
Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies

Aspect-Oriented Change Realization

Valentino Vranić

Habilitačná práca na získanie titulu docent

Habilitation thesis submitted in fulfillment of the requirements
for the Associate Professor degree

April 2010

To Brana and Sandra

Zhrnutie

Zmeny sú nevyhnutnou súčasťou životného cyklu vývoja softvéru. Keďže
zmeny prichádzajú v tvare požiadaviek na zmenu, prirodzene sú dobre mod-
ularizované na úrovni špecifikácie a pýtajú nejakú formu modularizácie v
ďalších fázach vývoja softvéru. Potreba modulárne vyjadriť zmeny sa stáva
zjavnejšou v momente, keď zmeny majú byť odstránené alebo aplikované na
inú verziu aplikácie, čo predstavuje problém dobre známy v prispôsobovaní
softvéru.

Aspektovo-orientované programovanie poskytuje presne taký druh mod-
ularity, aký zmeny potrebujú: modularizáciu pretínajúcich záležitostí. Sku-
točne, tak ako s pretínajúcimi záležitosťami, zmeny často postihujú veľa
rozdielnych miest všade v kóde a tradičná modularizácia robí ich kód roz-
trúseným. Realizované ako aspekty, zmeny sa stávajú zasúvateľnými a reap-
likovateľnými.

Táto práca prezentuje môj výskum v oblasti aspektovo-orientovanej re-
alizácie zmien vo forme súboru publikovaných vedeckých prác doplneného ko-
mentárom. Tento výskum pokrýva oblasť začínajúcu umiestnením aspektovo-
orientovanej paradigmy v kontexte multiparadigmového vývoja softvéru cez
preliminárnu štúdiu uskutočniteľnosti aspektovo-orientovanej realizácie zmien
až po vývoj dvojúrovňového modelu aspektovo-orientovaných realizácií zmien
a, nakoniec, späť k mutliparadigmovému vývoju softvéru v zmysle aplikácie
multiparadigmového návrhu s modelovaním vlastností v aspektovo-orientova-
nej realizácii zmien.

Výskum sa rozširuje a prebieha ďalšia práca, ktorej jedna línia sa sústreďu-
je na vyjadrenie a vykonávanie aspektovo-orientovanej realizácie zmien na
úrovni modelu a transformáciu modelov zmien do kódu. Ďalšia línia ide
v smere rozšírenia evaluácie prístupu jeho použitím v ďalších aplikáciách s
dôrazom na kolaboráciu viacerých všeobecne aplikovateľných typov zmien a
návrhových vzorov a aplikácie tohto prístupu v radoch softvérových výrobkov.

Iné perspektívy zahŕňajú vývoj vyhradenej podpory nástrojom, čo je
dôležité pre vysporiadanie sa s interakciou zmien, zvlášť ak je počet zmien
veľký, a vývoj katalógov doménovo-špecifických typov zmien iných domén.

Abstract

Changes are an inevitable part of the software lifecycle. Since changes come
packaged in the form of change requests, they are naturally well modularized
at the specification level begging for some form of modularization in further
phases of software development. The need to modularly express changes
becomes most apparent at the moment they have to be removed or applied
to another version of the application, the problem well-known in software
customization.

Aspect-oriented programming provides exactly the kind of modularity
changes require: modularization of crosscutting concerns. Indeed, as with
crosscutting concerns, changes often affect many different places through-
out the code and traditional modularization makes change code scattered.
Realized as aspects, changes become pluggable and reapplicable.

This thesis presents my research in the area of aspect-oriented change
realization as a collection of papers. This research spans from positioning
aspect-oriented paradigm in the context of multi-paradigm software devel-
opment over a preliminary feasibility study of aspect-oriented change real-
ization towards developing the two-level aspect-oriented change realization
model and, finally, back to multi-paradigm software development in the sense
of applying multi-paradigm design with feature modeling in aspect-oriented
change realization.

The research is expanding and there is further work going on one line
of which focuses on expressing and performing aspect-oriented change real-
ization at the model level and transformation of change models into code.
Another line goes in the direction of extending the approach evaluation by
employing it in further applications stressing the collaboration of multiple
generally applicable change types and design patterns and applying this ap-
proach in software product lines.

Other perspectives embrace developing dedicated tool support, which is
important in dealing with change interaction, especially if the number of
changes is high, and developing catalogs of domain specific change types of
other domains.

Acknowledgments

I am indebted to Peter Dolog for the initial idea of implementing changes
using aspect-oriented programming. The research reported here would not
have been possible without the contribution of Michal Bebjak and Radoslav
Menkyna.

Contents

1 Introduction 1

2 Aspect-Oriented Paradigm 3
2.1 Multi-Paradigm Software Development 4
2.2 AspectJ Paradigm Model . 5

3 Changes as Aspects 7
3.1 The Customization Problem 7
3.2 Two-Level Aspect-Oriented Change Realization Model 8
3.3 Change Interaction . 11

4 Applying Multi-Paradigm Design to Change Realization 15
4.1 Generally Applicable Change Types as Paradigms 15
4.2 Transformational Analysis of Changes 16

5 Related Work 19

6 Conclusions 21

Bibliography 23

A Towards Multi-Paradigm Software Development 29

B AspectJ Paradigm Model: A Basis for Multi-Paradigm De-
sign for AspectJ 47

C Multi-Paradigm Design with Feature Modeling 59

D Reconciling Feature Modeling: A Feature Modeling Meta-
model 85

E Binding Time Based Concept Instantiation in Feature Mod-
eling 103

F Representing Change by Aspect 109

ii Contents

G Evolution of Web Applications with Aspect-Oriented Design
Patterns 119

H Developing Applications with Aspect-Oriented Change Re-
alization 129

I Aspect-Oriented Change Realizations and Their Interaction147

J Aspect-Oriented Change Realization Based on Multi-Paradigm
Design with Feature Modeling 165

Chapter 1

Introduction

Changes are an inevitable part of the software lifecycle. Putting it as a
phrase, change is the only constant in software development. Since changes
come packaged in the form of change requests, they are naturally well mod-
ularized at the specification level begging for some form of modularization
in further phases of software development. The need to modularly express
changes becomes most apparent at the moment they have to be removed
or applied to another version of the application, the problem well-known in
software customization.

Aspect-oriented programming provides exactly the kind of modularity
changes require: modularization of crosscutting concerns. Indeed, as with
crosscutting concerns, changes often affect many different places through-
out the code and traditional modularization makes change code scattered.
Realized as aspects, changes become pluggable and reapplicable.

The questions that rise from applying aspect-oriented programming in
change realization embrace the exact realization of changes and overcoming
their interaction. Certain aspect-oriented techniques appear to be especially
appropriate for aspect-oriented change realization and may be expressed as
code schemes. The exact aspect-oriented technique to be applied depends
on the type of a change to be realized which is one possible way to select the
appropriate technique.

This thesis maps the research in the area of aspect-oriented change real-
ization which I have conducted over the past years. The thesis is presented
as a collection of papers with the main text giving a brief overview of the
research referring to the appendices each of which contains one of my papers
relevant to aspect-oriented change realization.1 Figure 1.1 gives a clue of
how the papers are related to each other. The edges represent the “builds
upon” relationship. The letters in square brackets denote the corresponding
appendices.

1The text of this thesis relies on the most relevant parts of the papers included in the
appendices.

2 Introduction

Figure 1.1: The papers included in the thesis and their dependencies.

The rest of the thesis is structured as follows. Chapter 2 gives an in-
sight into the aspect-oriented paradigm as such and how it is related to
multi-paradigm software development. Chapter 3 gives an overview of the
two-level aspect-oriented change realization model and discusses change in-
teraction. Chapter 4 describes the use of multi-paradigm design in aspect-
oriented change realization. Chapter 5 compares the approach presented in
this thesis to related work. Chapter 6 concludes the thesis. Appendices A–J
include the paper reprints.

Chapter 2

Aspect-Oriented Paradigm

Aspect-oriented software development is a relatively new paradigm coming
out from the practical programming needs as a reaction to the problem
known from generalized procedure languages [KLM+97], i.e. programming
languages that use the concept of the procedure to capture the functional-
ity [Vra02].1 In such languages the program code fragments that implement
a clearly separable aspect of a system (such as synchronization) are scattered
and repeated throughout the program code that becomes tangled. Aspect-
oriented programming aims at factoring out such aspects into separate pro-
gram units called by the same name: aspects. Aspects crosscut the base
code in places called join points. These must be specified so aspects could
be woven into the base code by the program called weaver.

This way of seeing aspect-oriented programming is known as PARC AOP
(Palo Alto Research Center) and is covered by an industrial strength pro-
gramming language: AspectJ. Although three other distinguished aspect-
oriented approaches—subject-oriented programming, composition filters, and
adaptive programming—have not had such a success in practice, they demon-
strated that aspect-oriented paradigm is far more complex than the nar-
rowed, though practical PARC AOP.

What is suppressed in PARC AOP and what comes out as essential in
aspect-oriented analysis and design is the symmetric approach to aspect-
oriented software development. Instead of distinguishing between the base
and aspects that influence this base, which is at heart of AspectJ as the
leading asymmetric aspect-oriented programming language, the symmetric
approach decomposes software in a number of independently developed views
none of which is declared as base. These views are then composed in various
ways to get the desired functionality. This is a more general view of aspect-
oriented software development as an advanced software decomposition and
composition paradigm.

1Besides the procedural languages, these include functional and object-oriented lan-
guages as well.

4 Aspect-Oriented Paradigm

Section 2.1 puts aspect-oriented software development into the context
of multi-paradigm software development. Section 2.2 presents the basic idea
of the AspectJ paradigm model.

2.1 Multi-Paradigm Software Development

Aspect-oriented paradigm sheds another light on what is known as multi-
paradigm programming or software development in general. Being built
mostly upon object-oriented paradigm puts this approach into a position of
being a natural multi-paradigm approach [Vra02].

In software development, a paradigm usually denotes the essence of a
software development process (often referred to as programming) [Vra02].
However, often it is not easy to determine what this essence exactly is and
paradigm definitions change over time (not so long ago inheritance was not
considered crucial for object-oriented programming).

There is another, more practical view of paradigms: they can be under-
stood as solution domain concepts that correspond to programming language
mechanisms (like inheritance or class). Such paradigms are being denoted as
small-scale to distinguish them from the common concept of the (large-scale)
paradigm as a particular approach to programming (like object-oriented or
procedural programming) [Vra05].

This perception of paradigm is apparent in Coplien’s multi-paradigm de-
sign [Cop99] in which a paradigm is viewed as a configuration of commonality
and variability [Cop99]. This is analogous to conjugation or declension in
natural languages, where the common is the root of a word and variability
is expressed through the suffixes or prefixes (or even infixes) added to the
root in order to obtain different forms of the word.

Scope, commonality and variability (SCV) analysis [CHW98] can be
used to describe these language level paradigms. SCV analysis of proce-
dures paradigm illustrates the definition (based on an example by Coplien
et al. [CHW98]):

S: a collection of similar code fragments, each to be replaced by a call to
some new procedure P ;

C: the code common to all fragments in S;

V : the “uncommon” code in S; variabilities are handled by parameters to P
or custom code before or after each call to P .

Appendix A gives a more detailed view of multi-paradigm software de-
velopment.

2.2 AspectJ Paradigm Model 5

2.2 AspectJ Paradigm Model

AspectJ can be described in terms of small-scale paradigms [Vra01]. Its
paradigms specific to aspect-oriented programming are aspect, advice, and
inter-type declaration.

In multi-paradigm with feature modeling (MPDfm), feature modeling
is used to express paradigms [Vra05, Vra04]. A feature model consists of a
set of feature diagrams, information associated with concepts and features,
and constraints and default dependency rules associated with feature dia-
grams. A feature diagram is usually understood as a directed tree whose
root represents a concept being modeled and the rest of the nodes represent
its features [Vp06].

The features may be common to all concept instances (feature configu-
rations) or variable, in which case they appear only in some of the concept
instances. Features are selected in a process of concept instantiation. Those
that have been selected are denoted as bound. The time at which this bind-
ing (or choosing not to bind) happens is called binding time. In paradigm
modeling, the set of binding times is given by the solution model. In As-
pectJ we may distinguish among source time, compile time, load time, and
runtime.

Each paradigm is considered to be a separate concept and as such pre-
sented in its own feature diagram that describes what is common to all pa-
radigm instances (its applications), and what can vary, how it can vary, and
when this happens. Consider the AspectJ aspect paradigm feature model
shown in Fig. 2.1. Each aspect is named, which is modeled by a mandatory
feature Name (indicated by a filled circle ended edge). The aspect paradigm
articulates related structure and behavior that crosscuts otherwise possibly
unrelated types. This is modeled by optional features Inter-Type Decla-
rations, Advices, and Pointcuts (indicated by empty circle ended edges).
These features represent references to equally named auxiliary concepts that
represent plural forms of respective concepts that actually represent para-
digms in their own right (and their own feature models [Vra05]). To achieve
its intent, an aspect may—similarly to a class—employ Methods (with the
method being yet another paradigm) and Fields.

An aspect in AspectJ is instantiated automatically by occurrence of the
join points it addresses in accordance with Instantiation Policy. The features
that represent different instantiation policies are mandatory alternative fea-
tures (indicated by an arc over mandatory features), which means that ex-
actly one of them must be selected. An aspect can be Abstract, in which
case it cannot be instantiated, so it cannot have Instantiation Policy either,
which is again modeled by mandatory alternative features.

An aspect can be declared to be Static or Final. It does not have to
be either of the two, but it cannot be both, which is modeled by optional
alternative features of which only one may be selected (indicated by an arc

6 Aspect-Oriented Paradigm

Aspect

Inter-Type
Declarations®

Instantiation
Policy

Aspects®

Static

Name

FinalAdvices®

Pointcuts®

Fields

Methods®

Singleton Per Object
Per Control Flow

Pointcut® Pointcut® Whole Below

Scope

Interfaces® Classes®

Inheritances®

Access®

Privileged

Abstract

Constraints:
final ∨ abstract

Figure 2.1: The AspectJ aspect paradigm [Vra05].

over optional features). An aspect can also be Privileged over other aspects
and it has its type of Access, which is modeled as a reference to a separately
expressed auxiliary concept. All the features in the aspect paradigm are
bound at source time.

The constraint associated with the aspect paradigm feature diagram
means that the aspect is either Final or Abstract. Here, first-order pred-
icate logic is used to express constraints associated with feature diagrams,
but OCL could be employed, too, as a widely accepted and powerful notation
for such uses.

An initial AspectJ paradigm model may be found in Appendix B. Ap-
pendix C includes elaborated versions of aspect-oriented paradigms in As-
pectJ, and the complete AspectJ paradigm model is also available [Vra03].
Appendix D explains the details of feature modeling.

Chapter 3

Changes as Aspects

Change realization consumes enormous effort and time during software evo-
lution. Once implemented, changes get lost in code. While individual code
modifications are usually tracked by a version control tool, the logic of a
change as a whole vanishes without a proper support in the programming
language itself [VBMD08].

By its capability to separate crosscutting concerns, aspect-oriented pro-
gramming enables to deal with changes explicitly and directly at the pro-
gramming language level. Changes implemented this way are pluggable
and—to the great extent—reapplicable to similar applications, such as ap-
plications from the same product line.

Even conventionally realized changes may interact, i.e. they may be
mutually dependent or some change realizations may depend on the parts
of the underlying system affected by other change realizations. This is even
more remarkable in aspect-oriented change realization due to pervasiveness
of aspect-oriented programming as such.

Section 3.1 presents the customization of applications as a motivating ex-
ample for aspect-oriented change realization. Section 3.2 gives an overview of
the two-level aspect-oriented change realization model. Section 3.3 discusses
change interaction.

3.1 The Customization Problem

As a motivating example for aspect-oriented change realization, consider cus-
tomization of applications. In customization, a general application is being
adapted to the client’s needs by a series of changes [VBMD08]. With each
new version of the base application, all the changes have to be applied to it.
In many occasions, the difference between the new and old application does
not affect the structure of changes, so if changes have been implemented us-
ing aspect-oriented programming, they can be simply included into the new
application build without any additional effort. Figure 3.1 shows schemati-

8 Changes as Aspects

cally this process on an example.

Figure 3.1: The customization problem.

It has been demonstrated how such an aspect-oriented customization may
be of use in solving a problem of synchronizing a local customization with the
global version of a program in script languages. For this, a small procedural
aspect-oriented extension has been proposed covering the introduction of a
new procedure or (global) variable into a module, extension of a procedure
by a code before, after, or instead of it, and change of procedure arguments
and return value [DVB01].

Appendix F presents an initial effort towards establishing an approach to
aspect-oriented change realization along with the procedural aspect-oriented
extension.

3.2 Two-Level Aspect-Oriented Change Realization
Model

To realize changes using aspect-oriented programming effectively, a two-
level aspect-oriented change realization model has been proposed [BVD07,
VBMD08]. When determining a change type to be applied, a developer
chooses a particular change request, identifies individual changes in it, and
determines their type. Figure 3.2 shows an example situation. Domain spe-
cific changes of the D1 and D2 type have been identified in the Change
Request 1. From the previously identified and cataloged relationships be-
tween change types, we would know their generally applicable change types
are G1 and G2.

A generally applicable change type can be a kind of an aspect-oriented
design pattern (consider G2 and AO Pattern 2). A domain specific change
realization can also be complemented by an aspect-oriented design patterns,

3.2 Two-Level Aspect-Oriented Change Realization Model 9

Figure 3.2: Generally applicable and domain specific changes [VBMD08].

which is expressed by an association between them (consider D1 and AO
Pattern 1).

Each generally applicable change has a known domain independent code
scheme (G2’s code scheme is omitted from the figure). This code scheme has
to be adapted to the context of a particular domain specific change, which
may be seen as a kind of refinement (consider D1 Code and D2 Code).

