
Aspe
tJ Paradigm Model: A Basis for Multi-Paradigm Design for

Aspe
tJ

Valentino Vrani�

4th May 2001

Abstra
t

Multi-paradigm design for C++ is a metaparadigm: it enables to sele
t the appropriate

paradigm for a feature being modeled. Multi-paradigm design is based on s
ope,
ommon-

ality, and variability analysis used to analyze and model both an appli
ation domain and

solution domain. Subsequently, a te
hnique
alled transformational analysis is used to mat
h

the appli
ation domain entities with the solution domain ones (
alled paradigms). The no-

tation employed in multi-paradigm design
onsists mainly of tables. This doesn't seem to be

enough to express all the important aspe
ts of a domain, whether an appli
ation or solution

one. Feature modeling seem to be a more suitable te
hnique for this task. However, having

appli
ation and solution domain represented as feature models has a great impa
t on the

transformational analysis.

1 Introdu
tion

This report is
on
erned with Aspe
tJ paradigm model intended to be used in the multi-

paradigm design for Aspe
tJ. As I explained in the previous report [5℄, SCV (s
ope,
ommonality,

and variability) analysis [1℄ is used to des
ribe paradigms as
ommonality{variability pairings [3℄.

This way of des
ribing paradigms is
ompa
t, but not
lear.

Some paradigms build on other paradigms. Multi-paradigm design, based on s
ope,
om-

monality, and variability analysis, provides no means to express these relationships between

paradigms. Therefore, in [5℄ I suggested to apply feature modeling instead of s
ope,
om-

monality, and variability analysis. Feature modeling also supports expli
it reasoning about

ommonalities and variabilities. A
tually it does so in a more general way.

To enable multi-paradigm design for Aspe
tJ, the Aspe
tJ paradigm model is needed. This

is a tough task be
ause that model is to be used in the transformational analysis to map prob-

lem domain stru
tures to language me
hanisms. Hen
e I de
ided �rst to build an initial (and

in
omplete) version of the Aspe
tJ paradigm model and to try it on example to demonstrate

and explore how the transformational analysis will look like when feature modeling is used.

Before dis
ussing the main issue mentioned above, this report provides a basi
 information

on feature modeling (Se
tion 2). It pro
eeds with an analysis of the relationship between feature

modeling and te
hniques used in MPD (Se
tion 3). Then it provides a partial Aspe
tJ paradigm

model developed by applying feature modeling on Aspe
tJ solution domain (Se
tion 4) and

dis
usses the impa
t of in
orporating feature modeling into MPD on transformational analysis

(Se
tion 5). It ends with
on
lusions and further work proposals.

2 Feature Modeling

Feature modeling is a
on
eptual modeling te
hnique used in domain engineering. Its origins

are in FODA, i.e. feature-oriented domain analysis, a domain analysis method developed at

1

the Software Engineering Institute. The version of the feature modeling referred to here is an

adaptation of the original version. It is des
ribed in [4℄.

The feature modeling is based on the notions of
on
ept and feature. The
on
epts are the

way we per
eive the world. It is not possible to de�ne a
on
ept pre
isely and
over all its

instan
es, ex
ept for some spe
ial
ases, e.g. mathemati
al
on
epts (see [4℄ for more details on

on
eptual modeling). The feature modeling makes it possible to explore the features
on
epts

have in order to better understand them.

The basi
 steps of feature modeling (a mi
ro-
y
le of feature modeling) are:

1. Re
ording the similarities between instan
es, i.e.
ommon features.

2. Re
ording the di�eren
es between instan
es, i.e. variable features.

3. Organizing the features into feature diagrams.

4. Analysis of the feature
ombinations and intera
tions.

5. Re
ording all of the additional information regarding features.

The result of feature modeling is, as expe
ted, a feature model. It
onsists of feature dia-

gram(s) and the information asso
iated with the features like:

� semanti
 des
ription

� rationale

� stakeholders and
lient programs

� exemplar systems

�
onstraints and default dependen
y rules

� availability sites, binding sites, and binding modes

� open/
losed attribute

� priorities.

