
AspectJ Paradigm Model: A Basis for
Multi-Paradigm Design for AspectJ?

Valentino Vranić

Department of Computer Science and Engineering
Faculty of Electrical Engineering and Information Technology

Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia
vranic@elf.stuba.sk

http://www.dcs.elf.stuba.sk/~vranic

Abstract Multi-paradigm design is a metaparadigm: it enables to select
the appropriate paradigm among those supported by a programming
language for a feature being modeled in a process called transformational
analysis. A paradigm model is a basis for multi-paradigm design. Feature
modeling appears to be appropriate to represent a paradigm model. Such
a model is proposed here for AspectJ language upon the confrontation
of multi-paradigm design and feature modeling. Subsequently, the new
transformational analysis is discussed.

1 Introduction

In this paper the AspectJ paradigm model, a basis for multi-paradigm design for
AspectJ programming language (version 0.8), is proposed. AspectJ is an aspect-
oriented extension to Java [6]. Multi-paradigm design for AspectJ is based on
Coplien’s multi-paradigm design [3] (originally applied to C++ and therefore
known as multi-paradigm design for C++) to a different solution domain. It
employs feature modeling [5] for the task Coplien’s multi-paradigm design used
scope, commonality, variability, and relationship analysis [4].

Scope, commonality, variability, and relationship analysis, which is basically a
scope, commonality, and variability analysis [1] enhanced with the analysis of re-
lationships between domains [4], is used to describe the paradigms (mechanisms
of a programming language) provided by the solution domain (i.e., program-
ming language), as commonality-variability pairings [4, 3]. This way of describ-
ing paradigms is compact, but not expressive enough to meet the requirements
of the transformational analysis, a process of aligning problem domain structures
with available paradigms.

Moreover, the paradigms are often connected, but multi-paradigm design
provides no means to express how. The application of feature modeling instead
of scope, commonality, variability, and relationship analysis could help solve the
problems mentioned here, as will be shown in this paper.
? This work was partially supported by Slovak Science Grant Agency, grant No.

G1/7611/20.



Parameters of Variation Domain Binding Default

. . .

P1

Generalization of P1

(values
P1 can
take)

Variability tables (from application domain SCVR analysis)

Domain D1 (main commonality of D1):

Meaning

D1
P2

Pn

P1

. . .

VariabilityCommonality InstantiationBinding Language Mechanism

. . .

Family table (from solution domain SCVR analysis)

Variability dependency graph

(default
value
for P1)

. . .

Figure 1. Transformational analysis in MPD.

Before presenting the actual AspectJ paradigm model, a critical survey of the
issues regarding the multi-paradigm design for C++ (Sect. 2) and a basic infor-
mation on feature modeling notation is provided (Sect. 3). Also, the relationship
between feature modeling and techniques used in multi-paradigm design is an-
alyzed (Sect. 4). AspectJ paradigm model is then presented (Sect. 5) and the
impact of incorporating feature modeling into MPD on transformational analysis
discussed (Sect. 6). Conclusions and further research directions close the paper
(Sect. 7).

2 Multi-paradigm design for C++

Multi-paradigm design (MPD) for C++ [3] is based on the notion of small-scale
paradigm [8], that can simplistically be perceived as a language mechanism (e.g.,
inheritance), as opposed to the (more common) notion of large-scale (program-
ming) paradigm [2] (e.g., object-oriented programming; see [7] for a comparison
of programming paradigms).

Figure 1 gives an overview of MPD. Scope, commonality, variability, and
relationship (SCVR) analysis is performed on both domains, application and so-
lution, with results summarized in variability (one for each domain) and family
tables, respectively. The variability tables are incapable of capturing dependen-
cies between the parameters of variation (that are also considered to be domains),
so this is enabled by a simple graphical representation called variability depen-
dency graphs. Each row of the family table represents a 4-tuple (Commonality,
Variability, Binding, Instantiation) that determines the language mechanism.