The following catalog sums up these relationships between change types
that have been identified in the web application domain (the domain specific
change type is introduced first) [VBMD08]:

• One Way Integration: Performing Action After Event

• Two Way Integration: Performing Action After Event

• Adding Column to Grid: Performing Action After Event

• Removing Column from Grid: Method Substitution

• Altering Column Presentation in Grid: Method Substitution

• Adding Fields to Form: Enumeration Modification with Additional
Return Value Checking/Modification

• Removing Fields from Form: Additional Return Value Checking/Mod-
ification

• Introducing Additional Constraint on Fields: Additional Parameter
Checking or Performing Action After Event

• Introducing User Rights Management: Border Control with Method
Substitution

• User Interface Restriction: Additional Return Value Checking/Modi-
fications

• Introducing Resource Backup: Class Exchange

10 Changes as Aspects

Consider a simple scenario [VMBD09] needed to present an example of
using the two level change type model. Suppose a merchant who runs his
online music shop purchases a general affiliate marketing software [GJH03]
to advertise at third party web sites denoted as affiliates. In a simplified
schema of affiliate marketing, a customer visits an affiliate’s site which refers
him to the merchant’s site. When he buys something from the merchant,
the provision is given to the affiliate who referred the sale. A general affiliate
marketing software enables to manage affiliates, track sales referred by these
affiliates, and compute provisions for referred sales. It is also able to send
notifications about new sales, signed up affiliates, etc.

Assume that there is a need to integrate an affiliate marketing software
with the third party newsletter. Every affiliate should be a member of the
newsletter. When an affiliate signs up to the affiliate marketing software, he
should be signed up to the newsletter, too. Upon deleting his account, the
affiliate should be removed from the newsletter, too.

This is a typical example of the One Way Integration change type [BVD07].
Its essence is the one way notification: the integrating application notifies
the integrated application of relevant events. In our case, such events are
the affiliate sign up and affiliate account deletion.

Such integration corresponds to the Performing Action After Event change
type [BVD07]. Since events are actually represented by methods, the desired
action can be implemented in an after advice:

public aspect PerformActionAfterEvent {
pointcut methodCalls(TargetClass t, int a): . . .;
after(/∗ captured arguments ∗/): methodCalls(/∗ captured arguments ∗/) {

performAction(/∗ captured arguments ∗/);
}
private void performAction(/∗ arguments ∗/) { /∗ action logic ∗/ }

}

The after advice executes after the captured method calls. The actual action
is implemented as the performAction() method called by the advice.

To implement the newsletter sign up change, in the after advice we will
make a post to the newsletter sign up/sign out script and pass it the e-
mail address and name of the newly signed-up or deleted affiliate. We can
seamlessly combine multiple one way integrations to integrate with several
systems.

Appendix G presents the study of aspect-oriented change realization
based on the two-level aspect-oriented change realization model in web ap-
plication evolution. Appendix H describes the approach to aspect-oriented
change realization in detail (an extended version of the paper from this ap-
pendix may be found in Appendix I).

3.3 Change Interaction 11

3.3 Change Interaction

Some change realizations can interact: they may be mutually dependent or
some change realizations may depend on the parts of the underlying system
affected by other change realizations. With an increasing number of changes,
change interaction can easily escalate into a serious problem: serious as
feature interaction [VMBD09].

Change realizations in the sense of the approach presented so far actually
resemble features as coherent pieces of functionality [MV09]. Moreover, they
are virtually pluggable and as such represent variable features. This brings
us to feature modeling as an appropriate technique for managing variability
in software development including variability among changes.

Aspect-oriented change realizations can be perceived as variable features
that extend an existing system. Figure 3.3 shows the change realizations
from our affiliate marketing scenario in a feature diagram. A feature diagram
is commonly represented as a tree whose root represents a concept being
modeled. Our concept is our affiliate marketing software. All the changes
are modeled as optional features (marked by an empty circle ended edges)
that can but do not have to be included in a feature configuration—known
also as concept instance—for it to be valid.

SMTP Server
Backup A

Newsletter
Sign Up

User Name
Display Change

 Restricted
Administrator

Account

Hide Options Unavailable
to Restricted Administrator

Affiliate Marketing

SMTP Server
Backup B

Account
Registration
Constraint

Account
Registration

Statistics

Figure 3.3: Affiliate marketing software change realizations in a feature dia-
gram [MV09].

Direct change interactions can be identified in a feature diagram with
change realizations modeled as features of the affected software concept.
Each dependency among features represents a potential change interaction.
A direct change interaction may occur among alternative features or a feature
and its subfeatures: such changes may affect the common join points.

Indirect feature dependencies may also represent potential change in-
teractions. Additional dependencies among changes can be discovered by
exploring the software to which the changes are introduced. For this, it is
necessary to have a feature model of the software itself, which is seldom the
case. Constructing a complete feature model can be too costly with respect
to expected benefits for change interaction identification. However, only a
part of the feature model that actually contains edges that connect the fea-
tures under consideration is needed to reveal indirect dependencies among

12 Changes as Aspects

them.
The process of constructing partial feature model is based on the fea-

ture model in which aspect-oriented change realizations are represented by
variable features that extend an existing system represented as a concept.

The concept node in this case is an abstract representation of the un-
derlying software system. Potential dependencies of the change realizations
are hidden inside of it. In order to reveal them, we must factor out concrete
features from the concept. Starting at the features that represent change
realizations (leaves) we proceed bottom up trying to identify their parent
features until related changes are not grouped in common subtrees. Fig-
ure 3.4 depicts this process.

[Application
Concept]

[Feature A]

[Change 1]

[Feature D]

[Feature E]

[Feature B]

[Change 6][Feature C]

[Change 5][Change4]

[Change 3][Change 2]

Figure 3.4: Constructing a partial feature model [VMBD09].

Figure 3.5 shows the result of this process applied to the initial affiliate
marketing partial feature model.

Newsletter
Sign Up

[Displaying
Menu Items]

[Banner
Management]

Hide Options
Unavailable to

Restricted
Administrator

[Affiliate Marketing]

[SMTP Server
Creation]

Account
Registration
Constraint

Account
Registration

Statistics

SMTP Server
Backup B

[Affiliate
Sign Up]

User Name
Display Change

[Displaying Grid
Data]

 Restricted
Administrator

Account

[Campaign
Management]

 Restricted
Administrator

Account

SMTP Server
Backup A

Figure 3.5: Affiliate marketing software change realizations in a feature dia-
gram [MV09].

Dependencies among change realization features in a partial feature model

3.3 Change Interaction 13

constitute potential change realization interactions. A careful analysis of the
feature model can reveal dependencies we have overlooked during its con-
struction.

Sibling features (direct subfeatures of the same parent feature) are poten-
tially interdependent. This problem can occur also among the features that
are—to say so—indirect siblings, so we have to analyze these, too. Speaking
in terms of change implementation, the code that implements the parent
feature altered by one of the sibling change features can be dependent on
the code altered by another sibling change feature or vice versa. The feature
model points us to the locations of potential interaction.

Some dependencies between changes may exhibit only recommending
character, i.e. whether they are expected to be included or not included
together, but their application remains meaningful either way. An example
of this are features that belong to the same change request. Again, feature
modeling can be used to model such dependencies with so-called default de-
pendency rules that may also be represented by logical expressions [Vra05].

Appendix I describes the details of examining interaction of aspect-
oriented change realizations, as well as the process of partial feature model
construction. Appendix J develops and applies the idea of partial feature
model in the context of using multi-paradigm design with feature modeling
in aspect-oriented change realization.

Chapter 4

Applying Multi-Paradigm
Design to Change Realization

The previous chapter presented the approach to aspect-oriented change re-
alization based on a two-level aspect-oriented change realization model with
some change types being close to the application domain and other change
types determining the realization, while their mapping is being maintained in
a kind of a catalog. But what if such a catalog for a particular domain does
not exist? To postpone change realization and develop a whole catalog may
be unacceptable with respect to the time and effort needed. The problem
of selecting a suitable realizing change type resembles paradigm selection in
multi-paradigm design mentioned (MPDfm) in Chapter 2 [MV09]. This is
the other way around: to treat change realization types as paradigms and
employ multi-paradigm design to select the appropriate one.

Section 4.1 explains how aspect-oriented change realization types can be
expressed as paradigms in MPDfm. Section 4.2 describes the basics of trans-
formational analysis as used to get to the corresponding change realization
types.

4.1 Generally Applicable Change Types as Para-
digms

Generally applicable change types (introduced in Section 3.2) are indepen-
dent of the application domain and may even apply to different aspect-
oriented languages and frameworks (with an adapted code scheme, of course).
The expected number of generally applicable change types that would cover
all significant situations is not high. In our experiments, we managed to cope
with all situations using only six of them [MV09].

On the other hand, in the domain of web applications, eleven application
specific change types we identified so far cover it only partially. Each such
change type requires a thorough exploration in order to discover all possible

16 Applying Multi-Paradigm Design to Change Realization

realizations by generally applicable change types and design patterns with
conditions for their use, and it is not likely that someone would be willing to
invest effort into developing a catalog of changes apart of the momentarily
needs.

In MPDfm, feature modeling is used to express paradigms. Each para-
digm is considered to be a separate concept and as such presented in its own
feature diagram that describes what is common to all paradigm instances (its
applications), and what can vary, how it can vary, and when this happens.
Recall the AspectJ aspect paradigm feature model shown in Fig. 2.1.

Generally applicable changes may be seen as a kind of conceptually higher
language mechanisms and modeled as paradigms in the sense of MPDfm.
As an example, consider the Performing Action After Event change type
mentioned in Section 3.2. Its paradigm model is presented in Figure 4.1. All
the features have source time binding. This change type is used when an
additional action (Action After Event) is needed after some events (Events)
of method calls or executions, initialization, field reading or writing, or advice
execution (modeled as or-features) taking or not into account their context
(Context).

Performing Action
After Event

Action
After EventAspect® Context

Calls Executions Method
Arguments

Target
Class

Initializations

Field
Readings

Field
Writings

Advice
Executions

Events

Check/Modify
Return Value

Constraints:
Aspect.Pointcut
Aspect.Advice.After

Figure 4.1: Performing Action After Event [MV09].

Performing Action After Event is implemented by an aspect (Aspect)
with a pointcut specifying the events and an after advice over this pointcut
used to perform the desired actions, which is expressed by the constraints
associated with its feature diagram (Fig. 4.1).

Appendix J introduces the paradigm model of the Method Substitution
change type, too.

4.2 Transformational Analysis of Changes

Transformational analysis is the process of finding the correspondence and
establishing the mapping between the application and solution domain con-
cepts [Cop99]. In MPDfm, it is based on paradigm instantiation (feature
model configuration) over application domain concepts [Vra05]. The input
to the transformational analysis are two feature models: the application do-

4.2 Transformational Analysis of Changes 17

main one and the solution domain one. The output of the transformational
analysis is a set of paradigm instances annotated with application domain
feature model concepts and features that define the code skeleton.

A simplified transformational analysis can be used to determine gen-
eral change types that correspond to the domain specific changes. Changes
presented in the application domain feature model are considered to be ap-
plication domain concepts. Generally applicable change types are considered
to be paradigms. Roughly, the process of transformational analysis For each
change from the application domain feature model the subtree in which it re-
sides is taken and change types are instantiated until a match for the change
feature is found.

As has been discussed in Section 3.3, when dealing with changes in feature
models, it is sufficient to rely on partial feature models. For the purposes
of transformational analysis, the rudimentary partial feature model has to
be developed further to uncover parent features of the change features as
the features of the underlying system affected by them. Starting at change
features, we proceed bottom up identifying their parent features until related
features become grouped in common subtrees.

Figure 4.2 shows the transformational analysis of the Newsletter Sign Up
change. Recall that this change adds a new affiliate to the existing list of
newsletter recipients, which can be best realized as Performing Action Af-
ter Event. In this case, the Events feature is mapped to the Affiliate Sign
Up feature which represents the execution of the affiliate sign up method.
Through Method Arguments, the data about the affiliate being added can
be accessed (Affiliate Data) from which his e-mail address can be retrieved
and subsequently added to the newsletter recipient list by the Action After
Events feature. A similar transformation would apply to the Account Reg-
istration Statistics change. This solution corresponds to the cataloged one
as presented in Section 3.2.

Appendix J presents the details of using MPDfm to deal with aspect-
oriented change realization along with a precise description of the simplified
transformational analysis. The transformational analysis as defined for the
purposes of multi-paradigm design can be found in Appendix C. Appendix D
explains the details of feature modeling. Appendix E deals with the specific
issue of concept instantiation in time on which is the MPDfm transforma-
tional analysis based.

18 Applying Multi-Paradigm Design to Change Realization

Performing Action
After Event

Action
After EventAspect® Context

Calls Executions Method
Arguments

Target
Class

Initializations

Field
Readings

Field
Writings

Advice
Executions

Events

Check/Modify
Return Value

Newsletter

Sign Up

[Displaying

Menu Items]

[Banner

Management]

Hide Options

Unavailable to

Restricted

Administrator

[Affiliate Marketing]

[SMTP Server

Creation]

Account

Registration

Constraint

Account

Registration

Statistics

SMTP Server

Backup B

[Affiliate

Sign Up]
User Name

Display Change

[Displaying Grid

Data]

Restricted

Administrator

Account

[Campaign

Management]

Restricted

Administrator

Account

SMTP Server

Backup A

Transformational

Analysis

Performing Action
After Event

Events Action After
EventsAspect®

Newsletter
Sign Up

ExecutionAffiliate
Sign Up

Add Affiliate
to Newsletter

Recipients

Context

Method
Arguments Affiliate Data

Figure 4.2: Transformational analysis of the Newsletter Sign Up
change [MV09].

Chapter 5

Related Work

It has been shown that changes can be implemented using aspect-oriented
programming even if the source code to be changed is not available [BB08a,
BB08b]. Others have explored several issues generally related to aspect-
oriented change realization, although not aiming at capturing changes by as-
pects. These issues include database schema evolution with aspects [GR02]
or aspect-oriented extensions of business processes and web services with
crosscutting concerns of reliability, security, and transactions [CSHM06].
Also, an increased changeability of components implemented using aspect-
oriented programming [KLC05, LKC06, PP04] and aspect-oriented program-
ming with the frame technology [LRZJ04], as well as enhanced reusability
and evolvability of design patterns achieved by using generic aspect-oriented
languages to implement them [RK06] have been reported.

The impact of changes implemented by aspects has been studied using
slicing in concern slice dependency graphs [KR06]. It has been shown that
the application domain feature model can be derived from concern slice de-
pendency graphs [Men09]. Concern slice dependency graphs provide in part
also a dynamic view of change interaction that could be expressed using a
dedicated notation (such as UML state machine or activity diagrams) and
provided along with the feature model covering the structural view. Ap-
plying program slicing to features implemented as aspects with interaction
understood as a slice intersection has been applied so far only to a very
simplified version of AspectJ. Extension to cover complicated constructs has
been identified as problematic. Even at this simplified level, it appears to
be too coarse for applications in which the behavior is embedded in data
structures [MBB03].

In the approach to aspect-oriented change realization presented here,
changes are regarded as concerns, which is similar to the approach of facil-
itating configurability by separation of concerns in the source code [Faz05].
This approach actually enables a kind of aspect-oriented programming on top
of a versioning system. Parts of the code that belong to one concern need to

20 Related Work

be marked manually in the code. This enables to easily plug in or out con-
cerns. However, the major drawback, besides having to manually mark the
parts of concerns, is that—unlike in aspect-oriented programming—concerns
remain tangled in code.

Applying feature modeling to maintain change dependencies is similar
to constraints and preferences proposed in SIO software configuration man-
agement system [CW98]. However, a version model for aspect dependency
management [PSC01] with appropriate aspect model that enables to control
aspect recursion and stratification [BFS06] would be needed as well.

While the automatic configuration and reconfiguration of applications
certainly represents a potential, this work does not aim at automatic adap-
tation in application evolution, such as event triggered evolutionary ac-
tions [MOMMGC06], evolution based on active rules [DMP06], or adaptation
of languages instead of software systems [KPV+07a].

Even if the original application has not been a part of a product line,
changes modeled as its features tend to form a kind of a product line out
of it. This could be seen as a kind of evolutionary development of a new
product line [Bos00].

As an alternative to the transformational analysis presented here, framed
aspects [LRZJ04, LSR05] can be applied to the application domain feature
model with each change maintained in its own frame in order to keep it
separate. Annotations that determine the feature implementation in so-
called crosscutting feature models [KGBL05] are similar to annotations used
in the transformational analysis, but no formal process to determine them is
provided.

An approach to introduce program changes by changing the interpreter
instead based on grammar weaving has been reported [FK09]. With re-
spect to suitability of aspect-oriented approach to deal with changes, it
is worth mentioning that weaving—a prominent characteristic of aspect-
oriented programming—has been identified as crucial for the automation
of multi-paradigm software evolution [KPV+07b].

Chapter 6

Conclusions

This thesis presented my research in the area of aspect-oriented change re-
alization. This research spans from positioning aspect-oriented paradigm
in the context of multi-paradigm software development over a preliminary
feasibility study towards developing the two-level aspect-oriented change re-
alization model and, finally, back to multi-paradigm software development
in the sense of applying multi-paradigm design with feature modeling in
aspect-oriented change realization.

The research is expanding and there is further work going on one line
of which focuses on expressing and performing aspect-oriented change real-
ization at the model level (based on the Theme notation of aspect-oriented
analysis and design [CB05]) and transformation of change models into code.
Another line goes in the direction of extending the approach evaluation by
employing it in further applications stressing the collaboration of multiple
generally applicable change types and design patterns [MVP10] and applying
this approach in software product lines [KV10].

Further perspectives embrace developing dedicated tool support, which
is important in dealing with change interaction, especially if the number of
changes is high, and developing catalogs of domain specific change types of
other domains.

Bibliography

[BB08a] Ilona Bluemke and Konrad Billewicz. Aspect modification of an
EAR application. In Proc. of International Joint Conferences on
Computer, Information, and Systems Sciences, and Engineering,
CIS2E 08, Krakow, Poland, December 2008. Springer. To appear.

[BB08b] Ilona Bluemke and Konrad Billewicz. Aspects in the maintenance
of complied program. In Proc. of 5th International Conference on
Dependability of Computer Systems, DepCoS-RELCOMEX 2008,
pages 253–260, Szklarska Porȩba, Poland, June 2008. IEEE.

[BFS06] Eric Bodden, Florian Forster, and Friedrich Steimann. Avoiding in-
finite recursion with stratified aspects. In Robert Hirschfeld et al.,
editors, Proc. of NODe 2006, LNI P-88, pages 49–64, Erfurt, Ger-
many, September 2006. GI.

[Bos00] Jan Bosch. Design and Use of Software Architectures: Adopting
and Evolving a Product-Line Approach. Addison-Wesley, 2000.

[BVD07] Michal Bebjak, Valentino Vranić, and Peter Dolog. Evolution of
web applications with aspect-oriented design patterns. In Marco
Brambilla and Emilia Mendes, editors, Proc. of ICWE 2007 Work-
shops, 2nd International Workshop on Adaptation and Evolution in
Web Systems Engineering, AEWSE 2007, in conjunction with 7th
International Conference on Web Engineering, ICWE 2007, pages
80–86, Como, Italy, July 2007.