Feature diagrams (mentioned in step 3) are a key part of the feature model. They are used

to represent
on
epts. A feature diagram is a dire
ted tree with the edge de
orations. The root

represents a
on
ept, and the rest of the nodes represent features.

Edges
onne
t the node with its features. There are two types of edges used to distinguish

between mandatory features, ended by a �lled
ir
le, and optional features, ended by an empty

ir
le. As the names indi
ate, a
on
ept instan
e must have all the mandatory features and
an

have the optional features.

The edge de
orations are drawn as ar
s
onne
ting subsets of the edges originating in the

same node. They are used to de�ne a partitioning of the subnodes of the node the edges originate

from into alternative and or-features. A
on
ept instan
e has exa
tly one feature from the set

of alternative features. A
on
ept instan
e
an have any subset or all of the features from the

set of or-features.

The nodes
onne
ted dire
tly to the
on
ept node are being denoted as its dire
t features; all

other features are its indire
t features, sometimes denoted as subfeatures. The indire
t features

an be in
luded in the
on
ept instan
e only if their parent node is in
luded.

An example of a feature diagram with di�erent types of features is presented in Fig. 1. f

1

,

f

2

, f

3

, and f

4

are dire
t features of the
on
ept
, while other features are its indire
t features.

2

f1

c

f2 f3 f4

f5 f6 f7

Figure 1: A feature diagram.

f

1

and f

2

are mandatory alternative features. f

4

is an optional feature. f

5

, f

6

and f

7

are

mandatory or-features; they are also subfeatures of f

4

.

A

ording to [4℄, a
on
ept instan
e is des
ribed by a set of features from the feature diagram

of the
on
ept. However, if the same feature is present in the feature diagram at several distin
t

nodes, this is not suÆ
ient to des
ribe an instan
e. An element is either in the set or not, no

matter how many times it was in
luded into the set.

Redrawing the feature diagrams of this type not to in
lude dupli
ated nodes results in graphs

(more pre
isely, dire
ted a
y
li
 graphs). Su
h type of feature diagrams is a
tually mentioned

in [4℄ (in a footnote) the feature sets
annot be used to des
ribe an instan
e of a
on
ept whose

feature diagram is a graph. It is surprising when the authors do not re
ognize that some of the

examples they introdu
e later in the book falls into this
ategory (e.g., Fig. !4-3 on page 634).

It is obvious that there are several solutions to this problem. Although this is not the intent

of this report, I would like to introdu
e a simple one. We
an stay with sets, but the di�eren
e

is that ea
h subtree of a feature diagram should be des
ribed by a set:

froot; ff

1

g; ff

2

g; : : : ; ff

n

gg

The pro
ess pro
eeds re
ursively to the feature diagram leaves: ea
h feature unless it is at

leaf, is the root of some subtree. For example, one of the instan
es of the
on
ept from Fig. 1

in this notation
ould be written as: f
; ff

1

g; ff

3

; ff

5

; f

6

gg; ff

4

gg.

3 Feature modeling and MPD

In [5℄ I suggested to use feature modeling instead of SCV analysis as a more general te
hnique.

In this se
tion we will take a
loser look at how these two te
hniques
orrespond to ea
h other.

In MPD, SCV analysis is applied to both appli
ation and solution domain; the results are

summarized in two kinds of tables, variability and family tables, respe
tively. Furthermore,

another te
hnique denoted as variability dependen
y graphs is used in MPD. We will
onsider

both the variability and family tables, and variability dependen
y graphs in the
ontext of

feature modeling in order to how the entities they are based on
orrespond to
on
epts and

features. Con
epts and features are more general than the entities MPD is based on, as it is the

ase with obje
t-orientation, too. In OO, we
an say that
lasses
orrespond to
on
epts.

1

1

Not vi
e versa, i.e. that
on
epts
orrespond to
lasses, as stated in [4, p. 736℄, sin
e a
on
ept
an be, for

example, an aspe
t or something that
annot be modeled by a (single)
lass.

3

SCV analysis Feature modeling

s
ope = set of entities
on
ept

ommonality = assumption held uniformly a
ross the s
ope
ommon feature

variability = assumption true for only some elements in the s
ope variable feature

Table 1: SCV analysis and feature modeling equivalents.

