents
)

) * write

) * file name

) * file contents
) * status

)

)* RCS File

) * read

) * write

)

)x TTY

) * read

) * write

)

15

)* Unix file

) * read
) * write
)

)L

* Character Set
)* ASCII <source time>

) * character codes
)

)* EBCDIC

) * character codes
)

)* FIELDATA

) * character codes
)

)* UNICODE

) * character codes
)

)L

* Working Set Management
)* whole file <compile time>

) * yield data

) * replace data
)

)* whole page

) * yield data

) * replace data
)

)* LRU fixed

) * yield data

) * replace data
)

)

o Debugging Code
)* debug <compile time>
)* production

* File DC
* reading file
* writing file

* Character Set DC
* name of character set being used

* Working Set Management DC
* whole file
* whole page
* LRU fixed
*

* number of lines
* number of characters
* cursor position

* yield data
* replace data

* load file
* save file

16

File

SD: The type of the file where the text is stored.
R: The formatting of text lines is sensitive to the file type.

C:
m:
r:
D: Unix file

Character Set

SD: The character set used by a text buffer. The character set is determined by a code
table in which each character is given a code.

R: Different buffer types use different character sets.

C:
m:
r:
D: ASCII

Working Set Management
SD: Different text edditing buffers use different working set management schemes. FEach
such a scheme provides its own operations for that task.

R: Optimization of memory use.
C:

3

D:
Debugging Code

SD: The code for debugging purposes. Must not create an overhead in the final version,
i.e. should not be executed in that case.

R: Freeing code from bugs.

C:
m:
r:

D: production

17