[CB05] Siobhán Clarke and Elisa Baniassad. Aspect-Oriented Analysis and
Design: The Theme Approach. Addison-Wesley, 2005.

[CHW98] James Coplien, Daniel Hoffman, and David Weiss. Commonal-
ity and variability in software engineering. IEEE Software, 15(6),
November 1998.

[Cop99] James O. Coplien. Multi-Paradigm Design for C++. Addison-
Wesley, 1999.

[CSHM06] Anis Charfi, Benjamin Schmeling, Andreas Heizenreder, and Mira
Mezini. Reliable, secure, and transacted web service compositions
with AO4BPEL. In 4th IEEE European Conf. on Web Services
(ECOWS 2006), pages 23–34, Zürich, Switzerland, December 2006.
IEEE Computer Society.

24 Bibliography

[CW98] Reidar Conradi and Bernhard Westfechtel. Version models for
software configuration management. ACM Computing Surveys,
30(2):232–282, June 1998.

[DMP06] Florian Daniel, Maristella Matera, and Giuseppe Pozzi. Combining
conceptual modeling and active rules for the design of adaptive
web applications. In Workshop Proc. of 6th Int. Conf. on Web
Engineering (ICWE 2006), New York, NY, USA, 2006. ACM Press.

[DVB01] Peter Dolog, Valentino Vranić, and Mária Bieliková. Representing
change by aspect. ACM SIGPLAN Notices, 36(12):77–83, Decem-
ber 2001.

[Faz05] Zoltan Fazekas. Facilitating configurability by separation of con-
cerns in the source code. Journal of Computing and Information
Technology (CIT), 13(3):195–210, September 2005.

[FK09] Michal Forgáč and Ján Kollár. Adaptive approach for language
modification. Journal of Computer Science and Control Systems,
2(1):9–12, 2009.

[GJH03] Simon Goldschmidt, Sven Junghagen, and Uri Harris. Strategic
Affiliate Marketing. Edward Elgar Publishing, 2003.

[GR02] Robin Green and Awais Rashid. An aspect-oriented framework
for schema evolution in object-oriented databases. In Proc. of the
Workshop on Aspects, Components and Patterns for Infrastruc-
ture Software (in conjunction with AOSD 2002), Enschede, Nether-
lands, April 2002.

[KGBL05] Uirá Kulesza, Alessandro Garcia, Fábio Bleasby, and Carlos Lu-
cena. Instantiating and customizing aspect-oriented architectures
using crosscutting feature models. In Workshop on Early Aspects
held with OOPSLA 2005, San Diego, USA, November 2005. Avail-
able at http://www.early-aspects.net/oopsla05ws/.

[KLC05] Axel Anders Kvale, Jingyue Li, and Reidar Conradi. A case study
on building COTS-based system using aspect-oriented program-
ming. In 2005 ACM Symposium on Applied Computing, pages
1491–1497, Santa Fe, New Mexico, USA, 2005. ACM.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Christina Vidiera Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. In Mehmet Aksit and Satoshi
Matsuoka, editors, Proc. of 11th European Conference on Object-
Oriented Programming (ECOOP’97), LNCS 1241, Jyväskylä, Fin-
land, June 1997. Springer.

[KPV+07a] Ján Kollár, Jaroslav Porubän, Peter Václavík, Jana Bandáková,
and Michal Forgáč. Functional approach to the adaptation of lan-
guages instead of software systems. Computer Science and Infor-
mation Systems Journal (ComSIS), 4(2), December 2007.

http://www.early-aspects.net/oopsla05ws/

Bibliography 25

[KPV+07b] Ján Kollár, Jaroslav Porubän, Peter Václavík, Marcel Tóth, Jana
Bandáková, and Michal Forgáč. Multi-paradigm approaches to sys-
tems evolution. In Computer Science and Technology Research
Survey, Košice, Slovakia, 2007.

[KR06] Safoora Khan and Awais Rashid. Analysing requirements depen-
dencies and change impact using concern slicing. In Proc. of
Aspects, Dependencies, and Interactions Workshop (affiliated to
ECOOP 2008), Nantes, France, July 2006.

[KV10] Ján Kohut and Valentino Vranić. Guidelines for using aspects in
product lines. In Proc. of 8th International Symposium on Applied
Machine Intelligence and Informatics, SAMI 2010. IEEE, January
2010.

[LKC06] Jingyue Li, Axel Anders Kvale, and Reidar Conradi. A case study
on improving changeability of COTS-based system using aspect-
oriented programming. Journal of Information Science and Engi-
neering, 22(2):375–390, March 2006.

[LRZJ04] Neil Loughran, Awais Rashid, Weishan Zhang, and Stan Jarzabek.
Supporting product line evolution with framed aspects. In Work-
shop on Aspects, Componentsand Patterns for Infrastructure Soft-
ware (held with AOSD 2004, International Conference on Aspect-
Oriented Software Development), Lancaster, UK, March 2004.

[LSR05] Neil Loughran, Américo Sampaio, and Awais Rashid. From re-
quirements documents to feature models for aspect oriented prod-
uct line implementation. In MDD for Software Product-lines: Fact
or Fiction?, a workshop held with ACM/IEEE 8th International
Conference on Model Driven Engineering Languages and Systems,
MoDELS/UML 2005), Montego Bay, Jamaica, October 2005.

[MBB03] Mattia Monga, Fatima Beltagui, and Lynne Blair. Investigat-
ing feature interactions by exploiting aspect oriented program-
ming. Technical Report comp-002-2003, Lancaster University, Lan-
caster, UK, 2003. Available at http://www.comp.lancs.ac.uk/
computing/aose/.

[Men09] Radoslav Menkyna. Dealing with interaction of aspect-oriented
change realizations using feature modeling. In Mária Bieliková, ed-
itor, Proc. of 5th Student Research Conference in Informatics and
Information Technologies , IIT.SRC 2009, Bratislava, Slovakia,
April 2009.

[MOMMGC06] Fernando Molina-Ortiz, Nuria Medina-Medina, and Lina García-
Cabrera. An author tool based on SEM-HP for the creation and
evolution of adaptive hypermedia systems. In Workshop Proc. of
6th Int. Conf. on Web Engineering (ICWE 2006), New York, NY,
USA, 2006. ACM Press.

[MV09] Radoslav Menkyna and Valentino Vranić. Aspect-oriented change
realization based on multi-paradigm design with feature modeling.
In Proc. of 4th IFIP TC2 Central and East European Conference

http://www.comp.lancs.ac.uk/computing/aose/
http://www.comp.lancs.ac.uk/computing/aose/

26 Bibliography

on Software Engineering Techniques, CEE-SET 2009, Krakow,
Poland, October 2009. Postproceedings, to appear.

[MVP10] Radoslav Menkyna, Valentino Vranić, and Ivan Polášek. Compo-
sition and categorization of aspect-oriented design patterns. In
Proc. of 8th International Symposium on Applied Machine Intel-
ligence and Informatics, SAMI 2010, Herľany, Slovakia, January
2010. IEEE.

[PP04] Odysseas Papapetrou and George A. Papadopoulos. Aspect-
oriented programming for a component based real life application:
A case study. In 2004 ACM Symposium on Applied Computing,
pages 1554–1558, Nicosia, Cyprus, 2004. ACM.

[PSC01] Elke Pulvermüller, Andreas Speck, and James O. Coplien. A ver-
sion model for aspect dependency management. In Proc. of 3rd Int.
Conf. on Generative and Component-Based Software Engineering
(GCSE 2001), LNCS 2186, pages 70–79, Erfurt, Germany, Septem-
ber 2001. Springer.

[RK06] Tobias Rho and Günter Kniesel. Independent evolution of design
patterns and application logic with generic aspects—a case study.
Technical Report IAI-TR-2006-4, University of Bonn, Bonn, Ger-
many, April 2006.

[VBMD08] Valentino Vranić, Michal Bebjak, Radoslav Menkyna, and Peter
Dolog. Developing applications with aspect-oriented change re-
alization. In Proc. of 3rd IFIP TC2 Central and East European
Conference on Software Engineering Techniques, CEE-SET 2008,
LNCS, Brno, Czech Republic, October 2008. Springer. Postpro-
ceedings, to appear.

[VMBD09] Valentino Vranić, Radoslav Menkyna, Michal Bebjak, and Peter
Dolog. Aspect-oriented change realizations and their interaction.
e-Informatica Software Engineering Journal, 3(1):43–58, 2009.

[Vp06] Valentino Vranić and Miloslav Šípka. Binding time based con-
cept instantiation in feature modeling. In Maurizio Morisio, ed-
itor, Proc. of 9th International Conference on Software Reuse
(ICSR 2006), LNCS 4039, pages 407–410, Turin, Italy, June 2006.
Springer.

[Vra01] Valentino Vranić. AspectJ paradigm model: A basis for multi-
paradigm design for AspectJ. In Jan Bosch, editor, Proc. of 3rd In-
ternational Conference on Generative and Component-Based Soft-
ware Engineering (GCSE 2001), LNCS 2186, pages 48–57, Erfurt,
Germany, September 2001. Springer.

[Vra02] Valentino Vranić. Towards multi-paradigm software develop-
ment. Journal of Computing and Information Technology (CIT),
10(2):133–147, 2002.

[Vra03] Valentino Vranić. Multi-Pradigm Design with Feature Modeling.
PhD thesis in preparation, Slovak University of Technology in
Bratislava, Slovakia, 2003.

Bibliography 27

[Vra04] Valentino Vranić. Reconciling feature modeling: A feature model-
ing metamodel. In Matias Weske and Peter Liggsmeyer, editors,
Proc. of 5th Annual International Conference on Object-Oriented
and Internet-Based Technologies, Concepts, and Applications for a
Networked World (Net.ObjectDays 2004), LNCS 3263, pages 122–
137, Erfurt, Germany, September 2004. Springer.

[Vra05] Valentino Vranić. Multi-paradigm design with feature modeling.
Computer Science and Information Systems Journal (ComSIS),
2(1):79–102, June 2005.

Appendix A

Towards Multi-Paradigm
Software Development

Valentino Vranić. Towards multi-paradigm software development. Journal
of Computing and Information Technology (CIT), 10(2):133–147, 2002.

Journal of Computing and Information Technology - CIT 10, 2002, 2, 133–147 133

Towards Multi-Paradigm
Software Development

Valentino Vranić
Department of Computer Science and Engineering, Faculty of Electrical Engineering and Information Technology,
Slovak University of Technology in Bratislava, Slovakia

Multi-paradigm software development is a possible an-
swer to attempts of finding the best paradigm. It was
present in software development at the level of intuition
and practiced as the “implementation detail” without a
real support in design. Recently it is making a twofold
breakthrough: several recent programming paradigms
are encouraging it, while explicit multi-paradigm ap-
proaches aim at its full-scale support. In order to
demonstrate this, a survey of selected recent software
development �programming� paradigms �aspect-oriented
approaches and generative programming� and multi-
paradigm approaches �multi-paradigm programming in
Leda, multi-paradigm design in C��, and intentional
programming� is presented.

The survey is preceded and underpinned by the analysis
of the concept of paradigm in computer science in the
context of software development, since there is no com-
mon agreement about the meaning of this term, despite
its wide use. The analysis has showed that there are two
meanings of paradigm: large-scale and small-scale.

Keywords: software development, programming, large-
scale, small-scale paradigm; commonality, variability
analysis; multi-paradigm, aspect-oriented, generative,
Leda, intentional programming; metaparadigm.

1. Introduction

The way software is developed is changing. En-
forced by the need for mass production of qual-
ity software and enabled by the grown experi-
ence of the field, software development is mov-
ing towards industrialization. The question is
no longer which single tool is the best one, but
how to select the right tools for each task to be
accomplished.

This article maps the state of the art in the field
of post-object-oriented software development.
Most notably, it is devoted to the promising

concepts of aspect-oriented programming, gen-
erative programming and, particularly, to multi-
paradigm software development.

The move towards multi-paradigm software de-
velopment can be felt not only in new soft-
ware development paradigms — e.g. aspect-
oriented programming, which is bound to other
paradigms from the first principles — it is
present already in object-oriented programming.
It is even more notable at the language level.
It is hard to find a language that is pure in
the sense of prohibiting any other than its pro-
claimed paradigm to be used in it.

What has been described is the implicit form of
multi-paradigm software development. There
are several approaches which make this idea ex-
plicit by enabling a developer not only to com-
bine multiple paradigms, but also to choose the
most appropriate one for the given feature of a
system or family of systems.

The rest of this article is organized as follows.
Section 2 explores the concept of paradigm in
computer science in the context of software de-
velopment. Section 3 is an overview of selected
recent post-object-oriented paradigms, namely
aspect-oriented programming approaches and
generative programming. Section 4 proceeds
with recent post-object-oriented approaches that
exhibit explicitly the multi-paradigm character.
Section 5 closes the article with conclusions and
proposals for further work.

134 Towards Multi-Paradigm Software Development

2. The Concept of Paradigm in Software
Development

Paradigm is a very often used — and even more
often abused — word in computer science in
the context of software development. Its impor-
tance arose significantly with the appearance
of so-called multi-paradigm approaches. Be-
fore discussing them, the concept of paradigm
in software development requires a deeper ex-
amination. We must consider both the well-
established meaning of paradigm in science and
the actual meaning of the word in order to find
out when its use in computer science is justi-
fied, and also to gain a better understanding of
the concept of paradigm itself.

The term paradigm in science is strongly re-
lated to Thomas Kuhn and his essay �Kuh70�,
where it is used to denote a consistent collec-
tion of methods and techniques accepted by the
relevant scientific community as a prevailing
methodology of the specific field.

In computer science, the term paradigm denotes
the essence of a software development process
�often referred to as programming, see Sec-
tion 2.1�. Unfortunately, this is not the only
purpose this term is used for. Probably no sci-
ence has accepted this term with such an enthu-
siasm as computer science has; there are a lot
of methods whose authors could not resist the
temptation to raise them to the level of paradigm
�just try a keyword “paradigm” in some citing
index or digital library, e.g. �NEC��. Although
not contradictory to the original meaning of the
word paradigm, such an overuse causes confu-
sion.

The basic meaning of paradigm is example, es-
pecially a typical one, or pattern, which is in
a direct connection to its etymology �Greek “to
show side by side”� �Mer�. The meaning and et-
ymology pose no restriction to the extent of the
example or pattern it refers to. This is reflected
in the common use of the word paradigm today:
on the one hand, it has the meaning of a whole
philosophical and theoretical framework of sci-
entific school �akin to Kuhn’s interpretation�,
while on the other hand, it is simply an example
as in linguistics where it has the meaning of an
example of conjugation or declension showing
a word in all its inflectional forms �Mer�.

Computer science, being a science whose great
part is devoted to a special kind of languages

intended for programming, hosts well both of
these two interpretations of paradigm covered
in more detail in the following text.

2.1. Large-Scale Paradigms

The notion of paradigm in the context of soft-
ware development is used at two levels of gran-
ularity. Let us first discuss the large-scale
meaning of paradigm, which, as it has already
been mentioned, denotes the essence of a soft-
ware development process. Coplien used the
term large-scale paradigm to denote program-
ming paradigms in, as he said, a “popular”
sense �Cop99a�.

Besides software development paradigm and
software engineering paradigm, at least two
more terms are used to refer to large-scale
paradigm of software development: program-
ming paradigm or, simply, programming. Al-
though in common use �for historical reasons�,
one must be carful with these terms because
of possible misunderstanding: programming
sometimes stands for implementation only, as
other phases of a software development process
can also be referred to explicitly �e.g., object-
oriented analysis, object-oriented design, etc.�.

The name of a paradigm reveals its most signif-
icant characteristic �Vra00�. Sometimes it is de-
rived from the central abstraction the paradigm
deals with, as it is a function to functional
paradigm, an object to object-oriented paradigm
�according to �Mey97� it is not object but class
that is the central abstraction in object-oriented
paradigm�, etc.

Lack of a general agreement on which name
denotes which paradigm is a potential source
of confusion. For example, although the term
functional paradigm is usually used to denote
a kind of application paradigm, as opposed to
procedural paradigm, in �Mey97� it is used to
denote exactly the procedural paradigm. It is
hard to blame the author for misuse of the term
knowing that the procedure is often being de-
noted as function.

It must be distinguished between the software
development paradigm itself and themeans used
to support its realization. Unfortunately, this is
another source of confusion. For example, any
paradigm can be visualized by means of a vi-
sual environment and thus it makes no sense to

Towards Multi-Paradigm Software Development 135

speak about the visual paradigm �as in �Bud95��.
Making a complete classification and compar-
ison of the software development paradigms
is beyond the scope of this text; see �Náv96�
for the comparison of selected programming
paradigms regarding the concepts of abstraction
and generalization.

A software development paradigm is constantly
changing, improving, or better to say, refining.
The basic principles it lays on must be pre-
served; otherwise it would evolve into another
paradigm. Consider, for example, the simpli-
fied view on the evolution of object-oriented
paradigm. First, there were commands �im-
perative programming�. Then named groups
of commands appeared, known as procedures
�procedural programming�. Finally, procedures
were incorporated into the data it operated on
yielding objects�classes �object-oriented para-
digm�.

However, according to Kuhn, paradigms do not
evolve, although it could seem so; it is the sci-
entific revolution that ends the old and starts a
new paradigm �Kuh70�. A paradigm is domi-
nant by definition and thus there can be only
one at a time in a given field of science unless
the field is in an unstable state. According to
this, simultaneous existence of several software
development paradigms indicates that the field
of software development is either in an unstable
state, or all these paradigms are parts of the one
not yet fully recognized nor explicitly named
paradigm. That paradigm is beyond the com-
monly recognized paradigms and it is about the
�right� use and combination of those paradigms.
Therefore it can be denoted as metaparadigm.

2.2. Small-Scale Paradigms

The notion of paradigm in computer science
can also be considered at the small-scale level
based on the programming language perspec-
tive. This perception of paradigm is appar-
ent in James O. Coplien’s multi-paradigm de-
sign �Cop99b� �covered in more detail in Sec-
tion 4.2�. According to Coplien et al. �CHW98�,
we can factor out paradigms such as procedures,
inheritance and class templates. We can iden-
tify the common and variable part which to-
gether constitute a paradigm. A paradigm is
then a configuration of commonality and vari-
ability �Cop99b�. This is analogous to conjuga-
tion or declension in natural languages, where

the common is the root of a word and variability
is expressed through the suffixes or prefixes �or
even infixes� added to the root in order to obtain
different forms of the word.