3.1 SCV Analysis

Feature diagrams are
apable of expressing
ommonalities and variabilities among
on
ept in-

stan
es. Let us see how they
an be used in the
ontext of SCV analysis, whi
h is based around

the notion of
ommonality and variability. As we saw, there is a notion of
ommon and variable

features in feature modeling. These
an be distinguished by examining feature diagrams.

A
ommon feature of a
on
ept is a feature present in all
on
ept instan
es, i.e. there must

be a path of mandatory

2

features leading from the
on
ept to the feature. All other features are

variable, i.e. any optional, alternative or or-features is a variable feature. The features to whi
h

variable features are atta
hed are
alled variation point.

If we
onsider
ommon features in a relative manner, then any node, be it a feature or

a
on
ept, in a feature diagram
an have its
ommon features. Su
h features are denoted as

ommon subfeatures. A
ommon subfeature of a node in feature diagram is a feature present in

all
on
ept instan
es that have that node, i.e. there must be a path of mandatory features leading

from the feature to the subfeature. Clearly,
ommon subfeatures in
lude
ommon features.

As it is apparent from Tab. 1, SCV analysis and feature modeling are not far from ea
h

other. It is
lear that the s
ope in SCV analysis is nothing but the exemplar representation of

a
on
ept.

3

The SCV
ommonalities and variabilities map straightforwardly to
ommon and

variable features of feature modeling, respe
tively. From the perspe
tive of SCV analysis those

ommon subfeatures that are not
ommon features fall into the variability
ategory.

The feature modeling enables to represent SCV analysis
ommonalities and variabilities

hierar
hi
ally and thus to express relationships among variabilities. For a solution domain SCV

analysis this means enabling to express how are paradigms solution domain provides related.

3.2 Variability and Family Tables

Tab. 2 aligns feature modeling terms with its variability and family table
ounterparts. Clearly,

only a fra
tion of the information usually provided by a feature model
overs most of the needs

of variability and family tables (
ompare Feature modeling
olumn of Tab. 2 with the list of the

information asso
iated with the features at the beginning of this se
tion).

The parameters of variation are sometimes
onsidered as subdomains (espe
ially in variability

dependen
y graphs). This is
onsistent with the feature modeling; the feature
an be viewed as

a
on
ept itself if we de
ide to
onsider it as su
h (but until that it stays only a feature).

Two issues|binding time and instantiation|require a
loser examination.

Binding time

Binding mode in feature modeling
orresponds to binding time in MPD. The di�eren
e is that

the set of binding times used in MPD is ri
her than the one used in feature modeling. This is

due to a fa
t that the binding times in MPD are the a
tual binding times, like
ompile time,

2

This means only pure mandatory features, not mandatory alternative or or-features.

3

The exemplar view of a
on
ept is the one in whi
h a
on
ept is de�ned by the set of its instan
es. See [4℄

for more on
on
eptual modeling.

4

Feature modeling Variability tables Family tables

on
ept
ommonality domain language me
hanism

ommon feature
ommonality

variable feature variability

variation point parameter of variation

alternative features domain (range)

binding mode binding binding

semanti
 des
ription, rationale meaning

default dependen
y rules default (of range)

additional information instantiation

Table 2: Feature modeling and MPD variability and family tables.

run time, et
. Feature modeling provides us with more abstra
t binding times, namely stati
,

hangeable, and dynami
 binding. Ea
h MPD (MPD for C++) binding time fall into one of

these
ategories, as follows:

� sour
e time and
ompile time bindings are stati
 binding;

� link (load) time binding is a
hangeable binding;

� run time binding is a dynami
 binding.

The set of binding times depends on a solution domain. Di�erent programming languages

provide di�erent me
hanisms; ea
h me
hanism has its binding time. Sin
e the solution domain

is determining for transformational analysis, we will a

ept that binding mode attribute a
tually

holds a value for binding time.

The binding time applies only to variable features. The binding times of the features in

the appli
ation domain feature model is the earliest allowed binding time. This means that the

binding time in the implementation may be
hanged to a later one, but not to an earlier one.

The binding times of the features in the solution domain feature model are the exa
t binding

times.