The transformational analysis is actually a process of matching the applica-
tion domain structures with the solution domain ones. First, the main common-
ality of the application domain, as identified by a developer, is matched with a
commonality in the family table. This yields a set of rows in which the individual
parameters of variation are resolved. Since parameters of variation (e.g., working



set management) are too specific to be matched with general variabilities (e.g.,
algorithm) in the family table, each parameter of variation must be generalized
before matching. This seem as a too big step to make at once.

The generalization problem and the fact that the matching is performed be-
tween variability table 3-tuples and family table 4-tuples (variability table has
no instantiation column), are eclipsed by another problem: some C++ language
mechanisms are missing from the paradigm model proposed. For example, classes
and methods (procedures) are not even mentioned. On the other hand, inheri-
tance is embraced in the model. Maybe Coplien considered classes and methods
too trivial to mention, but this has not been stated explicitly.

Moreover, C++ mechanisms listed in the family table and negative variability
table1 are inconsistent with those described in the text [3]. Yet another problem
with the paradigm model in MPD is that it does not capture the dependencies
between paradigms. This is an important information, since there are paradigms
that make no sense without other paradigms (e.g., inheritance without classes
in C++).

3 Feature Modeling

Feature modeling is a conceptual modeling technique used in domain engineering.
The version of the feature modeling whose notation is described here comes
from [5].

Feature diagrams are a key part of a feature model. A feature diagram is
basically a directed tree with the edge decorations. The root represents a concept,
and the rest of the nodes represents features. Edges connect a node with its
features. There are two types of edges used to distinguish between mandatory
features, ended by a filled circle, and optional features, ended by an empty circle.
A concept instance must have all the mandatory features and can have the
optional features.

The edge decorations are drawn as arcs connecting the subsets of the edges
originating in the same node. They are used to define a partitioning of the
subnodes of the node the edges originate from into alternative and or-features.
A concept instance has exactly one feature from the set of alternative features.
It can have any subset or all of the features from the set of or-features.

The nodes connected directly to the concept node are being denoted as its
direct features; all other features are its indirect features, i.e. subfeatures. The
indirect features can be included in the concept instance only if their parent
node is included.

An example of a feature diagram with different types of features is presented
in Fig. 2. Features f1, f2, f3, and f4 are direct features of the concept c, while
other features are its indirect features. Features f1 and f2 are mandatory al-
ternative features. Feature f3 is an optional feature. Features f5, f6 and f7 are
mandatory or-features; they are also subfeatures of f3.
1 A table that summarizes language mechanisms corresponding to exceptions to vari-

ability.



c

f1 f2 f3 f4

f5 f6 f7

Figure 2. A feature diagram.

4 Applying Feature Modeling to Multi-Paradigm Design

Feature modeling is not unlike SCVR analysis. SCVR analysis, the heart of
MPD, is based on the notions of commonality and variability (hence the name),
and the notions of common and variable features is not unknown to feature
modeling.

A common feature of a concept is a feature present in all concept instances,
i.e. there must be a path of (pure) mandatory features leading from the concept
to the feature. All other features are variable, i.e. any optional, alternative or
or-feature is variable. The features to which variable features are attached are
called variation points.

The scope in SCVR analysis, defined as a set of entities, is nothing but the
concept in an exemplar representation.2 The SCVR commonalities (assumptions
held uniformly across the scope) and variabilities (assumptions true for only some
elements in the scope) map straightforwardly to common and variable features
of feature modeling, respectively.

The feature modeling enables to represent SCVR analysis commonalities and
variabilities hierarchically and thus to express relationships among variabilities.
For a solution domain SCVR analysis this means enabling to express how the
paradigms it provides are related.

The most important results of SCVR analysis are provided in variability and
family tables and variability dependency graphs.

4.1 Variability and Family Tables

Table 1 aligns the terms of feature modeling with its variability and family table
counterparts (the columns). Only a fraction of the information provided usually
by a feature model covers most of the needs of variability and family tables.

The parameters of variation are sometimes considered as subdomains (es-
pecially in variability dependency graphs). This is consistent with the feature
modeling; the feature can be viewed as a concept.