Scope, commonality and variability (SCV) ana-
lysis �CHW98� can be used to describe these
language level paradigms. Here are the defi-
nitions of the three cornerstone terms in SCV
analysis �instead of entities the word objects
was used in �CHW98�, but this could lead to a
confusion with objects in the sense of object-
oriented paradigm�:

Scope (S): a set of entities;

Commonality (C): an assumption held uniformly
across a given set of entities S;

Variability (V): an assumption true for only
some elements of S.

SCV analysis of procedures paradigm illus-
trates the definition �based on an example from
�CHW98��:

S: a collection of similar code fragments, each
to be replaced by a call to some new pro-
cedure P;

C: the code common to all fragments in S;

V: the “uncommon” code in S; variabilities are
handled by parameters to P or custom code
before or after each call to P.

In the context of the small-scale paradigms,
it is hard to find a single-paradigm program-
ming language. The relationship between the
small- and large-scale paradigms is similar to
that between the programming language fea-
tures and programming languages; the large-
scale paradigms consist of the small-scale ones.
We can revise here the source of the name of a
large-scale paradigm: the name of a large-scale
paradigm sometimes comes from the most sig-
nificant small-scale paradigm it contains. For
example, object-oriented �large-scale�paradigm
consists of several �small-scale� paradigms: ob-
ject paradigm, procedure paradigm �methods�,
virtual functions, polymorphism, overloading,
inheritance, etc. Lack of a common agreement
what are the exact characteristics of object-
oriented paradigm makes it impossible to intro-
duce the exact list of the small-scale paradigms
that object-oriented paradigm consists of.

136 Towards Multi-Paradigm Software Development

Having an expressive programming language
that supports multiple paradigms introduces an-
other issue: a method is needed for selecting the
right paradigms for the features that are to be im-
plemented. Such a method is a metaparadigm
with respect to the small-scale paradigms. The
small-scale paradigms metaparadigm is there-
fore a less elusive concept than the large-scale
paradigms metaparadigm. One such small-
scale metaparadigm, multi-paradigm design for
C��, is described in Section 4.2.

One can understand small-scale paradigms as a
programming language issue exclusively, while
large-scale programming paradigms seem to
have a broader meaning as they are affecting all
the phases of software development. Actually,
small-scale paradigms have an impact on all the
phases of software development as well; either
with or without an explicit support in analysis
and design.

3. Recent Software Development
Paradigms

Among the recent software development para-
digms there is a significant group of those that
appeared as a reaction to the issues tackled
but not satisfactorily solved by object-oriented
paradigm. Many of these paradigms actually
build upon object-oriented paradigm. Despite
some of them are claimed not to be bound to
object-oriented paradigm �and, indeed, they are
more generally applicable�, they are still widely
applied in connection with it.

3.1. Beyond Object-Oriented Programming

Humanperception of theworld is to the great ex-
tent based on objects. Object-oriented program-
ming, well-known under the acronym OOP, is
based precisely on this perception of the world
natural to humans. But what is OOP exactly?
This question seems to be an answered one. Ac-
tually, there are plenty of answers to this ques-
tion, but the trouble is that they are all different.
OOP has passed a very long way of changes
to reach the form in which it is known today.
Yet, there is no general agreement about what
its essential properties are �to some, even inher-
itance is not an essential property of OOP, or it is

being denoted as a minor feature �Bud95��. Per-
haps Bertrand Meyer’s viewpoint that “‘object-
oriented’ is not a boolean condition” �Mey97� is
the best characterization of this issue.

OOP is not always the best choice among all the
paradigms. This is recognized even in the OOP
literature. Thus Booch points out that there is
no single paradigm best for all kinds of appli-
cations. But, according to Booch, OOP has an-
other important feature: it can serve as “the ar-
chitectural framework inwhich other paradigms
are employed” �Boo94�. Although this state-
ment is probably overestimated in its applica-
bility to all the paradigms, the truth is that some
multi-paradigm languages �like Leda, see Sec-
tion 4.1� are designed in this fashion. This re-
veals that OOP is multi-paradigmatic in its very
nature and leaves not much space for the object-
oriented purism.

The object-oriented purism comes from the
dogma that everything should be modeled by
objects. But not everything is an object; neither
in the real world, nor in programming. Con-
sider synchronization as a well-known example
of a non-object concept; in natural language, we
would probably refer to it as aspect. The aspects
crosscut the structure of objects �or functional
components, in general� making the code tan-
gled. The pieces of code are either repeated
throughout different objects or unnatural inher-
itance must be involved. Among other inconve-
niences, this “code scattering” has a bad impact
on reuse.

There are also other problems with OOP, in-
cluding those it was supposed to solve, which
are mainly in the areas of reuse �discussed
in �SN97��, adaptability, management of com-
plexity and performance �CE00�. In the sense
of the means for solution at the developer’s dis-
posal— that can be denoted as solution universe
— OOP is not a universal paradigm. For exam-
ple, OOP is not a universal paradigm either in
C�� because it is not capable of making a full
use of all of its features, or in C�� which is
just a part of the solution universe of software
development. OOP encompasses only a few
interesting kinds of commonality and variabi-
lity �Cop99a�. Other kinds are needed as well,
so the non-object-oriented features of program-
ming languages are often used even though the
analysis and design were object-oriented.

Towards Multi-Paradigm Software Development 137

class Point � class Line �
int x�y� int x��y��x��y��
Point�int x� int y������ Line�int x�� int y�� int x�� int y�������
void set�int x� int y������ void set�int x�� int y�� int x�� int y�������
void setX�int x������ int getX��������
void setY�int y������ int getY��������
int getX������� int getX��������
int getY������� int getY��������

� �

aspect ShowAccesses �
before��	 execution�
 �Point �� Line��set
����� �System�out�println��Write����
before��	 execution�
 Point�get
����� �System�out�println��Read����
before��	 execution��Point �� Line��new����� �System�out�println��Create����

�

Fig. 1. Tracking access in AspectJ.

3.2. Aspect-Oriented Programming and
Related Approaches

According to one of those who stood upon
the birth of the aspect-oriented programming,
Gregor Kiczales, aspect-oriented programming
�AOP� is a new programming paradigm that
enables the modularization of crosscutting con-
cerns �KLM�97�. We’ll take a closer look at
four main AOP approaches.

Xerox PARCAspect-Oriented Programming

Most of the AOP terminology �as well as its
name� later adopted by others was coined by
Xerox PARC AOP group. Their research effort
is concentration mainly on AspectJ �Xera�, a
general purpose AOP extension to Java �LK98�.

AOP appeared as a reaction to the problem
known from the generalized procedure langua-
ges �KLM�97�, i.e. languages that use the con-
cept of procedure to capture functionality �be-
sides procedural languages, this includes func-
tional and object-oriented languages as well�.
In such languages some program code frag-
ments that implement a clearly separable aspect
of a system �such as synchronization� are scat-
tered and repeated throughout the program code
that becomes tangled. AOP aims at factoring
out such aspects into separate units. Aspects
crosscut the base code in join points. These
must be specified so aspects could be woven
into the base code by a weaver.

A simple example written in AspectJ v1.0.0
�similar to the example in �LK98�� in Fig. 1
illustrates the idea. Two classes are presented
there, Point and Line, whose methods are of

three kinds: creating, writing and reading �im-
plementation of the methods is omitted�. Sup-
posewewant to be informedwhat kind of access
to these classes has been performed. In ordinary
Java we would have to modify each method of
both Point and Line. Moreover, this would re-
sult in a tangled code. In AspectJ both problems
can be avoided using aspects. In our example
it is the aspect ShowAccesses that solves the
problem. Note that the original code remains
unchanged.

The solution with aspects is undoubtedly more
elegant than the tangled one would be. How-
ever, the information where an aspect is to be
woven �i.e., join points� is included in the as-
pect itself. This complicates the aspect reuse.
AspectJ addresses this problem with abstract
aspects and named sets of join points, so-called
pointcuts.

Adaptive Programming

Adaptive programming �AP�, proposed by De-
meter group �Dem� at Northeastern University
in Boston, deals mainly with the traversal strate-
gies of class diagrams. Demeter group has used
the ideas of AOP several years before the name
aspect-oriented programming was coined. Af-
ter the collaboration with the Xerox PARC AOP
group had begun, Demeter group redefined AP
as “the special case of AOP where some of
the building blocks are expressible in terms of
graphs and where the other building blocks refer
to the graphs using traversal strategies” �build-
ing block stands for aspect or component� �Lie�.

138 Towards Multi-Paradigm Software Development

Fig. 2. Traversal strategies �from �Lie97�, c�1997 Northeastern University�.

The traversal strategies are partial graph speci-
fications through mentioning a few isolated cor-
nerstone nodes and edges, and thus they cross-
cut the graphs they are intended for.

An example of AP is presented in Fig. 2. The
left part of the figure presents a UML class
diagram of a system. Assume we would like
to count the people waiting at the bus sta-
tions along the bus route. In ordinary OOP
this would require either the implementation of
small methods in all of the affected classes �de-
picted shaded� or rough breaking of the encap-
sulation by exposing someof the classes’ private
data.

If we use a traversal strategy, as it is proposed in
AP, there is no need for a change in the existing
classes. In this case, the traversal strategy:

from BusRoute through BusStop to Person

solves the problem of getting to objects of the
class Person along the bus route, which is suf-
ficient to count them. The right part of Fig. 2
demonstrates the robustness of this technique:
the traversal strategy mentioned above applies
in this case as well although the class diagram
it was constructed for has changed.

Composition Filters

Composition filters �CF� is an aspect-oriented
programming approach in which different as-
pects are expressed as declarative and orthogo-
nalmessage transformation specifications called
filters �AT98�.

A message sent to an object is evaluated and
manipulated by the filters of that object, which
are defined in an ordered set, until it is dis-
carded or dispatched �i.e., activated or dele-
gated to another object�. A filter behavior is
simple: each filter can either accept or reject
the received message, but the semantics of the
operations depends on the filter type. For ex-
ample, if an Error filter accepts the received
message, it is forwarded to the next filter, but if
it was a Dispatch filter, the message would be
executed. A detailed description of CF can be
found in �AWB�93, Koo95�.

In Fig. 3 two sets of filters �written in Sina lan-
guage �Koo95�, which directly adopts the CF
model �AT98, AWB�93��, are shown. These

Point
acc	 ShowAccess�
inputfilters

WriteAccess	 Dispatch
 �set� acc�WriteAccess� inner�
��
ReadAccess	 Dispatch
 �getX� getY� acc�ReadAccess� inner�
��
CreateAccess	 Dispatch
 �Point� acc�CreateAccess� inner�
��
Execute	 Dispatch
 �true
� inner�
��

Line
acc	 ShowAccess�
inputfilters

WriteAccess	 Dispatch
 �set� acc�WriteAccess� inner�
��
ReadAccess	 Dispatch
 �getX� getY� getX�� getY�� acc�ReadAccess� inner�
��
CreateAccess	 Dispatch
 �Line� acc�CreateAccess� inner�
��
Execute	 Dispatch
 �true
� inner�
��

Fig. 3. Tracking access example implemented using composition filters approach.

Towards Multi-Paradigm Software Development 139

filters are attached to the Point and Line classes
from Fig. 1. The existence of the class
ShowAccess is presumed. ShowAccess provides
three methods — WriteAccess, ReadAccess

and CreateAccess�— that simply write out the
type of the access. They are called by the three
corresponding Dispatch filters, in case the mes-
sage was accepted. Afterwards, the method of
the inner object, which has actually been called,
is executed �inner���.

From the perspective of AOP, the class
ShowAccess implements the aspect, while the
filters represent the join points. Thus, the join
points in this case are separated from the aspect,
which is better regarding the aspect reuse.

Subject-Oriented Programming

A concept can be defined by naming its prop-
erties. This is sufficient to precisely define and
identify mathematical concepts, but the same
does not apply to natural concepts. Their def-
initions are subjective and thus never complete
�more details about conceptual modeling can be
found in �CE00��.

Subject-oriented programming �SOP�, devel-
oped at IBM as an extension to OOP �IBM�,
is based on subjective views, so-called subjects.
A subject is a collection of classes or class frag-
ments whose hierarchy models its domain in its
own, subjective way. A complete software sys-
tem is then composed out of subjects by writing
the composition rules, which specify correspon-
dence of the subjects �i.e., namespaces�, classes
and members to be composed and how to com-
bine them.

As a result of the research effort in SOP, theWat-
sonSubjectCompilerwas developed �KOHK96�,

which allows partial �subjective� definitions of
C�� programelements and automates the com-
position required to produce a running program.
There are also other platforms SOP support was
built for, such as IBM VisualAge for C�� Ver-
sion 4, HyperJ and Smalltalk.

The example fromFig. 1 reimplemented inWat-
son Subject Compiler-like syntax �the actual
syntax could by slightly different� is presented
in Fig. 4. We assume that the class ShowAccess
is implemented in Access namespace and that
the classes Point and Line are implemented
in the Graphics namespace. The join-points,
represented by composition rules, are separated
from the aspect and represented by a separate
class �as in CF approach�. The composition
rules for the methods getY, getX�, getY� and
getX� are omitted in Fig. 4 �indicated by el-
lipsis� since they are analogous to the rules for
getX or getY�.

This is not a characteristic case of the applica-
tion of SOP �such can be found in �OHBS94,
KOHK96, IBM��; it is presented here in order to
show how a well-known AOP example can be
easily transformed into its SOP version. Never-
theless, there is no general agreement whether
SOP is AOP. In �CE00� SOP is viewed as a spe-
cial case of AOP where the aspects according
to which the system is being decomposed are
chosen in such a manner that they represent dif-
ferent, subjective views of the system. On the
other hand, Kiczales et al. reject the very idea
that SOP �which they call subjective program-
ming� could be AOP, arguing that the methods
from different subjects, which are being auto-
matically composed in SOP, are components in
the AOP sense, since they can be well localized
in a generalized procedure �routine� �KLM�97�.

namespace GraphicsWithAccess�
class Point�
class Line��

GraphicsWithAccess�Point�Point 	
 Merge�Graphics�Point�Point� Access�ShowAccess�CreateAccess��
GraphicsWithAccess�Line�Line 	
 Merge�Graphics�Point�Line� Access�ShowAccess�CreateAccess��

GraphicsWithAccess�Point�set 	
 Merge�Graphics�Point�set� Access�ShowAccess�WriteAccess��
GraphicsWithAccess�Line�set 	
 Merge�Graphics�Line�set� Access�ShowAccess�WriteAccess��

GraphicsWithAccess�Point�getX 	
 Merge�Graphics�Point�getX� Access�ShowAccess�ReadAccess��
� � �

GraphicsWithAccess�Line�getY� 	
 Merge�Graphics�Line�getY�� Access�ShowAccess�ReadAccess��

Fig. 4. Tracking access example implemented using subject-oriented approach.

140 Towards Multi-Paradigm Software Development

But this seems to be a more general issue, since
it applies to AspectJ, too, where it has been
identified as aspectual paradox by Liebrherr et
al. �LLM99�:

An aspect described in AspectJ, the
Xerox PARC’s AOP language, which
has a construct for specifying aspects,
is by definition no longer an aspect,
as it has just been captured in a �new
kind of� generalized routine.

As observed in �Cza98�, SOP is close to Gen-
Voca �BG97�, a successful approach to software
reuse. In GenVoca, systems are composed out
of layers according to design rules: GenVoca
layers can be easily simulated by subjects.

3.3. Generative Programming

Krysztof Czarnecki and Ulrich Eisenecker pro-
pose a comprehensive software development
paradigm which brings together the object-ori-
ented analysis and design methods with domain
engineering methods that enable development
of the families of systems: generative program-
ming �CE00�:

Generative programming �GP� is a
software engineering paradigmbased

on modeling software systems fami-
lies such that, given a particular re-
quirements specification, a highly cus-
tomized and optimized intermediate
or end-product can be automatically
manufactured on demand from ele-
mentary, reusable implementation
components by means of configura-
tion knowledge.

GP is a unifying paradigm—it is closely related
to four other paradigms �see Figure 5�:

� object-oriented programming, providing ef-
fective system modeling techniques,

� generic programming, enabling reuse through
parameterization,

� domain-specific languages, increasing the
abstraction level for a particular domain, and

� aspect-oriented programming, used to achi-
eve the separation of concerns.

In order to be used, GP first has to be tailored
to a particular domain. This process will yield
a methodology for the families of systems to be
developed, which can be viewed as a paradigm
in its own right. This gives a certain meta-
paradigm flavor to GP.

In the solution domain, GP requires metapro-
gramming for weaving and automatic config-
uration. To support domain-specific notations,
syntactic extensions are needed. Active libraries

Xerox PARC Aspect-
Oriented Programming

Composition Filters

Demeter�Adaptive
Programming

Subject-Oriented
Programming

S
S
S
S
S
S
SSw

Q
Q
Q
Q
QQs�

�
�
�
�
���

Object-Oriented
Programming

Generic
Programming

Domain-Specific
Languages

Aspect-Oriented
Programming

Q
Q
Q
Q
QQs�

�
�
�
�
���

�
�
�
�
�
�
���

Generative
Programming

Fig. 5. Generative programming and related paradigms. The arrows represent “is incorporated into” relationship.

Towards Multi-Paradigm Software Development 141

are proposed in �CE00�, which can be viewed
as knowledgeable agents interacting with each
other to produce concrete components, as ap-
propriate to cover this requirement.

4. Multi-Paradigm Approaches

In the survey of recent post-object-oriented soft-
ware development paradigms presented in the
previous section a spontaneous move towards
the integration of paradigms became apparent.
This section proceeds with explicit multi-para-
digm approaches.

4.1. Multi-Paradigm Programming in Leda

The question how to support multi-paradigm
programming at the language level can be an-
swered simply: create a multi-paradigm lan-
guage. Timothy Budd took this route by cre-
ating a multi-paradigm programming language
called Leda.

According to Budd, Leda supports four pro-
gramming paradigms �Bud95�: imperative �pro-
cedural, to be more precise� logic, functional,
and object-oriented. The term paradigm, as
used by Budd, denotes a large-scale paradigm
�with respect to the classification of paradigms
introduced in Section 2�. This means that Leda
actually supports more than four small-scale
paradigms. This is clear having in mind that,
for example, object-oriented paradigm breaks
down into six or more small-scale paradigms,
as has been shown in Section 4.2. Nevertheless,
in order not to digress from the intent of this
approach, just the mechanisms by which each
of the four proclaimed paradigms is supported
in the language will be discussed.