The binding times of the variable features are indi
ated in feature diagrams at binding sites

(the parent features of those variable features) or dire
tly at variable features in the form of

node annotations.

There is no notion of a unique binding time for a
on
ept, as it is the
ase with a paradigm

in MPD. However, it is better to indi
ate binding time where it belongs|at variable features|

than to have to provide an explanation about binding what is the binding time about. In
ase

of su
h alternative or or-features whose binding time is the same, it is enough if we annotate

only the �rst feature.

Instantiation

The feature modeling provides no
ounterpart for the family table
olumn \instantiation". This

olumn indi
ates whether a language me
hanism provides instantiation. This does not seem

to be a serious problem, sin
e it is possible to provide this information among the rest of the

additional information as an attribute.

To avoid misunderstanding, the instantiation
onsidered here is not the instantiation of

on
epts. By de�nition it is possible to instantiate any
on
ept. A
on
ept is an idea and its

instan
es are the materialization of that idea. The instantiation dis
ussed here has to do with

the instantiation of
on
ept instan
es themselves. Consider, for example, the
on
ept of
lass.

5

The instan
es of the
on
ept of
lass are
lasses. But the
lasses themselves
an be instantiated;

their instan
es are obje
ts.

Let's see what values are possible for the instantiation attribute. Possible values for in-

stantiation in MPD are: yes, no, not available (n/a), and optional. It seems that no and n/a

values are redundant: if a language me
hanism does not provide instantiation, it
an be only

be
ause the instantiation is not available for that me
hanism. The yes value indi
ates that a

me
hanism is used only with instantiation, while optional means that it
an be used both with

instantiation and without it (to make a use of the stati
 �elds and methods, a
lass doesn't have

to be instantiated).

The instantiation attribute in solution feature modeling should take one of the three values

for ea
h
on
ept: yes, no, and optional. In appli
ation domain feature modeling, the informa-

tion whether the instantiation is needed should be provided with ea
h feature. The mapping

possibilities for appli
ation domain stru
tures to solution domain me
hanisms would be then:

instantiation in appli
ation domain instantiation in solution domain

yes yes, optional

no no, optional

3.3 Variability Dependen
y Graphs

Variability dependen
y graphs are an auxiliary te
hnique used in MPD to
apture dependen
ies

between domains. It is used as a part of appli
ation domain analysis and,
onsequently, in

transformational analysis. It helps in exploring the
ir
ular dependen
ies among domains.

The notation of variability dependen
y graphs is trivial: the nodes represent domains and

the arrows represent the \depends on (a parameter of variation)" relationship. If we are to

translate this into the feature modeling terminology, then domain
orresponds to a
on
ept or

feature (
onsidered as a
on
ept).

Parts of variability dependen
y diagrams
an be derived from the feature diagrams. Com-

monality domain depends on its parameters of variation, or|in feature modeling terminology|

on
ept depends on its variation points. But, generally speaking, the relationships between

domains in variability dependen
y graphs have a parti
ular semanti
s while this is not so with

the relationships in feature diagrams. Moreover, the feature diagrams are trees, not general

graphs. All this suggests that variability dependen
y graphs should be kept as a separate nota-

tion. On the other hand, the variability dependen
y graphs have to be atta
hed to the feature

model. In a
omplete feature model no important
on
ept may be overlooked. Undoubtedly, the

domains depi
ted in the variability dependen
y graphs are important
on
epts. Therefore, for

ea
h domain from the variability dependen
y graphs there should be a
orresponding
on
ept

or feature in the feature model.

3.4 Summary

To summarize, here is what is undoubtedly needed in MPD among the information asso
iated

with the feature model (with explanation):

� Semanti
 des
ription: the meaning of a feature

� Rationale: why the feature is in
luded in the model and when to sele
t it (if the feature

is variable)

� Constraints:

{ mutual-ex
lusion: with what other feature is illegal to
ombine the feature

6

{ requires: what other features are required by the feature

� Default dependen
y rules: default values

� Binding mode: as explained above

� Instantiation: as explained above

Open/
losed attribute (the feature is open if new dire
t variable subfeatures are expe
ted)

is redundant sin
e it is already being indi
ated (by ellipsis) dire
tly in feature diagrams.