Binding mode in feature modeling corresponds to binding time in MPD.
The difference is that the set of binding times used in MPD is richer than the
one used in feature modeling. This is due to a fact that the binding times in
MPD are the actual binding times of a solution domain, like compile time, run
2 The exemplar view of a concept is the one in which a concept is defined by a set of

its instances [5].



Table 1. Feature modeling and MPD variability and family tables.

Feature modeling Variability tables Family tables

concept commonality domain language mechanism
common feature commonality
variable feature variability
variation point parameter of variation
alternative features domain (of values)
binding mode binding binding
semantic description, rationale meaning
default dependency rules default (value)
additional information instantiation

time, etc. Feature modeling provides more abstract binding times, namely static,
changeable, and dynamic binding. Each MPD binding time falls into one of these
categories: source time and compile time bindings are static binding, link (load)
time binding is a changeable binding, and run time binding is a dynamic binding.

The binding time applies only to variable features. It should be understood
only as an auxiliary information to the transformational analysis. There is no
notion of a unique binding time for a whole concept, as it is the case with
a paradigm in MPD. Binding time should be indicated where it belongs—at
variable features.

The feature modeling provides no counterpart for the family table column
“instantiation”, which indicates whether a language mechanism provides instan-
tiation. This information should be provided as an attribute among the rest of
the information associated with a feature model.

Possible values for instantiation in MPD are: yes, no, not available (n/a), and
optional. It seems that no and n/a values are redundant: if a language mechanism
does not provide instantiation, it can be only because the instantiation is not
available for that mechanism. The yes value indicates that a mechanism is used
only with instantiation, while optional means that it can be used both with
instantiation and without it (a class doesn’t have to be instantiated to make a
use of the static fields and methods). Furthermore, the optional value does not
make sense in the application domain—the instantiation is either needed or not.

4.2 Variability Dependency Graphs

In variability dependency graphs, the nodes represent domains and the directed
edges represent the “depends on (a parameter of variation)” relationship; domain
corresponds to a concept or feature (considered as a concept).

Parts of variability dependency diagrams can be derived from the feature
diagrams. Commonality domain depends on its parameters of variation, or—
in the feature modeling terminology—concept depends on its variation points.
But, generally speaking, while the relationships between domains in variability



dependency graphs have a particular semantics, this cannot be said for the re-
lationships in feature diagrams. Moreover, the feature diagrams are trees, not
general graphs. All this suggests that variability dependency graphs should be
kept as a separate notation. For each domain from the variability dependency
graphs there should be a corresponding concept or feature in the feature model.

5 AspectJ Paradigms

AspectJ is an interesting programming language to explore in the sense of MPD
because it supports two large-scale paradigms: object-oriented programing and
aspect-oriented programming. However, large-scale view is not sufficient to make
a full use of the programming language in the design. We must turn to a finer
granularity and find out what small-scale paradigms, i.e. language mechanisms,
AspectJ provides (referred to as paradigms in the following text). As was dis-
cussed in the previous sections, feature modeling will be employed to describe
these paradigms.

Figure 3 shows a feature diagram of AspectJ. The paradigms in the feature
diagram are indicated by a capitalization of the initial letter (e.g., Class). Bind-
ing time is indicated at variable features; if not, source time binding is assumed.
Sometimes binding time of a feature depends on other features, as indicated
in the diagram. In the text, the names of paradigms are typeset in the bold-
face style. The root of the feature diagram is AspectJ as a solution domain.
It provides the paradigms that can be used, which is indicated by modeling the
topmost paradigms as optional features.

The paradigm model establishes a paradigm hierarchy. Each paradigm is
presented in a separate diagram as an alternative to the one big overall diagram.
Wherever a root node of a paradigm tree is present, it is as if a whole tree was
included there.

6 Transformational Analysis

Transformational analysis—aligning application domain structures with the so-
lution domain ones—is the key part of MPD. The basic idea of how the trans-
formational analysis is to be performed when these structures are represented
by feature models is presented by the means of an example. Afterward, some
general observations about the process of transformational analysis are given.