Leda has a Pascal-like �i.e., Algol-like� syntax
and, moreover, in Leda the mechanism upon
which all the four supported paradigms realiza-
tion is based on are functions �procedures that
return values�. This makes a good background
for procedural paradigm, denoted by Budd as
imperative.

Logic paradigm is supported by a special type
of function that returns relation data type and
by a special assignment operator ��. These in-
dicate when the inference mechanism, inherent
to logic programming, is to be activated.

Functional paradigm requires no special mech-
anism other than those provided by functions,
because Leda permits a function to be an argu-
ment of another function and to return a func-
tion. Thus, functional paradigm is achieved by
using functions in the recursive fashion while
refraining from assignments.

In addition to the basic mechanisms of object-
oriented paradigm, such as classes, inheritance,
encapsulation etc., Leda also supports parame-
terized types �considered by some authors a part
of object-oriented paradigm �Mey97��.

Despite Leda is not widely used, it is worth con-
sideration because it demonstrates the combina-
tion of paradigms. For example, the inference
mechanism of logic programming can be used
inside of a procedure.

Of course, creating a language that supports
multiple paradigms and expecting it to be the
best language for programming is similar to
a search for the best programming paradigm.
No matter how many paradigms are supported
in a programming language, the number is fi-
nite and, obviously, it does not embrace future
paradigms. One can argue that it is possible
to extend the language with new programming
mechanisms in order to support new paradigms.
This is not only possible, but often practiced.
Unfortunately, due to limitations set by parsing
methods, programming languages cannot be ex-
tended indefinitely.

Leda is an example of a language created �from
scratch� in order to support multiple paradigms.
We can study existing interconnecting languages
that support different paradigms through an in-
terface instead of making a completely new lan-
guage �a sort of language reuse�. There is also
a possibility of implementing one language on
top of the other, but this leads to a certain degra-
dation of performance. An example of intercon-
necting object-oriented and logic programming
�Loops andXeroxQuintus Prolog� can be found
in �KE88�.

There are lots of approaches that fall into this
category. Yet another approach and an overview
of similar approaches, together with the discus-
sion of the problems of paradigms integration,
can be found in �VS95�. Such approaches are
popular especially in the field of artificial in-
telligence because of the need to combine the

142 Towards Multi-Paradigm Software Development

two paradigms traditionally used in this field,
logic and functional programming, both with
each other and together with OOP.

Different paradigms are expressed using differ-
ent syntax. BETA language �Mad00� is sup-
posed to overcome this inconvenience through
a unified syntax achieved by introducing the so-
called pattern as an abstraction of all other pro-
gramming language constructs appearing in the
paradigms it supports. The approach is there-
fore denoted as unified paradigm, but it is not
fundamentally different from other “created to
be multi-paradigm” languages.

4.2. Multi-Paradigm Design for C++

Multi-paradigmdesign forC++ �MPD�, as pro-
posed by Coplien �Cop99b, Cop00�, has its roots
in the multi-paradigm features of C��. De-
spite these multi-paradigm features, C�� is of-
ten considered to be just an object-oriented lan-
guage. As such, C�� is used to implement the
systems designed according to object-oriented
paradigm. However, non-object-oriented fea-
tures of C�� are widely used, but without a
support in the �object-oriented� design.

MPD is a metaparadigm intended for develop-
ing families of systems, therefore akin to do-
main engineering approaches. It deals with
choosing the appropriate paradigm for a fea-
ture being designed and implemented. MPD
is based on SCV analysis �discussed in Sec-
tion 2.2� or, to be more precise, SCVR analysis,
where R stands for the relationship between the
domains �Cop00�, which are covered by vari-
ability dependency graphs �explained further in
this section�. On the other hand, neither SCV,
nor SCVR analysis is mentioned in �Cop99b�;
the term commonality and variability analysis
is used instead to denote the same thing. Com-
monality analysis concentrates on common at-
tributes while the aim of variability analysis is
to parameterize the variation.

The major steps in MPD are: commonality and
variability analysis of the application domain,
commonality and variability analysis of the so-
lution domain, transformational analysis and
translation from the transformational analysis to
the code. These steps need not to be performed
sequentially. They can be performed in par-
allel �to some extent� and revisited as needed.

Before starting the actual MPD, it is recom-
mended to evaluate the possibility to reuse an
existing �similar� design. If the commonali-
ties and variabilities of the application domain
do not fit any existing solution domain struc-
tures, creation of a new application-oriented
�i.e., domain-specific� language should be con-
sidered.

Application domain analysis. Commonality
analysis of the application domain �usually de-
noted as problem domain� starts with finding
commonality domains and creating domain dic-
tionary. It then proceeds in parallel with vari-
ability analysis, whose results — the parame-
ters of variationof a given commonality domain
and their characteristics — are being summa-
rized in variability tables �one per each com-
monality domain�, as depicted in the upper part
of Fig. 6.

As already mentioned, variability dependency
graphs �denoted also as domain dependency
graphs or diagrams� are used to capture the rela-
tionship between domains and their parameters
of variation,which are also domains. Variability
dependency graphs are directed graphs whose
nodes represent domains and the edges repre-
sent “depends on” relationship �in the direction
indicated by an arrow� between the domains and
their parameters of variation. Despite the sim-
ple notation, variability dependency graphs are
quite useful in identifying overlapping domains
�such domains can be merged� and codepen-
dent domains, i.e. the domains with circular
dependencies �which must be resolved�.

Solution domain analysis. The same com-
monality and variability analysis as applied to
the application domain is applied to the solu-
tion domain, i.e. the programming language.
First, a description with an example is provided
of the identified small-scale paradigms, mani-
fested through the language features, structured
according to commonality, variability and bind-
ing. The analysis proceeds with exploring the
negative variability, a variability that violates
the rule of variation by attacking the underlying
commonality. Apositive variability, as opposed
to the negative one, can be parameterized. The
negative variability has to be kept small. If it be-
comes larger than the commonality, the design

Towards Multi-Paradigm Software Development 143

� � � � � � � � � �

��

�����������	����
�	�
���	�����������	������	����	���������	

�����������	 �����������	 �������	 �������������	 �������
	�
�������	
�		�		�	

�		�		��
�������	
�
��
���������
����������
�
�������
������������
�����
�������������

�����

��
�����
��
��

��������� ��	���������
��������
���������
�����

�
��
���������
���
������
�������������

�������	
���
�������
�
����������������

�������������
�����

������
�� ��������� ����������������
�

�

 ����
�
��	�
	!��������	 �
�����	 "�����	 �������	 "

����	
�������
����
�
�����������	
���
����

#	 �����
�����!�������
""#��$%�&������

������
�� $%�&������

"�'��(�����������������������
�
�������

����������
���)�
"(&"�(�"�%*�+$,,(�!���������

���������
������������������

$�����	����
	�
���	��������	������	����	���������	

Fig. 6. Transformational analysis in MPD �according to an example from �Cop99b��.

should be refactored to reverse the commonality
and variability.

The results of the solution domain commona-
lity and variability analysis are summarized in
the family table, as shown in the lower part of
Fig. 6, and in the table used to express features
for negative variability, where for each combi-
nation of the kind of commonality and the kind
of variability the language feature for positive
variability and the one for the corresponding
negative variability are introduced.

Transformational analysis. The tables ob-
tained in the preceding analyses are used in
transformational analysis, which is, roughly
speaking, a matching of application domain
structures described in variability tables, with
solution domain structures, i.e. paradigms, de-
scribed in family tables. Figure 6 shows how
this matching is performed. Prior to the match-
ing, the commonality domain has to be genera-
lized �e.g., TEXT EDITING BUFFERS: behavior,
structure�, as well as the parameters of variation
�e.g., output medium: structure, algorithm�.

MPD emphasizes the solution domain analysis
whose underestimation in contemporary soft-
ware development methodologies results in a
gap between design and implementation.

To a certain extent, MPD enforces the reuse of
design: both application and solution domain
analysis can be reused independently; however,
transformational analysis is not reusable. This
brings MPD close to design patterns, as dis-
cussed in �Cop99b�. On the very cover of the de-
sign patterns cornerstone book �GHJV95� Steve
Vinoski points out that a reusable design is “the
real key to software reuse”. This claim is being
justified in the ongoing research on reuse with
design patterns �SN00�.

Indeed, MPD and design patterns seem to be
complementary; design patterns capture design-
ers’ experience by documenting the recommend-
ed solutions for common problems in software
development, while MPD relies on this expe-
rience. However, to make a full use of design
patterns in MPD, and in software development
in general, a better way of their representation
is needed �SNB98�.

144 Towards Multi-Paradigm Software Development

Although the design patterns from �GHJV95�
are inspired by Alexandrian patterns �Ale79�,
not all of them are the patterns in the Alexan-
drian sense: some of them can be formalized as
configurations of commonality and variability
�unlikeAlexandrian patterns�. As such they can
be incorporated directly into MPD �by adding
them to the family table�, as anything else that
can be formalized as a configuration of com-
monality and variability �i.e., other paradigms
and solution domain tools that are not sup-
ported by the main programming language, like
databases or parser generators� �Cop99b�.

One of the problems with MPD is the unsui-
tability of the notation used: only a few types
of tables and variability diagrams with a lot of
relevant details expressed as informal text. With
a better notation, like feature modeling �Vra01�,
transformational analysis could become more
transparent. A better notation could also ease
the transition to the actual program code �the
program skeleton�.

4.3. Intentional Programming

Programming languages with fixed syntax are
limiting otherwise unlimited number of pro-
gramming abstractions. Intentional program-
ming group at Microsoft Research offered a so-
lution to this problem as a new software deve-
lopment paradigm called intentional program-
ming �IP� �Sim99, Sim96� �the project is on hold
from Spring 2001 �Roe��. The idea behind IP is
that programming abstractions, which are in IP
denoted as intentions, could live better without
their hosts, �fixed-syntax� programming lan-
guages, because of their limits in the accepted
notations �due to underlying grammars�.

A program in IP is represented by a so-called
intentional tree, whose nodes represent inten-
tion instances. Each intention instance points
to the corresponding intention declaration node
providing a method which specifies the process
of transforming the subtree headed by the in-
tention instance. The executable program is
obtained in a process called reduction in which
the intentional tree is traversed and transformed
according to the rules indicated by intention
declarations until it consists only of executable
nodes. Such a reduced tree is represented in an
intermediate language. The executable code is
generated from this representation.

It would be inconvenient for a human to directly
maintain the intentional tree. This is being per-
formed in a programming environment with a
special graphic editor instead of the usual text
editor. It enables each intention to have its own
graphic representation. Of course, entering a
program in such an environment is quite differ-
ent from entering it in a classic text editor. A
program text, as we are used to it, is a complete
and an unambiguous representation of the pro-
gram. In IP environment this is not so. What
is presented in IP editor is only a view of the
actual program. To illustrate this, consider one
peculiarity: two distinct variables can have the
same name �even if they reside the same scope�.
This is possible because the intentional tree does
not rely on the names to identify intentions; the
names are provided only for developers’ conve-
nience.

Although it can seem so, IP is not intended to
push out the existing programming languages
from the scene. It can import any program in
any programming language if a parser for that
language — in the form of a library — is added
to IP environment.

4.4. Multi-Paradigm Approaches
Compared

The three multi-paradigm approaches presented
in this section are compared in Table 1 ac-
cording to the selected criteria: the concept of
paradigm the approach enforces, a program-
ming language the approach is bound to, and
whether the approach supports the language ex-
tension.

It is important to note that these three approaches
are not antagonistic; they are complementary.
Multi-paradigm design arms us with techniques
for dealing with multiple paradigms when a
multi-paradigm environment is available. In-
tentional programming enables such an envi-
ronment to be created and maintained easier
than it is the case with classical programming
languages. Finally, multi-paradigm program-
ming in Leda demonstrates how four specific
programming paradigms can be combined.

Towards Multi-Paradigm Software Development 145

Paradigm Language Language extension
MP in Leda large-scale Leda no
MPD small-scale any not applicable
IP small-scale none yes

Table 1. The three multi-paradigm approaches compared.

5. Conclusions and Further Work

The concept of paradigm in computer science
in the context of software development has been
analyzed in this article. Two distinct meanings
of paradigm in software development have been
identified and discussed: large-scale and small-
scale.

A survey of selected post-object-oriented para-
digms, namely aspect-oriented approaches and
generative programming, has been presented.
A growing multi-paradigm tendency has been
identified in these approaches. This tendency
has materialized into explicit multi-paradigm
approaches. Three such approaches have been
discussed and compared: multi-paradigm pro-
gramming in Leda, multi-paradigm design for
C��, and intentional programming.

Multi-paradigm approach to software develop-
ment makes the question which paradigm is
the best �and therefore should replace all other
paradigms� a meaningless one. It has a poten-
tial of incorporating all the paradigms at dis-
posal of the solution domain. It is a paradigm
of paradigms: a metaparadigm.

However,multi-paradigm software development
must be further improved and refined if it is
to be used in its full strength. Among the
multi-paradigm approaches considered, multi-
paradigm design �for C���, described in Sec-
tion 4.2, seems to be the most appropriate as
the basis for the future form of multi-paradigm
software development.

Multi-paradigm design can be tailored to any
programming language by applying common-
ality and variability analysis to it. It would
be particularly interesting to establish multi-
paradigm design for AspectJ �see Section 3.2�
since it could help to understand better the re-
lationship between multi-paradigm design and
aspect-oriented programming �although, of co-
urse, AspectJ is not the same as aspect-oriented

programming in general�, which Coplien de-
noted as “the most fully general implementation
of multi-paradigm design possible” �Cop00�.
An initialwork towards establishingmulti-para-
digm design for AspectJ has been reported in
�Vra01�.

The notation used in multi-paradigm design,
which besides informal description embraces
only two types of tables and a kind of sim-
ple graphs, is not appropriate. This is appa-
rent especially during transformational analysis.
Similarly to commonality and variability analy-
sis of multi-paradigm design, feature modeling
also expresses commonalities and variabilities
explicitly, but using a more sophisticated no-
tation �see �CE00� for more details on feature
modeling and feature diagrams�. Both solu-
tion and application domains can be represented
as feature models, as has been demonstrated
in �Vra01�. This eases transformational analysis
and brings multi-paradigm design and genera-
tive programming closer to each other.

Acknowledgments

This work was partially supported by Slovak
Science Grant Agency, grant No. G1�7611�20.
I would like to thank Pavol Návrat for his valu-
able suggestions.

References

�Ale79� C. ALEXANDER. The Timeless Way of Building.
Oxford University Press, 1979. Cited in �Cop99b�.

�AT98� M. AKSIT AND B. TEKINERDOGAN. Solving the
modeling problems of object-oriented languages by
composing multiple aspects using composition fil-
ters. In Proc. of the Aspect-Oriented Programming
Workshop at ECOOP’98, 1998. Available at �Twe�.

�AWB�93� M. AKSIT, K. WAKITA, J. BOSCH,
L. BERGMANS, AND A. YONEZAWA. Abstracting
object-interactions using composition-filters. In

146 Towards Multi-Paradigm Software Development

Proc. of 7thEuropean Conference on Object-
Oriented Programming (ECOPP’93) Workshop,
LNCS 791, pages 152–184, Kaiserslautern, Ger-
many, 1993. Springer. Available at �Twe�.

�BG97� D. BATORY AND B. J. GERACI. Composition vali-
dation and subjectivity inGenVoca generators. IEEE
Transactions on Software Engineering (special is-
sue on Software Reuse), pages 67–82, February
1997. Available at �Pro�.

�Boo94� G. BOOCH. Object-Oriented Analysis and De-
sign with Applications. Addison-Wesley Publishing
Company, second edition, 1994.

�Bud95� T. A. BUDD. Multiparadigm Programming in
Leda. Addison-Wesley, 1995.

�CE00� K. CZARNECKI AND U. EISENECKER. Generative
Programing: Principles, Techniques, and Tools.
Addison-Wesley, 2000.

�CHW98� J. COPLIEN, D. HOFFMAN, AND D. WEISS.
Commonality and variability in software engi-
neering. IEEE Software, 15�6�, November 1998.
Available at �Cop�.

�Cop� J. O. COPLIEN. Home page. http���www�bell�
labs�com�people�cope. Accessed on Novem-
ber 15, 2001.

�Cop99a� J. O. COPLIEN. Multi-paradigm design and im-
plementation in C��. Slides and notes of the
tutorial given at 1st International Conference on
Generative and Component-Based Software Engi-
neering (GCSE’99), Erfurt, Germany, September
1999. Available at �Cop�.

�Cop99b� J. O. COPLIEN. Multi-Paradigm Design for
C++. Addison-Wesley, 1999.

�Cop00� J. O. COPLIEN. Multi-Paradigm Design. PhD
thesis, Vrije Universiteit Brussel, Belgium, 2000.
Available at �Cop�.

�Cza� K. CZARNECKI. Home page.
http���www�prakinf�tu�ilmenau�de��czarn.
Accessed on November 15, 2001.

�Cza98� K. CZARNECKI. Generative Programming:
Principles and Techniques of Software Engineering
Based on Automated Configuration and Fragment-
Based Component Models. PhD thesis, Technical
University of Ilmenau, Germany, 1998. Partially
available at �Cza�.

�Dem� Demeter group. Home page.
http���www�ccs�neu�edu�research�demeter.
Accessed on October 30, 2001.

�GHJV95� E. GAMMA, R. HELM, R. JOHNSON, AND
J. VLISSIDES. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-
Wesley, 1995.

�IBM� IBM Research. Subject-Oriented Programming
home page.
http���www�research�ibm�com�sop. Accessed
on August 15, 2000.

�KE88� T. KOSCHMANN AND M. W. EVENS. Bridging the
gap between object-oriented and logic program-
ming. IEEE Software, 60:36–42, July 1988.

�KLM�97� G. KICZALES, J. LAMPING, A. MENDHEKAR,
C. MAEDA, C. V. LOPES, J.-M. LOINGTIER, AND
J. IRWIN. Aspect-oriented programming. In M. Ak-
sit and S. Matsuoka, editors, Proc. of 11th Euro-
pean Conference on Object-Oriented Programming
(ECOOP’97), LNCS1241, Jyväskylä, Finland, June
1997. Springer. Available at �Xerb�.