All this information is re
ognized in MPD, but it is not stru
tured this way. Stru
turing the

asso
iated information this way eases the transition to full-
edged feature modeling.

4

4 Aspe
tJ Paradigms

It is not easy to provide a good feature model of an appli
ation domain, where this te
hnique

is mostly applied. It is even harder to provide a good feature model of a solution domain,

where there is no previous experien
e in applying this te
hnique (at least not published|to the

best author's knowledge). Thus, it would be untrue to
laim that a feature model of Aspe
tJ

language as a solution domain, i.e. its paradigm model, presented here is
omplete and perfe
t.

The experien
e with its use will show how it
ould be improved.

Aspe
tJ is an interesting programming language to explore in the sense of MPD be
ause

it provides at least two large-s
ale paradigms: obje
t-oriented and aspe
t-oriented. However,

large-s
ale view is not suÆ
ient to make a full use of the programming language in the design.

We must turn to a �ner granularity and �nd out what small-s
ale paradigms, i.e. language

me
hanisms, Aspe
tJ provides (we will
all them simply paradigms in the following text). As

we dis
ussed in previous se
tions, we employ feature modeling to des
ribe these paradigms.

A whole feature model of Aspe
tJ is presented in Appendix A. It
onsists of a feature

diagram and the information asso
iated with it, as des
ribed in Se
tion 3.2. Despite the fa
t

that feature diagrams are presented textually, the original expressiveness is fully preserved. Here

is the legend:

* mandatory feature

o optional feature

) alternative feature

℄ or-feature

... indi
ation that feature is open

In the information asso
iated with the feature diagrams the following abbreviation have been

used:

SD semanti
 des
ription

R rationale

C
onstraints

m mutually ex
lusive features

4

If there is a
han
e to get generative programming and MPD to work together, then this is a small step

towards it.

7

r required features

D default

SD and R are des
ribed textually, while m, r, and D are des
ribed by features
onne
ted

with logi
al adjun
ts.

4.1 The Paradigms

The paradigms in the feature diagram are indi
ated by a
apitalization of the initial letter (e.g.,

Class). In the text, the paradigm names are typeset in the boldfa
e style. The root of the

feature diagram is Aspe
tJ as a solution domain. It provides the paradigms that
an be used,

whi
h is indi
ated by modeling the paradigms as optional features.

The paradigm model establishes a paradigm hierar
hy. Ea
h paradigm is presented in a

separate diagram in order not to make a diagram too big and hard to maintain. It is the same

as if there was a single big feature diagram of Aspe
tJ. However, in that
ase some subtrees

would have to be repeated.

4.2 Dependen
ies between Paradigms

Some paradigms depend on other paradigms. It is worth distinguishing between two types of

dependen
ies between paradigms: building upon and requiring.

A paradigm
an build upon other paradigms. This is indi
ated dire
tly in feature diagram,

sin
e the paradigm that is built upon must be present as a feature in the feature diagram of the

paradigm that builds upon it. For example,
lass builds upon method).

Some paradigms
an be used only in the
ontext of some other paradigms, i.e. they require

the presen
e of other paradigms. Therefore, this is being indi
ated in the \Requires" part of

onstraints des
ription among the information asso
iated with the feature diagram. As example,

onsider
lass and method again: method
annot be used without a
lass. This situation

an only arise with the paradigms that are built upon, but not all su
h paradigms fall into

this
ategory. For example, inheritan
e builds upon
lass, but
lass
an be used without

inheritan
e).

5 Transformational Analysis

Transformational analysis|aligning appli
ation domain stru
tures with the problem domain

ones|is a key part of MPD. While in Coplien's MPD it was performed as a table
omparison,

here it be
omes a tree traverse.However, this is a very simpli�ed view: the transformational

analysis is a
ompli
ated pro
ess. It
an even have a ba
k impa
t on the appli
ation domain

feature model.

As MPD for Aspe
tJ (based on feature modeling) is in an early phase of development, I will

explore only the basi
 idea of the transformational analysis on an example. Then I will try to

make some general observations about the pro
ess of transformational analysis.