6.1 An Example: Text Editing Buffers

Text editing buffers3 represent a state of a file being edited in a text editor. Text
editing buffer caches the changes until user saves the text editing buffer into
the file. Different text editing buffers employ different working set management
3 The example discussed here is an adapted version of the text editing buffers example

from [3].



AspectJ

AspectInterfaceClass Inheritance

Interface

constants declarations
of Methods

Aspect

AdvicesIntroductions

state

fields Methods inner

Advice

before

static join points dynamic join points

pointcutafter around context

Inheritance

base type implements

subtype

extends

Class Interface Aspect

Class

state Overloading

innerfields Methods

…

…

Class Interface Aspect

Overloading

name of
Method

arguments
of Method

body of
Method

number type

return
value

…
[compile time]

[run time]

[run time]

[run time]

Method

return valuearguments static

non-static
type value type value

……… …
[run time] [run time]

body

…
static: [source time]
non-static: [run time]

[compile time]

[compile time]

Introduction

types

Classes Interfaces

field Method

… …
[compile time]

… …

Figure 3. AspectJ paradigm model.

schemes and use different character sets. All text editing buffers load and save
their contents into the file, maintain a record of the number of lines and charac-
ters, the cursor position, etc. The text editing buffer feature diagram is presented
in Fig. 4. In the text, the feature names are distinguished by typesetting in the
italics style. For simplicity, binding time and instantiation were not considered.

Now that feature models of both application and solution domains are avail-
able, we can proceed with the transformational analysis. We start with the un-
changeable part of the application domain, i.e. the topmost common features.
At this level a basic class or classes might be expected. The features number of
lines, number of characters, and cursor position correspond to fields of the class
paradigm. On the other hand, yield data, replace data, load file, and save file



ASCII

Character Set

UNICODE

…

replace data

File
…

read

write

Unix File

database yield data

save file

number of characters

number of lines

cursor position

load file

Working Set Management

whole file

whole page

LRU fixed

yield data replace data

yield data

replace data

yield data

replace data

…

Text editing buffer

debug

production File DC

Character Set DC

Working Set
Management DC

Debugging Code

read

write

read

write
name

status

contents

Figure 4. Text editing buffers feature diagram.

correspond to method paradigm. Accordingly, text editing buffer should be a
class.

The rest of the topmost features are, apparently, variation points. The first
one is file. All the files are read and written, but there are several file types and
each one is read and written in a specific way. However, what is being read and
written remains the same: file name and contents. We would probably expect
to get the status of reading and writing. Thus we reached the leaves of the
file subtree. If we compare these leaves to those of AspectJ feature diagram,
they best match with arguments and return value. This brings us to method
paradigm for read and write features.

We go up one level and discover that database, RCS file, TTY, and Unix
file features match with the class paradigm. Accordingly, we expect that file
would be a class too; so we match it with the class paradigm. The relationship
between file and the file types matches with inheritance. Analogously, character
set would be a class, and each type of it would be a subclass of that class.

The situation is similar with working set management: each type of working
set management would be a class. But there is one difference: if we try to match it
with inheritance further, we discover that we can match the whole text editing
buffer with base type (because of yield data, replace data). So the working set
management would be a primary differentiator.

Debugging code is somewhat special. It should be possible to turn it on and
off easily (to obtain debug and production version, respectively). It is intended
for file, character set, and working set management debugging; there is a special



debugging code for each of those. For example, we would like to know when the
file is being read from and written to. We already matched file with class and
reading and writing with method, so it seems we must look for such a paradigm
that can influence the execution of methods. There is only one such paradigm:
advice. As advice is available only in aspect paradigm, the file debugging code,
character set debugging code, and working set management debugging code will
be aspects. File debugging code will provide two advices, one for reading and
the other for writing a file, and character set debugging code only one, as only a
name of character set being used has to be announced.

Things are slightly more complicated with working set management debug-
ging code, as we are interested in the general operations of working set manage-
ment, as well as in the specific operations of each type of it (not displayed in the
feature diagram). This points us to inheritance: working set management de-
bugging code matches with a base aspect, while each of its or-subfeatures matches
with a sub-aspect.