�KOHK96� M. KAPLAN, H. OSSHER, W. HARRISON, AND
V. KRUSKAL. Subject-oriented design and the wat-
son subject compiler. In 11th Annual ACM Con-
ference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’96), 1996.
Available at �IBM�.

�Koo95� P. S. KOOPMANS. On the definition and imple-
mentation of the Sina�st language. Master’s thesis,
Dept. of Computer Science, University of Twente,
The Netherlands, August 1995. Available at �Twe�.

�Kuh70� T. S. KUHN. The Structure of Scientific Revolu-
tions. University of Chicago Press, Chicago, 1970.
Czech translation, OIKYMENH, 1997.

�Lie� K. J. LIEBERHERR. Connections between Deme-
ter�adaptive programming and aspect-oriented pro-
gramming. Web document, College of Computer
Science, Northeastern University, Boston, USA.
Available at �Dem�.

�Lie97� K. J. LIEBERHERR. Demeter and aspect-oriented
programming: Why are programs hard to evolve?
Presentation slides, 3rd Conference Smalltalk und
Java in Industrie und Ausbildung (STJA 97), Erfurt,
Germany, 1997. Available at �Dem�.

�LK98� C. V. LOPES AND G. KICZALES. Recent de-
velopments in AspectJ. In Proc. of 12th Eu-
ropean Conference on Object-Oriented Program-
ming (ECOPP’98) Workshops, Demos, and Posters,
LNCS 1543, Brussels, Belgium, July 1998.
Springer. Available at �Xerb�.

�LLM99� K. J. LIEBERHERR, D. LORENZ, AND
M. MEZINI. Programming with aspectual com-
ponents. Technical Report NU-CCS-99-01, Col-
lege of Computer Science, Northeastern University,
Boston, MA, March 1999. Available at �Dem�.

�Mad00� O. L. MADSEN. Towards a unified program-
ming language. In J. L. Knudsen, editor, Proc.
of 14th European Conference on Object-Oriented
Programming(ECOOP 2000), Sophia Antipolis and
Cannes, France, June 2000. Springer LNCS 1850.

�Mer� Merriam-Webster OnLine. Merriam-Webster’s
Collegiate Dictionary. http���www�m�w�com. Ac-
cessed on November 15, 2001.

�Mey97� B. MEYER. Object-Oriented Analysis Software
Construction. Prentice Hall, second edition, 1997.

�NEC� NEC Research Institute. ResearchIndex: The
NECI Scientific Digital Research Library.
http���citeseer�nj�nec�com. Accessed on
November 15, 2001.

Towards Multi-Paradigm Software Development 147

�Náv96� P.NÁVRAT.Acloser look at programming exper-
tise: Critical survey of some methodological issues.
Information and Software Technology,38�1�:37–46,
1996.

�OHBS94� H.OSSHER, W.HARRISON, F. BUDINSKY, AND
I. SIMMONDS. Subject-oriented programming: Sup-
porting decentralized development of objects. In
Proc. of 7th IBM Conference on Object-Oriented
Technology, July 1994. Available at �IBM�.

�Pro� Product-Line Architecture Research group. Home
page. http���www�cs�utexas�edu�users�
schwartz. Accessed on November 15, 2001.

�Roe� L. ROEDER. Home page.
http���www�aisto�com�roeder. Accessed on
November 21, 2001.

�Sim96� C. SIMONYI. Intentional programming — inno-
vation in the legacy age, June 1996. Presented at
IFIP WG 2.1 meeting, available at �Roe�.

�Sim99� C. SIMONYI. The future is intentional. IEEE
Computer, 32�5�:56–57, May 1999.

�SN97� M. SMOLÁROVÁ AND P. NÁVRAT. Software reuse:
Principles, patterns, prospects. Journal of Comput-
ing and Information Technology, 5�1�:33–48, 1997.

�SN00� M. SMOLÁROVÁ AND P. NÁVRAT. Reuse with de-
sign patterns: Towards pattern-based design. In
Y. Feng, D. Notkin, and M. Gaudel, editors, Proc.
Software: Theory and Practice, pages 232–235,
Beijing, China, 2000. PHEI - Publishing House of
Electronics Industry.

�SNB98� M. SMOLÁROVÁ, P. NÁVRAT, AND M. BE-
LIKOVÁ. Abstracting and generalising with design
patterns. In A. G. U. Güdükbay, T Dayar and
E. Gelenbe, editors, Proc. of 13th International
Symposium on Computer and Information Sciences
(ISCIS’98), pages 551–558, Belek-Antalya, Turkey,
1998. IOS Press.

�Twe� Twente Research and Education on Soft-
ware Engineering �TRESE� group. Home page.
http���trese�cs�utwente�nl. Accessed on
November 15, 2001.

�Vra00� V. VRANIĆ. Multiple software development
paradigms and multi-paradigm software develop-
ment. In J. Zendulka, editor, Proc. of 3rd Inter-
national Conference on Information Systems Mod-
elling (ISM 2000), pages 191–196, Rožnov pod
Radhoštěm, Czech Republic, May 2000. MARQ.

�Vra01� V. VRANIĆ. AspectJ paradigm model: A basis
for multi-paradigm design for AspectJ. In J. Bosch,
editor, Proc. of 3rd International Conference on
Generative and Component-Based Software Engi-
neering (GCSE 2001), LNCS 2186, pages 48–57,
Erfurt, Germany, September 2001. Springer.

�VS95� S. VRANEŠ AND M. STANOJEVIĆ. Integrating
multiple paradigms within the blackboard frame-
work. IEEE Transactions on Software Engineering,
21�3�:244–262, 1995.

�Xera� Xerox PARC. AspectJ home page.
http���aspectj�org. Accessed onNovember 15,
2001.

�Xerb� Xerox PARC. Software Design Area home page.
http���www�parc�xerox�com�sda. Accessed on
November 15, 2001.

Received: February, 2001
Revised: November, 2001

Accepted: December, 2001

Contact address:

Valentino Vranić
Department of Computer Science and Engineering,

Faculty of Electrical Engineering and Information Technology
Slovak University of Technology in Bratislava, Slovakia

Ilkovičova 3
812 19 Bratislava

Slovakia
Phone: �421 �2� 602 91 548

Fax: �421 �2� 654 20 587
e-mail: vranic�elf�stuba�sk

WWW: http���www�dcs�elf�stuba�sk��vranic

VALENTINO VRANIĆ received his Bc. �BSc.� in 1997, and his Ing.
�MSc.� in 1999, both in information technology, and both from the
Slovak University of Technology in Bratislava. Since 1999 he is a
PhD student at the Department of Computer Science and Engineering,
Faculty of Electrical Engineering and Information Technology of the
Slovak University of Technology in Bratislava. His main research in-
terests are multi-paradigm software development and aspect-oriented
programming. He is a member of the Slovak Society for Computer
Science.

Appendix B

AspectJ Paradigm Model: A
Basis for Multi-Paradigm
Design for AspectJ

Valentino Vranić. AspectJ paradigm model: A basis for multi-paradigm de-
sign for AspectJ. In Jan Bosch, editor, Proc. of 3rd International Conference
on Generative and Component-Based Software Engineering (GCSE 2001),
LNCS 2186, pages 48–57, Erfurt, Germany, September 2001. Springer.

AspectJ Paradigm Model: A Basis for
Multi-Paradigm Design for AspectJ?

Valentino Vranić

Department of Computer Science and Engineering
Faculty of Electrical Engineering and Information Technology

Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia
vranic@elf.stuba.sk

http://www.dcs.elf.stuba.sk/~vranic

Abstract Multi-paradigm design is a metaparadigm: it enables to select
the appropriate paradigm among those supported by a programming
language for a feature being modeled in a process called transformational
analysis. A paradigm model is a basis for multi-paradigm design. Feature
modeling appears to be appropriate to represent a paradigm model. Such
a model is proposed here for AspectJ language upon the confrontation
of multi-paradigm design and feature modeling. Subsequently, the new
transformational analysis is discussed.

1 Introduction

In this paper the AspectJ paradigm model, a basis for multi-paradigm design for
AspectJ programming language (version 0.8), is proposed. AspectJ is an aspect-
oriented extension to Java [6]. Multi-paradigm design for AspectJ is based on
Coplien’s multi-paradigm design [3] (originally applied to C++ and therefore
known as multi-paradigm design for C++) to a different solution domain. It
employs feature modeling [5] for the task Coplien’s multi-paradigm design used
scope, commonality, variability, and relationship analysis [4].

Scope, commonality, variability, and relationship analysis, which is basically a
scope, commonality, and variability analysis [1] enhanced with the analysis of re-
lationships between domains [4], is used to describe the paradigms (mechanisms
of a programming language) provided by the solution domain (i.e., program-
ming language), as commonality-variability pairings [4, 3]. This way of describ-
ing paradigms is compact, but not expressive enough to meet the requirements
of the transformational analysis, a process of aligning problem domain structures
with available paradigms.

Moreover, the paradigms are often connected, but multi-paradigm design
provides no means to express how. The application of feature modeling instead
of scope, commonality, variability, and relationship analysis could help solve the
problems mentioned here, as will be shown in this paper.

? This work was partially supported by Slovak Science Grant Agency, grant No.
G1/7611/20.

Parameters of Variation Domain Binding Default

. . .

P1

Generalization of P1

(values
P1 can
take)

Variability tables (from application domain SCVR analysis)

Domain D1 (main commonality of D1):

Meaning

D1
P2

Pn

P1

. . .

VariabilityCommonality InstantiationBinding Language Mechanism

. . .

Family table (from solution domain SCVR analysis)

Variability dependency graph

(default
value
for P1)

. . .

Figure 1. Transformational analysis in MPD.

Before presenting the actual AspectJ paradigm model, a critical survey of the
issues regarding the multi-paradigm design for C++ (Sect. 2) and a basic infor-
mation on feature modeling notation is provided (Sect. 3). Also, the relationship
between feature modeling and techniques used in multi-paradigm design is an-
alyzed (Sect. 4). AspectJ paradigm model is then presented (Sect. 5) and the
impact of incorporating feature modeling into MPD on transformational analysis
discussed (Sect. 6). Conclusions and further research directions close the paper
(Sect. 7).

2 Multi-paradigm design for C++

Multi-paradigm design (MPD) for C++ [3] is based on the notion of small-scale
paradigm [8], that can simplistically be perceived as a language mechanism (e.g.,
inheritance), as opposed to the (more common) notion of large-scale (program-
ming) paradigm [2] (e.g., object-oriented programming; see [7] for a comparison
of programming paradigms).

Figure 1 gives an overview of MPD. Scope, commonality, variability, and
relationship (SCVR) analysis is performed on both domains, application and so-
lution, with results summarized in variability (one for each domain) and family
tables, respectively. The variability tables are incapable of capturing dependen-
cies between the parameters of variation (that are also considered to be domains),
so this is enabled by a simple graphical representation called variability depen-
dency graphs. Each row of the family table represents a 4-tuple (Commonality,
Variability, Binding, Instantiation) that determines the language mechanism.

The transformational analysis is actually a process of matching the applica-
tion domain structures with the solution domain ones. First, the main common-
ality of the application domain, as identified by a developer, is matched with a
commonality in the family table. This yields a set of rows in which the individual
parameters of variation are resolved. Since parameters of variation (e.g., working

set management) are too specific to be matched with general variabilities (e.g.,
algorithm) in the family table, each parameter of variation must be generalized
before matching. This seem as a too big step to make at once.

The generalization problem and the fact that the matching is performed be-
tween variability table 3-tuples and family table 4-tuples (variability table has
no instantiation column), are eclipsed by another problem: some C++ language
mechanisms are missing from the paradigm model proposed. For example, classes
and methods (procedures) are not even mentioned. On the other hand, inheri-
tance is embraced in the model. Maybe Coplien considered classes and methods
too trivial to mention, but this has not been stated explicitly.

Moreover, C++mechanisms listed in the family table and negative variability
table1 are inconsistent with those described in the text [3]. Yet another problem
with the paradigm model in MPD is that it does not capture the dependencies
between paradigms. This is an important information, since there are paradigms
that make no sense without other paradigms (e.g., inheritance without classes
in C++).

3 Feature Modeling

Feature modeling is a conceptual modeling technique used in domain engineering.
The version of the feature modeling whose notation is described here comes
from [5].

Feature diagrams are a key part of a feature model. A feature diagram is
basically a directed tree with the edge decorations. The root represents a concept,
and the rest of the nodes represents features. Edges connect a node with its
features. There are two types of edges used to distinguish between mandatory
features, ended by a filled circle, and optional features, ended by an empty circle.
A concept instance must have all the mandatory features and can have the
optional features.

The edge decorations are drawn as arcs connecting the subsets of the edges
originating in the same node. They are used to define a partitioning of the
subnodes of the node the edges originate from into alternative and or-features.
A concept instance has exactly one feature from the set of alternative features.
It can have any subset or all of the features from the set of or-features.

The nodes connected directly to the concept node are being denoted as its
direct features; all other features are its indirect features, i.e. subfeatures. The
indirect features can be included in the concept instance only if their parent
node is included.

An example of a feature diagram with different types of features is presented
in Fig. 2. Features f1, f2, f3, and f4 are direct features of the concept c, while
other features are its indirect features. Features f1 and f2 are mandatory al-
ternative features. Feature f3 is an optional feature. Features f5, f6 and f7 are
mandatory or-features; they are also subfeatures of f3.

1 A table that summarizes language mechanisms corresponding to exceptions to vari-
ability.

c

f1 f2 f3 f4

f5 f6 f7

Figure 2. A feature diagram.

4 Applying Feature Modeling to Multi-Paradigm Design

Feature modeling is not unlike SCVR analysis. SCVR analysis, the heart of
MPD, is based on the notions of commonality and variability (hence the name),
and the notions of common and variable features is not unknown to feature
modeling.

A common feature of a concept is a feature present in all concept instances,
i.e. there must be a path of (pure) mandatory features leading from the concept
to the feature. All other features are variable, i.e. any optional, alternative or
or-feature is variable. The features to which variable features are attached are
called variation points.

The scope in SCVR analysis, defined as a set of entities, is nothing but the
concept in an exemplar representation.2 The SCVR commonalities (assumptions
held uniformly across the scope) and variabilities (assumptions true for only some
elements in the scope) map straightforwardly to common and variable features
of feature modeling, respectively.

The feature modeling enables to represent SCVR analysis commonalities and
variabilities hierarchically and thus to express relationships among variabilities.
For a solution domain SCVR analysis this means enabling to express how the
paradigms it provides are related.

The most important results of SCVR analysis are provided in variability and
family tables and variability dependency graphs.

4.1 Variability and Family Tables

Table 1 aligns the terms of feature modeling with its variability and family table
counterparts (the columns). Only a fraction of the information provided usually
by a feature model covers most of the needs of variability and family tables.

The parameters of variation are sometimes considered as subdomains (es-
pecially in variability dependency graphs). This is consistent with the feature
modeling; the feature can be viewed as a concept.

Binding mode in feature modeling corresponds to binding time in MPD.
The difference is that the set of binding times used in MPD is richer than the
one used in feature modeling. This is due to a fact that the binding times in
MPD are the actual binding times of a solution domain, like compile time, run

2 The exemplar view of a concept is the one in which a concept is defined by a set of
its instances [5].

Table 1. Feature modeling and MPD variability and family tables.

Feature modeling Variability tables Family tables

concept commonality domain language mechanism
common feature commonality
variable feature variability
variation point parameter of variation
alternative features domain (of values)
binding mode binding binding
semantic description, rationale meaning
default dependency rules default (value)
additional information instantiation

time, etc. Feature modeling provides more abstract binding times, namely static,
changeable, and dynamic binding. Each MPD binding time falls into one of these
categories: source time and compile time bindings are static binding, link (load)
time binding is a changeable binding, and run time binding is a dynamic binding.

The binding time applies only to variable features. It should be understood
only as an auxiliary information to the transformational analysis. There is no
notion of a unique binding time for a whole concept, as it is the case with
a paradigm in MPD. Binding time should be indicated where it belongs—at
variable features.

The feature modeling provides no counterpart for the family table column
“instantiation”, which indicates whether a language mechanism provides instan-
tiation. This information should be provided as an attribute among the rest of
the information associated with a feature model.

Possible values for instantiation in MPD are: yes, no, not available (n/a), and
optional. It seems that no and n/a values are redundant: if a language mechanism
does not provide instantiation, it can be only because the instantiation is not
available for that mechanism. The yes value indicates that a mechanism is used
only with instantiation, while optional means that it can be used both with
instantiation and without it (a class doesn’t have to be instantiated to make a
use of the static fields and methods). Furthermore, the optional value does not
make sense in the application domain—the instantiation is either needed or not.

4.2 Variability Dependency Graphs

In variability dependency graphs, the nodes represent domains and the directed
edges represent the “depends on (a parameter of variation)” relationship; domain
corresponds to a concept or feature (considered as a concept).

Parts of variability dependency diagrams can be derived from the feature
diagrams. Commonality domain depends on its parameters of variation, or—
in the feature modeling terminology—concept depends on its variation points.
But, generally speaking, while the relationships between domains in variability

dependency graphs have a particular semantics, this cannot be said for the re-
lationships in feature diagrams. Moreover, the feature diagrams are trees, not
general graphs. All this suggests that variability dependency graphs should be
kept as a separate notation. For each domain from the variability dependency
graphs there should be a corresponding concept or feature in the feature model.

5 AspectJ Paradigms

AspectJ is an interesting programming language to explore in the sense of MPD
because it supports two large-scale paradigms: object-oriented programing and
aspect-oriented programming. However, large-scale view is not sufficient to make
a full use of the programming language in the design. We must turn to a finer
granularity and find out what small-scale paradigms, i.e. language mechanisms,
AspectJ provides (referred to as paradigms in the following text). As was dis-
cussed in the previous sections, feature modeling will be employed to describe
these paradigms.

Figure 3 shows a feature diagram of AspectJ. The paradigms in the feature
diagram are indicated by a capitalization of the initial letter (e.g., Class). Bind-
ing time is indicated at variable features; if not, source time binding is assumed.
Sometimes binding time of a feature depends on other features, as indicated
in the diagram. In the text, the names of paradigms are typeset in the bold-
face style. The root of the feature diagram is AspectJ as a solution domain.
It provides the paradigms that can be used, which is indicated by modeling the
topmost paradigms as optional features.

The paradigm model establishes a paradigm hierarchy. Each paradigm is
presented in a separate diagram as an alternative to the one big overall diagram.
Wherever a root node of a paradigm tree is present, it is as if a whole tree was
included there.