5.1 An Example: Text Editing Bu�ers

Text editing bu�ers

5

[3℄ maintain the logi
al
opies of the �le
ontents during editing in a text

editor. The text editing bu�er represents the state of the �le being edited. It
a
hes
hanges

until user saves the text editing bu�er into the �le. A simple text editing bu�ers maintains a

5

The example dis
ussed here is an adapted version of text editing bu�ers example used throughout [3℄.

8

opy of the entire �le, while more sophisti
ated text editing bu�ers employ some kind of working

set management, e.g. a paging or swapping s
heme.

All text editing bu�ers
an load and save their
ontents into the �le. They maintain a re
ord

of the number of lines and
hara
ters of their
ontents, the
ursor position, et
. Text editing

bu�ers di�er in the �le formats used and working set management performed. Moreover, they

an di�er in the
hara
ter set.

The feature model is presented in Appendix B. Only the topmost features are provided with

the asso
iated information (stru
tured as explained in Se
tion 4). In the text, the feature names

are distinguished by typesetting in the small
apitals style.

Now that we have feature models of both appli
ation and solution domains, we
an pro
eed

with transformational analysis. We start with the un
hangeable part of the appli
ation domain,

i.e. the topmost
ommon features. This is the level where we
an expe
t some basi

lass or

lasses, so let's
ompare these features to those of the
lass paradigm. Number of lines, number

of
hara
ters, and
ursor position
orrespond to �elds. Yield data, repla
e data, load �le, and

save �le
orrespond to method paradigm. A

ordingly, text editing bu�er should be a
lass.

We pro
eed with other features, that are, apparently, variation points. The �rst one is

File. All the �les are read and written. There are several types of �les and ea
h one is read

and written in a spe
i�
 way. However, what is being read and written remains the same: file

name and
ontents. We would probably expe
t to get the status of reading and writing. Thus

we rea
hed the leaves of the File subtree. If we
ompare these leaves to those of Aspe
tJ feature

diagram, they best map to arguments and return value. This brings us to method paradigm for

read and write features.

We go up one level and dis
over that database, RCS file, TTY, and Unix file features

mat
h with
lass paradigm. A

ordingly, we expe
t that File would be a
lass too; so we mat
h

it with
lass paradigm. The relationship between File and its types mat
hes with inheritan
e.

Analogously, Chara
ter Set would be a
lass, and ea
h its type would be a sub
lass of this

lass.

The situation is similar withWorking Set Management. We
an determine ea
h type of

Working Set Management as a
lass. But there is one di�eren
e: when we try to mat
h it

with Inheritan
e further, we dis
over that we
an mat
h a whole Text Editing Buffer with

base type (be
ause of yield data, repla
e data). So the Working Set Management

would be a primary di�erentiator.

Debugging
ode is somewhat spe
ial. We would like to be able to turn it on and o�

easily (debug and produ
tion versions, respe
tively). It is intended for File, Chara
ter

Set, and Working Set Management; there is a spe
ial debug
ode for ea
h one of them.

For example, we would like to know when the �le is being read from and written to. We

already mat
hed File with
lass and reading and writing with method, so it seems we must

look for su
h a paradigm that
an in
uen
e the methods exe
ution. There is only one su
h

paradigm: advi
e. As advi
e is available only in aspe
t paradigm, the File Debugging

Code, Chara
ter Set Debugging Code, and Working Set Management Debugging

Code will be aspe
ts. File Debugging Code will provide two advi
es, for reading and writing

a �le, and Chara
ter Set Debugging Code only one, as only a name of
hara
ter set being

used has to be announ
ed.

Things are slightly more
ompli
ated with Working Set Management Debugging

Code, as we are interested in the general operations of working set management, as well as

in ea
h its type spe
i�
 operations (not listed in the feature diagram). We
an try inheritan
e

here: Working Set Management Debugging Code mat
hes with a base aspe
t, while ea
h

of its or-subfeatures mat
h with a sub-aspe
t.