6.2 Transformational Analysis Outline

The text editing buffers example disclosed some regularities in the process of
transformational analysis. The matching was performed starting at leaves to-
wards the root. Rarely the leaves were considered alone. Mostly, a feature was
considered together with its first-level subfeatures. Multiple nodes from the ap-
plication domain can match with a single solution domain node if its name is in
plural. Matching of nodes is done according to the type of the nodes, e.g. the
overall match of mandatory or-nodes is successful if a match has been found for
one or more leaves.

The matching is interdependent. If two features depend on each other, then
it matters what paradigm the first feature was matched with. In other words,
matching a feature with a paradigm constrains the further design.

Up to now, nothing has been said about how the actual matching of two
nodes is performed. This can be compared to the matching between the do-
main commonality and parameters of variation from the variability table to the
commonalities and variabilities from the family table. Two nodes match if they
conceptually represent the same thing; do they—it is up to the developer to
decide. However, a conceptual gap is significantly smaller than in the original
MPD where developer was forced to make such decisions at a very high level of
abstraction.

7 Conclusions and Further Research

The table representation of the application and solution domains used in multi-
paradigm design for C++ performs unsatisfactorily during the transformational
analysis. Moreover, the C++ paradigm model is incomplete. The application
of feature modeling instead of scope, commonality, variability, and relationship



analysis leads to a more appropriate representation—the feature model—which
enables to represent relationships between paradigms.

In this paper, such a paradigm model of AspectJ is proposed. The devel-
opment of AspectJ paradigm model was based on an extensive comparison of
feature modeling and multi-paradigm design (for C++) presented in Sect. 4.
The use of the AspectJ paradigm model—a new transformational analysis—was
demonstrated on text editing buffers example (Sect. 6) and then the outline of
the process was drawn. The process of transformational analysis is more visible
and easier to perform with feature models than with tables.

The AspectJ paradigm model presented in this paper provides a basis for
further research on multi-paradigm design for AspectJ and its subsequent im-
provements are expected especially regarding the transformational analysis. The
relationship of negative variability tables used in multi-paradigm design and fea-
ture modeling has to be investigated. Variability dependency graphs have to be
incorporated into the transformational analysis. The transformational analysis
results should be noted in a more appropriate form than a textual representa-
tion is. A graphical notation would be suitable here, which points to the need
for a CASE tool. Besides these immediate issues, the discussion of scope, com-
monality, variability, and relationship analysis and feature modeling has tackled
a deeper question of the relation of multi-paradigm design and generative pro-
gramming [5].

References

[1] James Coplien, Daniel Hoffman, and David Weiss. Commonality and variability in
software engineering. IEEE Software, 15(6), November 1998. Available at http:

//www.bell-labs.com/people/cope (accessed on May 14, 2001).
[2] James O. Coplien. Multi-paradigm design and implementation in C++. In Proc. of

GCSE’99, Erfurt, Germany, September 1999. Presentation slides and notes. Pub-
lished on CD. Available at http://www.bell-labs.com/people/cope (accessed on
May 14, 2001).

[3] James O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.
[4] James O. Coplien. Multi-Paradigm Design. PhD thesis, Vrije Universiteit Brussel,

Belgium, 2000. Available at http://www.bell-labs.com/people/cope (accessed
on May 14, 2001).

[5] Krysztof Czarnecki and Ulrich Eisenecker. Generative Programing: Principles,
Techniques, and Tools. Addison-Wesley, 2000.

[6] Gregor Kiczales et al. An overview of AspectJ. In Proc. of ECOOP 2001—15th
European Conf. on Object-Oriented Programming, Budapest, Hungary, June 2001.
Available at http://aspectj.org (accessed on May 14, 2001).

[7] Pavol Návrat. A closer look at programming expertise: Critical survey of some
methodological issues. Information and Software Technology, 38(1):37–46, 1996.

[8] Valentino Vranić. Towards multi-pradigm software development. Submitted to
CIT, 2001.