6 Transformational Analysis

Transformational analysis—aligning application domain structures with the so-
lution domain ones—is the key part of MPD. The basic idea of how the trans-
formational analysis is to be performed when these structures are represented
by feature models is presented by the means of an example. Afterward, some
general observations about the process of transformational analysis are given.

6.1 An Example: Text Editing Buffers

Text editing buffers3 represent a state of a file being edited in a text editor. Text
editing buffer caches the changes until user saves the text editing buffer into
the file. Different text editing buffers employ different working set management

3 The example discussed here is an adapted version of the text editing buffers example
from [3].

AspectJ

AspectInterfaceClass Inheritance

Interface

constants declarations
of Methods

Aspect

AdvicesIntroductions

state

fields Methods inner

Advice

before

static join points dynamic join points

pointcutafter around context

Inheritance

base type implements

subtype

extends

Class Interface Aspect

Class

state Overloading

innerfields Methods

…

…

Class Interface Aspect

Overloading

name of
Method

arguments
of Method

body of
Method

number type

return
value

…
[compile time]

[run time]

[run time]

[run time]

Method

return valuearguments static

non-static
type value type value

……… …
[run time] [run time]

body

…
static: [source time]
non-static: [run time]

[compile time]

[compile time]

Introduction

types

Classes Interfaces

field Method

… …
[compile time]

… …

Figure 3. AspectJ paradigm model.

schemes and use different character sets. All text editing buffers load and save
their contents into the file, maintain a record of the number of lines and charac-
ters, the cursor position, etc. The text editing buffer feature diagram is presented
in Fig. 4. In the text, the feature names are distinguished by typesetting in the
italics style. For simplicity, binding time and instantiation were not considered.

Now that feature models of both application and solution domains are avail-
able, we can proceed with the transformational analysis. We start with the un-
changeable part of the application domain, i.e. the topmost common features.
At this level a basic class or classes might be expected. The features number of
lines, number of characters, and cursor position correspond to fields of the class
paradigm. On the other hand, yield data, replace data, load file, and save file

ASCII

Character Set

UNICODE

…

replace data

File
…

read

write

Unix File

database yield data

save file

number of characters

number of lines

cursor position

load file

Working Set Management

whole file

whole page

LRU fixed

yield data replace data

yield data

replace data

yield data

replace data

…

Text editing buffer

debug

production File DC

Character Set DC

Working Set
Management DC

Debugging Code

read

write

read

write
name

status

contents

Figure 4. Text editing buffers feature diagram.

correspond to method paradigm. Accordingly, text editing buffer should be a
class.

The rest of the topmost features are, apparently, variation points. The first
one is file. All the files are read and written, but there are several file types and
each one is read and written in a specific way. However, what is being read and
written remains the same: file name and contents. We would probably expect
to get the status of reading and writing. Thus we reached the leaves of the
file subtree. If we compare these leaves to those of AspectJ feature diagram,
they best match with arguments and return value. This brings us to method
paradigm for read and write features.

We go up one level and discover that database, RCS file, TTY, and Unix
file features match with the class paradigm. Accordingly, we expect that file
would be a class too; so we match it with the class paradigm. The relationship
between file and the file types matches with inheritance. Analogously, character
set would be a class, and each type of it would be a subclass of that class.

The situation is similar with working set management: each type of working
set management would be a class. But there is one difference: if we try to match it
with inheritance further, we discover that we can match the whole text editing
buffer with base type (because of yield data, replace data). So the working set
management would be a primary differentiator.

Debugging code is somewhat special. It should be possible to turn it on and
off easily (to obtain debug and production version, respectively). It is intended
for file, character set, and working set management debugging; there is a special

debugging code for each of those. For example, we would like to know when the
file is being read from and written to. We already matched file with class and
reading and writing with method, so it seems we must look for such a paradigm
that can influence the execution of methods. There is only one such paradigm:
advice. As advice is available only in aspect paradigm, the file debugging code,
character set debugging code, and working set management debugging code will
be aspects. File debugging code will provide two advices, one for reading and
the other for writing a file, and character set debugging code only one, as only a
name of character set being used has to be announced.

Things are slightly more complicated with working set management debug-
ging code, as we are interested in the general operations of working set manage-
ment, as well as in the specific operations of each type of it (not displayed in the
feature diagram). This points us to inheritance: working set management de-
bugging code matches with a base aspect, while each of its or-subfeatures matches
with a sub-aspect.

6.2 Transformational Analysis Outline

The text editing buffers example disclosed some regularities in the process of
transformational analysis. The matching was performed starting at leaves to-
wards the root. Rarely the leaves were considered alone. Mostly, a feature was
considered together with its first-level subfeatures. Multiple nodes from the ap-
plication domain can match with a single solution domain node if its name is in
plural. Matching of nodes is done according to the type of the nodes, e.g. the
overall match of mandatory or-nodes is successful if a match has been found for
one or more leaves.

The matching is interdependent. If two features depend on each other, then
it matters what paradigm the first feature was matched with. In other words,
matching a feature with a paradigm constrains the further design.

Up to now, nothing has been said about how the actual matching of two
nodes is performed. This can be compared to the matching between the do-
main commonality and parameters of variation from the variability table to the
commonalities and variabilities from the family table. Two nodes match if they
conceptually represent the same thing; do they—it is up to the developer to
decide. However, a conceptual gap is significantly smaller than in the original
MPD where developer was forced to make such decisions at a very high level of
abstraction.

7 Conclusions and Further Research

The table representation of the application and solution domains used in multi-
paradigm design for C++ performs unsatisfactorily during the transformational
analysis. Moreover, the C++ paradigm model is incomplete. The application
of feature modeling instead of scope, commonality, variability, and relationship

analysis leads to a more appropriate representation—the feature model—which
enables to represent relationships between paradigms.

In this paper, such a paradigm model of AspectJ is proposed. The devel-
opment of AspectJ paradigm model was based on an extensive comparison of
feature modeling and multi-paradigm design (for C++) presented in Sect. 4.
The use of the AspectJ paradigm model—a new transformational analysis—was
demonstrated on text editing buffers example (Sect. 6) and then the outline of
the process was drawn. The process of transformational analysis is more visible
and easier to perform with feature models than with tables.

The AspectJ paradigm model presented in this paper provides a basis for
further research on multi-paradigm design for AspectJ and its subsequent im-
provements are expected especially regarding the transformational analysis. The
relationship of negative variability tables used in multi-paradigm design and fea-
ture modeling has to be investigated. Variability dependency graphs have to be
incorporated into the transformational analysis. The transformational analysis
results should be noted in a more appropriate form than a textual representa-
tion is. A graphical notation would be suitable here, which points to the need
for a CASE tool. Besides these immediate issues, the discussion of scope, com-
monality, variability, and relationship analysis and feature modeling has tackled
a deeper question of the relation of multi-paradigm design and generative pro-
gramming [5].

References

[1] James Coplien, Daniel Hoffman, and David Weiss. Commonality and variability in
software engineering. IEEE Software, 15(6), November 1998. Available at http:

//www.bell-labs.com/people/cope (accessed on May 14, 2001).
[2] James O. Coplien. Multi-paradigm design and implementation in C++. In Proc. of

GCSE’99, Erfurt, Germany, September 1999. Presentation slides and notes. Pub-
lished on CD. Available at http://www.bell-labs.com/people/cope (accessed on
May 14, 2001).

[3] James O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.
[4] James O. Coplien. Multi-Paradigm Design. PhD thesis, Vrije Universiteit Brussel,

Belgium, 2000. Available at http://www.bell-labs.com/people/cope (accessed
on May 14, 2001).

[5] Krysztof Czarnecki and Ulrich Eisenecker. Generative Programing: Principles,
Techniques, and Tools. Addison-Wesley, 2000.

[6] Gregor Kiczales et al. An overview of AspectJ. In Proc. of ECOOP 2001—15th
European Conf. on Object-Oriented Programming, Budapest, Hungary, June 2001.
Available at http://aspectj.org (accessed on May 14, 2001).

[7] Pavol Návrat. A closer look at programming expertise: Critical survey of some
methodological issues. Information and Software Technology, 38(1):37–46, 1996.

[8] Valentino Vranić. Towards multi-pradigm software development. Submitted to
CIT, 2001.

Appendix C

Multi-Paradigm Design with
Feature Modeling

Valentino Vranić. Multi-paradigm design with feature modeling. Computer
Science and Information Systems Journal (ComSIS), 2(1):79–102, June 2005.

UDC 681.5.015

Multi-Paradigm Design with Feature Modeling

Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technology

Slovak University of Technology, Ilkovičova 3, 84216 Bratislava 4, Slovakia
vranic@fiit.stuba.sk, http://www.fiit.stuba.sk/~vranic/

Abstract. In this article, a method for selecting paradigms, viewed as solution
domain concepts, appropriate for given application domain concepts is
proposed. In this method, denoted as multi-paradigm design with feature
modeling, both application and solution domain are modeled using feature
modeling. The selection of paradigms is performed in the process of feature
modeling based transformational analysis as a paradigm instantiation over
application domain concepts. The output of transformational analysis is a set
of paradigm instances annotated with the information about the
corresponding application domain concepts and features. According to these
paradigm instances, the code skeleton is being designed. The approach is
presented in conjunction with its specialization to AspectJ programming
language. Transformational analysis performed according to the AspectJ
paradigm model enables an early aspect identification.

1. Introduction

A quarter of a century since the Robert W. Floyd’s Turing Award Lecture
on paradigms of programming [1], there is no common agreement on the
precise meaning of the term paradigm in the field of software development.
In spite of that, it has been widely used to denote any distinctive enough
approach to programming or software development in general. However, as
software has finally to be expressed in the form of a program written in one
of the programming languages, it is not surprising that the term paradigm
is related mostly to programming languages as such.

Programming languages are often categorized according to paradigms
they support. This is being done especially according to some of the more
widely accepted paradigms, namely procedural, functional, logical, and
object-oriented programming. Having several paradigms, each of which has
some advantages over the other ones, has naturally lead to the idea of
integrating or combining several programming languages, each of which
supports some paradigm, into one,multi-paradigm programming language.

Valentino Vranić

t

It is important to note that advantages of a paradigm are relative to the
problem being solved. A multi-paradigm programming language itself does
not help in multi-paradigm design, which is concerned with the issue of
selecting a paradigm appropriate for the problem being solved. This issue is
addressed by the method proposed in this article, multiparadigm design
with feature modeling (MPDFM). MPDFM is based on the small-scale
paradigm view, in which paradigms are understood as solution domain
concepts. A solution domain is a domain in which a solution is to be
expressed. Although some intermediate design notations may be considered
as solution domains, too, the ultimate solution domain is a programming
language. In a programming language understood as a solution domain,
solution domain concepts correspond to programming language
mechanisms.

By sticking to the small-scale paradigm view, MPDFM avoids the
problems
connected with the lack of precise definitions of the popular, largescale
paradigms [2,3]. Small-scale paradigms can be represented as
configurations of commonality and variability [3]. For this, MPDFM employs
fea ure modeling, which enables to explicitly deal with variability of
concepts. Feature modeling is applied also to the application domain, the
domain being solved. The two feature models, the application and solution
domain one, enter transformational analysis in which application to
solution domain mapping is being established. This mapping is expressed
in the form of yet another feature model consisting of the paradigm
instances annotated with the information about corresponding application
domain concepts and features which determines the code skeleton. The
whole process is captured in Fig. 1. In a detailed design and
implementation that follows MPDFM, methods specific to the large-scale
paradigms pointed to by the small-scale paradigms selected in
transformational analysis can be employed.

The rest of the article is structured as follows. Section 2 provides the
necessary information on feature modeling in MPDFM. Section 3 describes
solution domain feature modeling and shows its use to capture aspect-
oriented mechanisms of the AspectJ programming language. Section 4
describes transformational analysis based on feature modeling and
demonstrates its application using the AspectJ paradigm model. Section 5
describes briefly code skeleton design. Section 6 discusses related
approaches. Section 7 concludes the article.

80 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

Fig.1. Multi-paradigm design with feature modeling

2. Feature Modeling for Multi-Paradigm Design

Feature modeling is a conceptual domain modeling technique in which
concepts in a domaind, understood broadly as an area of interest [4,5], are
being expressed by their features taking into account feature
interdependencies and variability in order to capture concept
configurability.

The origins of feature modeling can be traced back to FODA method [6].
Apart from the mentioned Czarnecki-Eisenecker generative programming,
FODA feature modeling has been adopted and adapted by several other
domain engineering approaches to software development [7,8,9,10,11,12].
Some work has been devoted primarily to extending feature modeling as
such (with respect to UML) [13,14], or even to formalize it [15].

Feature modeling used in MPDFM is based on the Czarnecki-Eisenecker
feature modeling employed in generative programming [16,17]. It has been
adapted and extended to fit the needs of MPDFM by enabling concept
instantiation with respect to instantiation time with concept instances
represented by feature diagrams. Further, it brings in parameterization in
feature models, enables to represent constraints among features by logical
expressions, and introduces concept references to enable to deal with
complex feature models (see [18] for details).

This section will provide the necessary information on feature modeling
in MPDFM invoking an example of an application domain concept on which
further aspects of the method will be demonstrated. An exhaustive

ComSIS Vol.2, No.1, June 2005 81

Valentino Vranić

r

description of the feature modeling for multi-paradigm design may be found
in [18,19].

Feature modeling is based on the notions of concept and feature. A
concept is an understanding of a class or category of elements in a domain.
Individual elements that correspond to this understanding are called
concept instances. A feature is an important property of a concept [17]. In
general, a feature may be common, which means it is present in all concept
instances, or variable, which means it is present only in some concept
instances.

2.1. Feature Diagrams

Feature diagrams are the most important part of a feature model which
also may contain information associated with concepts and features and
constraints and default dependency rules associated with feature diagrams.
An example of a feature diagram is presented in Fig. 2. This figure shows a
feature diagram of the text editing buffer concept (adapted from [20],
originally inspired by [4]). A text editing buffer represents the state of a file
being edited in a text editor. This is modeled by a mandato y feature (File),
which is denoted by a filled circle ended edge. Each text editing buffer
employs some memory management scheme to deal with files larger than
the working memory (Memory Management), which is also modeled by a
mandatory feature. Also, each text editing buffer loads and saves its
contents into a file, maintains a record of the number of lines and
characters, the cursor position, etc., which is modeled by further mandatory
features.

Fig.2. The feature diagram of the T x Editing Bu fer concept e t f

82 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

On the other hand, debugging code might be useful during the development
of the text editing buffer, but would probably be undesirable in the final
product. Thus, it is modeled by an optional feature (Debugging Code),
which is denoted by an empty circle ended edge.

A text editing buffer will use exactly one of the available character sets
(Character Set).This is specified by alternative features (ASCII,
UNICODE...), which are denoted by an empty arc. Note the brackets
around the Character Set feature’s name. This means that it is an open
feature; it is expected to have further variable subfeatures. In this case,
they would represent other character sets in the group of alternative
features, which is indicated by ellipsis placed at this group.

The alternative features just described are actually mandato y
alternative features. There are also op ional alterna ive features of which
one or none must be selected. A mixed mandatory-optional alternative
feature group is also possible, but its semantics are the same as if all the
features were optional alternative.

r
t t

1

Feature diagrams may also contain or-features, which are denoted by a
filled arc (see Fig. 3b). Any non-empty subset or all of the features can be
selected from the set of or-features. Having an optional features in a group
of or-features would change all its features into simple optional features.

A concept can be referenced as a feature in another or even in its own
feature diagram, which is equivalent to the repetition of its feature diagram
n the place of the reference. The mark2 follows the names of concept
references in order to distinguish them from the rest of the features. The
features Memory Management , File , and Debugging Code in Fig.
2 represent concept references; Fig. 3 shows the feature diagrams of the
corresponding concepts.

Note that, with exception of feature references, feature names have no
absolute meaning and equally named features may represent different
things.

However, no names should be repeated among sibling features, nor among
concepts that belong to one feature model.

2.2. Feature Binding

For a variable feature either binding time or binding mode has to be
specified. The binding time describes when a variable feature is to be
bound, i.e. selected to become a mandatory part of a concept instance.

1 This process is being denoted as feature diagram normalization [17].
2 For technical reasons, presented as (R) in diagrams.

ComSIS Vol.2, No.1, June 2005 83

Valentino Vranić

Fig.3. File (a) and Debugging Code concept (b) feature diagram

It is determined in terms of the binding times available in the solution
domain. These usually include: source time, compile time, link time, and
run time [4].

At the time of application domain modeling, the solution domain may be
unknown or it may be undesirable to pollute the application domain feature
model with solution domain details. In that case, using the binding mode
instead of the binding time is more appropriate. The binding mode
describes how a variable feature is bound from the perspective of a running
program. A variable feature may be bound statically, in which case it
cannot be unbound and rebound, or dynamically, in which case its binding
is fully controlled at run time. Other, more specific binding modes may be
defined as well, e.g. changeable binding as an optimized dynamic binding
[17].

Consider again the Text Editing Buffer concept (presented in Fig. 2); all
its variable features are statically bound. The alternative file type features
of the File concept in Fig. 3a are bound dynamically because we need to be
able to change the output file type at run time. On the other hand, it is
sufficient to determine the presence of the debugging code parts at source
or compile time, so the corresponding or-features in Fig. 3b are bound
statically.

84 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

2.3. Constraints Associated with Feature Diagrams

Feature diagrams define the main constraints on feature combinations in
concept instances. Since feature diagrams are represented as trees, in all
but simplest cases it is impossible to express all the constraints solely by a
feature diagram. Remaining constraints are introduced in a list of
constraints associated with the feature diagram. Also, a list of default
dependency rules may be associated with each feature diagram in order to
specify which features should or should not appear together by default
(details available in [18,19]).

To avoid ambiguities, constraints are specified by predicate logic
expressions. In such an expression, a feature name f stands for is in
instance(f), a predicate which is true if f is embraced in the concept
instance, and false otherwise. Feature names should be qualified to avoid
name clashes, but since each expression is associated with a specific feature
diagram, the domain and concept name are unnecessary. Some examples of
constraints associated with feature diagrams will be introduced in Sect. 3.2.

2.4. Concept Instantiation

A general definition of a concept instance with respect to instantiation time
is given here. An instance I of the concept C at time t is a C’s specialization
achieved by configuring its features which includes the C’s concept node
and in which each feature whose parent is included in I obeys the following
conditions:

1. All the mandatory features are included in I.
2. Each variable feature whose binding time is earlier than or equal to t is

included or excluded in I according to the constraints of the feature
diagram and those associated with it. If included, it becomes
mandatory for I.