9

5.2 Transformational Analysis Outline

The text editing bu�ers example dis
losed some regularities in the pro
ess of transformational

analysis. The mapping was performed from leaves to root. Rarely we
onsidered the leaves

alone. Mostly a feature with its subfeatures was
onsidered together, and we sear
hed the

solution domain tree for su
h a stru
ture. Multiple nodes from the appli
ation domain
an

mat
h to a single solution domain node if its name is in plural. Mat
hing of leaves is done

a

ording to the type of the leaves, e.g. among the leaves that are mandatory or-nodes, it is a

mat
h if one or more leaves �nds their mat
h.

The mapping is interdependent. If two features depend on ea
h other, then it matters

what paradigm the �rst feature was mat
hed with. This means that the order in whi
h the

appli
ation domain features are mapped is signi�
ant. In other words, mat
hing feature with

paradigm
onstrains further design.

Up to now, nothing has been said about how the a
tual mat
hing of two nodes is performed

This
an be
ompared to the mat
hing between the domain
ommonality and parameters of

variation in the variability table to the
ommonalities and variabilities in the family table.

The �rst ones must be generalized prior to mat
hing. Two nodes mat
h if they
on
eptually

represent the same thing; do they|it is up to developer to de
ide. However, the
on
eptual

gap is signi�
antly smaller be
ause we are not for
ed to make su
h de
isions at so high level of

abstra
tion as in the original MPD.

6 Con
lusions and Further Resear
h

Some serious insuÆ
ien
ies were identi�ed in MPD [5℄ regarding the paradigm model, both

the
on
rete one (i.e., C++) and
on
eptually (i.e. the te
hniques employed for developing a

paradigm model), and the transformational analysis.

In this report, an Aspe
tJ paradigm model was presented as a feature model of Aspe
tJ.

The model provides a basis for further resear
h on multi-paradigm design for Aspe
tJ and its

subsequent improvements are expe
ted.

The development of Aspe
tJ paradigm model is based on an extensive
omparison of feature

modeling and multi-paradigm design (for C++) presented in Se
tion 3.

The use of the Aspe
tJ paradigm model| a new transformational analysis|was demon-

strated on text editing bu�ers example (Se
tion 5).

There is a lot of open issues suitable for further resear
h. The main in
lude (subtasks are

expe
ted in ea
h):

� The relationship of MPD's negative variability table and feature modeling.

� In
orporating MPD's variability dependen
y graphs into transformational analysis

� Noting the results of transformational analysis.

Despite the di�eren
e in the solution domain, multi-paradigm design for Aspe
tJ
an and

should be
onfronted with multi-paradigm design for C++. Sin
e the multi-paradigm design of

text editing bu�ers example for C++ is available in [3℄, and the multi-paradigm design of the

same example for Aspe
tJ was presented here, the two
ould be
ompared

6

Referen
es

[1℄ James Coplien, Daniel Ho�man, and David Weiss. Commonality and variability in software

engineering. IEEE Software, 15(6), November 1998. Available at [2℄.

6

I plan to do so for the STJA paper.

10

[2℄ James O. Coplien. Home page. http://www.bell-labs.
om/people/
ope. A

essed on

February 5, 2000.

[3℄ James O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.

[4℄ Krysztof Czarne
ki and Ulri
h Eisene
ker. Generative Programing: Prin
iples, Te
hniques,

and Tools. Addison-Wesley, 2000.

[5℄ Valentino Vrani�
. A new basis for multi-paradigm design. Te
hni
al report, Slovak University

of Te
hnology, Mar
h 2001.

11

A Aspe
tJ Paradigm Model

Aspe
tJ

o Method

o Class

o Interfa
e

o Aspe
t

o Inheritan
e

Method

* arguments

* type

℄* ...

* value

℄* ...

o return value

* type

℄* ...

* value

℄* ...

)* stati
 <
ompile time>

)* non-stati
 <run time>

Overloading

* Method name

* Method arguments

℄* number <sour
e time>

℄ ℄* ... <run time>

℄* type

℄* ... <run time>

* Method body

℄* ... <
ompile time>

o return value <sour
e time>

Class

℄* fields <sour
e time>

℄ * state

℄ ℄* ... <run time>

℄

℄* Methods <sour
e time>

o inner

)* in Class

)* in Method

)* named

)* anonymous

o Overloading

Interfa
e

℄*
onstants <sour
e time>

℄* de
larations of Methods <sour
e time>

12

Aspe
t

℄* Introdu
tions

℄* Advi
es

* fields

* state

℄* ... <run time>

* Methods

o inner

)* in Class

)* in Method

Introdu
tion

* Types

℄* Classes <
ompile time>

℄* Interfa
es <
ompile time>

)* field

)* Method

Advi
e

℄* before

℄* after

℄* around

* body

* point
ut

℄* stati
 join points

℄ ℄* Classes

℄ ℄* Method exe
utions

℄ ℄* Method
alls

℄ ℄* ... <
ompile time>

℄

℄* dynami
 join points

℄* obje
ts

℄* Method re
eptions

℄* ... <run time>

o
ontext

Inheritan
e

* base type

)* Class

)* Interfa
e

)* Aspe
t

* subtype

)* Class

)* Interfa
e

)* Aspe
t

)* implements

)* extends

Method

13

SD:

R:

C:

m:

r: Class or Aspe
t

Overloading

SD:

R:

C:

m:

r: Method

Class

SD: Class groups related data (�elds) and operations (methods). (Here we
onsider
lasses

without inheritan
e.)

R: En
apsulation of stru
ture and behavior.

C:

m:

r:

Interfa
e

SD:

R:

C:

m:

r:

Aspe
t

SD:

R:

C:

m:

r: Class V Interfa
e

Introdu
tion

SD:

R:

C:

m:

r: Aspe
t

Advi
e

14

SD:

R:

C:

m:

r: Aspe
t

Inheritan
e

SD:

R:

C:

m:

� subtype = Class) basetype 6= Aspe
t

� subtype = Interfa
e) basetype 6= Aspe
t ^ basetype = Class

� subtype = Aspe
t) basetype 6= Interfa
e

r:

� basetype = Class) subtype = Class ^ extends(basetype)

� basetype = Interfa
e) (subtype = Class ^ implements(basetype)) _

(subtype = Interfa
e ^ extends(basetype))

� basetype = Aspe
t) subtype = Aspe
t ^ extends(basetype)

B Text Editing Bu�ers Feature Model

Text Editing Buffer

* File

* read

* file name

* file
ontents

* status

* write

* file name

* file
ontents

* status

)* database <run time>

) * read

) * file name

) * file
ontents

)

) * write

) * file name

) * file
ontents

) * status

)

)* RCS File

) * read

) * write

)

)* TTY

) * read

) * write

)

15

)* Unix file

) * read

) * write

)

)* ...

* Chara
ter Set

)* ASCII <sour
e time>

) *
hara
ter
odes

)

)* EBCDIC

) *
hara
ter
odes

)

)* FIELDATA

) *
hara
ter
odes

)

)* UNICODE

) *
hara
ter
odes

)

)* ...

* Working Set Management

)* whole file <
ompile time>

) * yield data

) * repla
e data

)

)* whole page

) * yield data

) * repla
e data

)

)* LRU fixed

) * yield data

) * repla
e data

)

)* ...

o Debugging Code

)* debug <
ompile time>

)* produ
tion

* File DC

* reading file

* writing file

* Chara
ter Set DC

* name of
hara
ter set being used

* Working Set Management DC

* whole file

* whole page

* LRU fixed

* ...

* number of lines

* number of
hara
ters

*
ursor position

* yield data

* repla
e data

* load file

* save file

16

File

SD: The type of the �le where the text is stored.

R: The formatting of text lines is sensitive to the �le type.

C:

m:

r:

D: Unix �le

Chara
ter Set

SD: The
hara
ter set used by a text bu�er. The
hara
ter set is determined by a
ode

table in whi
h ea
h
hara
ter is given a
ode.

R: Di�erent bu�er types use di�erent
hara
ter sets.

C:

m:

r:

D: ASCII

Working Set Management

SD: Di�erent text edditing bu�ers use di�erent working set management s
hemes. Ea
h

su
h a s
heme provides its own operations for that task.

R: Optimization of memory use.

C:

m:

r:

D:

Debugging Code

SD: The
ode for debugging purposes. Must not
reate an overhead in the �nal version,

i.e. should not be exe
uted in that
ase.

R: Freeing
ode from bugs.

C:

m:

r:

D: produ
tion

17