3. The rest of the features, i.e. the variable features whose binding time is
later than t, may be included in I as variable features or excluded
according to the constraints of the feature diagram and those
associatedwith it. The constraints (both feature diagram and
associated ones) on the included features may be changed as long as
the set of concept instances available at later instantiation times is
preserved or reduced.

4. The constraints associated with C’s feature diagram become associated
with the I’s feature diagram.

ComSIS Vol.2, No.1, June 2005 85

Valentino Vranić

e
e

A concept may be instantiated in a top-down or a bottom-up fashion. The

top-down instantiation starts by the inclusion of the concept node; then
inclusion of each feature whose parent has been included is considered. The
bottom-up instantiation starts at leaves and proceeds towards the root; a
feature may be considered for inclusion only if the set of its features
selected for inclusion is correct according to the feature variability defined
by the feature model.

A concept instance is represented by a feature diagram derived from the
feature diagram of the concept by showing only the features included in the
concept instance. A concept instance is regarded as a concept and as such
may be a subject of further instantiation.

During instantiation, concept references are treated as regular features.
As such, they may appear in concept instances if they are not replaced by
the diagrams of concepts they reference prior to instantiation.

In case of an open feature whose form of expected variable subfeatures
is specified, the instance may contain any number of the subfeatures of the
specified form. If this description is missing (as with the Character Set
feature in Fig. 2), during instantiation, an open feature is considered as any
other non-open feature.

3. Solution Domain Feature Modeling

This section describes how to apply feature modeling to a solution domain
understood as a programming language in order to obtain its paradigm
model, which is necessary for performing transformational analysis. Recall
that the term paradigm in MPDFM denotes a solution domain concept,
which, in turn, corresponds to a programming language mechanism.
Solution domain feature modeling starts with paradigm identification. The
paradigms that can be used directly at the topmost level of programs, i.e.
dir ctly usable paradigms, are identified first, e.g. the class paradigm in
AspectJ programming language [21]. All other paradigms are indir ctly
usable paradigms. In AspectJ, an example would be the method paradigm,
which, unlike the class paradigm, can be used only inside of a class or
aspect.

There may be several levels of indirectly usable paradigms. However,
the first-level indirectly usable paradigms would probably be sufficient.
This issue must be solved with respect to the purpose of the paradigm
model: its use in transformational analysis. It is not feasible to model all

3 The AspectJ paradigm model is valid for the AspectJ language definition version 1.1.1
(which remains unchanged in the version 1.2 [21]).

86 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

the language constructs as paradigms. Much of such low-level paradigms
would never be used during transformational analysis because the
application domain feature model would be far less detailed. For example, a
method in AspectJ may contain an assignment construct, so there could be
the assignment paradigm. On the other hand, an application domain
feature model would hardly mention assignments, so having the
assignment paradigm in the paradigm model is futile.

After identifying directly usable paradigms, binding times (see Sect. 2.2)
of the solution domain should be identified. Following that, the first-level
paradigm model may be created (Sect. 3.1) and the paradigms may finally
be modeled (Sect. 3.2).

3.1. First-Level Paradigm Model

The directly usable paradigm references should appear as features of the
solution concept. If a paradigm may appear more than once in a program,
its reference should be introduced in the solution domain feature diagram
in plural, otherwise in singular.4 The variability of the paradigm references
should be determined according to the restrictions posed by the
programming language. If the paradigm reference is a variable feature, its
binding time (usually source time) should be determined, too. Finally,
initial constraints among paradigms may be determined.

As example, consider the feature diagram of the first-level AspectJ
paradigms in Fig. 4. All the directly usable paradigms of AspectJ are
modeled
as source time bound optional features of an AspectJ program as a solution
concept. Modeling of these directly usable AspectJ paradigms leads to
indirectly usable paradigms (which would appear as their features), namely
method, overloading, pointcut, inter-type declaration, and advice.

Fig.4. First-level AspectJ paradigms

4 Plural forms should be defined with respect to singular forms (see [18,19] for details).

ComSIS Vol.2, No.1, June 2005 87

Valentino Vranić

3.2. Modeling Paradigms

Each paradigm is considered to be a concept and thus it is presented in a
separate feature diagram created according to the solution domain related
information. Paradigms that may be used in the paradigm being modeled
should be referenced by it. If a paradigm enables instantiation, it should be
modeled as a feature (or features). If the feature is variable, its binding
time has to be selected among the binding times identified in the solution
domain. If none is appropriate, a new binding time should be established.

After creating an initial feature model of a paradigm, feature
combinations and interactions should be analyzed to determine constraints
and, possibly, identify new features (as proposed in [17] for feature
modeling in general).

If some feature’s subtree is repeated, it should be factored out as a
concept into a separate feature diagram and referenced as needed. In a
solution domain feature model, this concept may be a paradigm. If it
doesn’t appear to be a paradigm, it may be considered as an auxiliary
concept.

Much of the paradigms correspond to the main constructs, i.e.
structures, of the programming language (e.g., the class in AspectJ). In
transformational analysis, there may be an application domain concept
node that matches with the root of such a structural paradigm. Thus, it is
possible that no application domain node will match with the root of a
structural paradigm. This is especially inherent to the aspect paradigm in
AspectJ, which will be introduced in Sect. 3.2.5

Besides structural paradigms, there are also paradigms that are about
the relationship between some language structures. AspectJ examples
include inheritance (a relationship between classes), overloading (a
relationship between methods), and advice (a relationship between the
advice code, i.e. its body, and the join points it affects). In transformational
analysis, no application domain node will match with the root of such a
relationship paradigm.

Three related paradigms from the AspectJ paradigm model—the aspect,
advice, and pointcut paradigm—will be presented here to illustrate the
process of paradigm modeling.

5 Examples of aspect paradigm instances without application domain nodes matching their roots
may be found in [18]

88 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

Fig.5. The aspect paradigm in AspectJ

Aspect. The aspect paradigm (see Fig. 5) enables to articulate related
structure and behavior that crosscuts otherwise possibly unrelated classes,
interfaces, and other aspects (only static aspects are allowed) into a named
unit. An aspect is similar to a class in the sense that it also embodies
related structure (fields) and behavior (methods). But this structure and
behavior is used only to support the crosscutting, which is achieved by two
paradigms an aspect is a container of: the advice and inter-type
declaration. In addition, the pointcut paradigm is used to specify the join
points (where the aspect is to be attached).

As classes, aspects can also be instantiated, but the instantiation is
automatic. By default, an aspect is a singleton, i.e. there is a single aspect
per Java virtual machine. Furthermore, it is possible to declare that an
aspect instantiates per each of the specified objects (executing or target
ones) at any of the join points specified by a pointcut or per each flow of
control (as it is entered or below it) of the join points specified by a pointcut.

Aspects can be privileged in order to override the access rules of the
elements they crosscut. The aspect paradigm enables employing (inside of
it) the same paradigms as the class paradigm beside inter-type declarations
and pointcuts, which have a special position in it.

ComSIS Vol.2, No.1, June 2005 89

Valentino Vranić

The parts of an aspect (without considering inheritance) are known at
source time, which means that all the variable features presented in Fig. 5
have source time binding.

The following constraint is associated with the aspect paradigm feature
diagram:

final _abstract

which means that the aspect is either final, or abstract.

Fig.6. The advice (a) and pointcut (b) paradigm in AspectJ

Advice. Inside of an aspect, the advice paradigm (see Fig. 6a) may be used
to articulate the actions to be performed in the context of the join points
specified by the pointcut. An advice provides a piece of code (in its body) to
be run before, after, or in place (around) of a pointcut. The body of an advice
is similar to the body of a method. It can use the join points context exposed
by its pointcut.

An after advice can run after the execution of each join point specified by
the Poin ut tc completes normally, after it throws an exception, or after it
does either one. In the last case, no matching based on the type being
returned or exception being thrown can be made.

An around advice returns a value which will replace the original one at
each join point specified by the Pointcu t . The original join point return
value may also be captured and returned, modified or not, by letting the
original join point execute inside of the advice body. However, this AspectJ
paradigm model does not go into such details as they could hardly be used
in the transformational analysis.

Pointcut. The pointcut paradigm (see Fig. 6b) enables to specify the join
points. Two kinds of join points exist: static and dynamic join points. Both

90 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

are specified at source time, but are really determined later; static join
points, such as method calls or executions, are determined at compile time,
while dynamic join points, such as all method calls performed by an object
of some type, may be determined only at run time. This means that the
Static join points.Join points feature has compile time binding, while
Dynamic join points.Join points has run time binding.

A pointcut is a logical expression formed out of primitive pointcuts and
the pointcuts already defined. It can be named or not (if it is specified
directly in the place of its use). A pointcut can expose the context, i.e. an
object or its fields, caught by some of the primitive pointcuts.

The following two constraints are associated with the pointcut paradigm
feature diagram:

abstract _Body
Name,Access

which mean that an abstract pointcut cannot have a body (or vice versa),
and that an access type can and must be specified in case a pointcut is
named, respectively.

Fig.7. The type (a) and access (b) concept

The two auxiliary concepts referenced in the paradigms mentioned above
are presented in Fig. 7. The variable features in Figures 5–7 whose binding
time has not been explicitly introduced have source time binding.

4. Transformational Analysis

Transformational analysis in MPDFM is a process of finding the
correspondence and establishing the mapping between the application and
solution domain concepts. It is performed as a paradigm instantiation over
application domain concepts at source time. The input to transformational
analysis are two feature models: the application domain one and the
solution domain one. The output of transformational analysis is a set of
paradigm instances annotated with the information about corresponding
application domain concepts and features. Before presenting the process of
transformational analysis and providing an example of it, the key issue of

ComSIS Vol.2, No.1, June 2005 91

Valentino Vranić

it—paradigm instantiation over application domain concepts—will be
explained.

4.1. Paradigm Instantiation Over Application Domain Concepts

In a paradigm instantiation over application domain concepts, a paradigm,
i.e. a solution domain concept, is being instantiated in a bottom-up fashion
(see Sect. 2.4) with inclusion of some of the paradigm nodes being
stipulated by the mapping of the nodes of one or more application domain
concepts to them in order to ensure the paradigm instances correspond to
these application domain concepts.

Not all nodes of application domain concepts need to be mapped. An
inner6 application domain concept node may act as an auxiliary node to
ease the categorization of subfeatures. A feature represented by such a
node may have no counterpart in the solution domain.7 Such nodes will be
denoted as mediato y. r

Further, there may (and usually will) be a mismatch in detailedness
between the application and solution domain feature model. If solution
domain feature model is more detailed, features of some paradigms or even
some indirectly usable paradigms will not be mapped to in
transformational analysis, but in spite of that they may be included in
paradigm instances if determined so from the application domain concept
semantics. In case of the application domain feature model is more detailed,
there may be no corresponding nodes of the solution domain feature model
for some of the non-mediatory nodes or even whole application domain
concepts.

Any other non-mediatory feature diagram node of an application domain
concept has to be mapped to the corresponding node of a paradigm
instance. In general, only the correspondence between the nodes of the
same category may be considered, i.e. between two concepts or between two
features (note that concept references are also features). Further, semantics
of the two nodes have to correspond to each other.

The binding times of the nodes being mapped must correspond. For the
purposes of the binding time comparison, mandatory features are treated
as if they have the earliest binding time the solution domain provides
(which is usually the source time, as discussed in Sect. 2.2). The binding

6 An inner node is a non-root and non-leaf node.
7 However, there may be other mappings in which such a feature would be mapped.

92 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

tme correspondence may mean equality, but it may be relaxed to mean that
the binding time of the paradigm feature may not be earlier than required
by the application domain concept feature (as that would “only” afect the
execution time).

If binding modes were used in the application domain analysis instead
of binding times, then the correspondence between the application domain
binding modes and the solution domain binding times has to be established.
However, in most cases, run time binding corresponds to dynamic binding
mode, and the rest of binding times correspond to static binding mode.

In addition, if features are bound later than at the instantiation time,
constraints on their variability must correspond, too. To a certain extent,
during the instantiation of a paradigm, its constraints may accommodate to
the constraints of an application domain concept (as far as they obey the
rules defined in step 3 of concept instantiation introduced in Sect. 2.4).

Each mapping between the nodes should be recorded in the form of an
annotation, which is graphically presented by connecting the nodes with a
dashed line. Annotations other than the feature diagram nodes of an
application domain concept should be introduced in dashed boxes. For
example, some paradigm features may have specific values intended for use
in the code skeleton design (e.g., a name of the class).

4.2. The Process of Transformational Analysis

For each concept C from the application domain feature model, the
following steps are performed:

1. Determine the structural paradigm corresponding to C:
(a) Select a structural paradigm P of the solution domain feature

model that has not been considered for C yet.
(b) If there are no more paradigms to select, there may be a level

mismatch: C may correspond to a paradigm feature, and not to a
paradigm itself. Unless C has been factored out as a concept in
step 1d, continue transformational analysis considering C only as
a feature of the concepts where it is referenced, and not as a
concept. Otherwise, the process has terminated unsuccessfully.

(c) Try to instantiate P over C at source time. If this couldn’t be
performed or if P’s root doesn’t match with C’s root, go to step 1a.
Otherwise, record the paradigm instance created.

(d) If there are unmapped non-mediatory feature nodes ofC left,
factor out them as concepts (introducing concept references in
place of the subtrees they headed) and perform the

ComSIS Vol.2, No.1, June 2005 93

Valentino Vranić

transformational analysis of them. Subsequently, regard them as
concept references in C’s feature diagram and reconsider the
paradigm instance created in step 1c.

2. If there are relationships (direct or indirect ones) between the concept
node of C and its non-mediatory features not yet mapped to
relationships between the corresponding paradigm feature model
nodes, determine the corresponding relationship paradigms for each
such a relationship:
(a) Select a relationship paradigm P of the solution domain feature

model that has not been considered for a given relationship in C
yet. If there are no more paradigms to select, the process has
terminated unsuccessfully.

(b) Try to instantiate P over the relationship in C at source time. If
this couldn’t be performed or if there are no P’s nodes that match
with the C’s relationship nodes, go to step 2a. Otherwise, record
the paradigm instance created.

The given order of steps of transformational analysis process need not be

followed strictly; the main purpose of introducing it is to precisely define
the output of transformational analysis. For example, one may choose to
instantiate a relationship paradigm on an application domain concept prior
to actually determining its structural paradigm.

A successful transformational analysis results in only one of the possible
solutions and carrying out transformational analysis differently can lead to
another one. Deciding which solution is the best is out of the scope of this
method.

4.3. A Transformational Analysis Example

Consider again the text editing buffers debugging code concept whose
feature diagram is shown in Fig. 3c. Assume that the File feature matches
with the class paradigm, and that its features read and write represent
methods, while name and status are its attributes. Further, assume that
the file types inherit from this base file class. In this example,
transformational analysis of the text editing buffer’s file debugging code
part will performed. For this purpose, the feature corresponding to it,
Debugging Code.File, will be factored out as a concept.

As may be seen from Fig. 3c, the file debugging code consists of reading
and writing part. Debugging Code.File.reading is concerned with reading
files and supposed to provide an information on the type of the file before it

94 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

has been read. Debugging Cod .File.writing should provide an information
on the status of the file after it has been written to.

e

o

One could choose the method paradigm for both these features because

they represent functionality. However, a more careful examination of the
description of the two features given in the previous paragraph reveals that
this functionality is performed in connection with some other functionality.
Recalling that the debugging code should be plugable, and thus separated
from the rest of the code as much as possible, brings us to another form of
expressing functionality in AspectJ: the advice paradigm.

As shown in Fig. 8, both Debugging Code.File.reading and Debugging
Code. File.writing match with the body of a separate advice. An advice
performs its actions with respect to the join points specified by a pointcut.
In both cases, the pointcut would be unnamed, as we need it only for this
one application, and thus final (P intcut.final). The context of the read
method execution object would be needed to determine the file type in
reading file advice and file status in writing file advice. Thus, the context
should be exported by the pointcut (Pointcut.context) to be used by the
advice (Advice.context). The reading file advice should be run before
(Advice.before) the calls to File.read method, while the writing file advice
should be run after (Advice.after) the calls to File.write method.

Note that Fig. 8 presents actually five paradigm instances: two
pointcuts, two advices, and one aspect. Since paradigm instances are
concept instances (see Sect. 2.4), and concept instances are specialized
concepts, each paradigm instance could be presented in a separate diagram,
as well, with enclosing paradigm referencing the enclosed paradigm
instances.

ComSIS Vol.2, No.1, June 2005 95

Valentino Vranić

Fig.8. The file debugging code concept transformational analysis; an aspect with
 two advices

5. Code Skeleton Design

Code skeleton design is performed by traversing paradigm instances and
writing the source code manually. The paradigm instances obtained in
transformational analysis define the code skeleton, but the notes made
during transformational analysis (as those accompanying the feature model
element transformational analysis example) may also help mold the
skeleton more accurately and make it more concrete.

In code skeleton design, first the instances of structural paradigms are
transformed into code. Subsequently, the instances of relationship
paradigms are transformed, too.

The first step produces the basis for the second one because relationship
paradigms are usually not represented by independent syntactical
structures, but rather attached to the syntactical structures representing
structural paradigms.

96 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

Following the transformational analysis of the file debugging code
concept presented as a paradigm instance in Fig. 8, we could write the
following code:

The code represents an aspect with two advices. The first one is being
executed before reading any file, and the second one after writing each file.
Both advices expose the current File object which is to be utilized in the
advice bodies in order to output the file type in the first advice, and file
status in the second advice.

6. Related Approaches

Conceptually, MPDFM is closest to multi-paradigm design (MPD) [4]. By
employing feature modeling, MPDFM introduces several improvements. One
of the most important improvements is overcoming the MPD’s problem of
having to decide the conceptual correspondence between the paradigm and
application domain concept at once.8 By performing transformational
analysis as a bottom-up paradigm instantiation over application domain
concepts, the correspondence is decided part by part, at lower level
features, which are more easily compared.

Feature modeling in MPDFM also enables to visualize hierarchical
relationships between the commonalities and variabilities in both
application and solution domain models. In MPD, variability dependency
graphs are used for this, but they are not capable of expressing variability
constraints as feature diagrams are. Moreover, they are used only in
application domain models, while representing hierarchical relationships
between solution domain concepts, i.e. paradigms, is also needed.

While binding time in MPD is an attribute of a concept as a whole, in
MPDFM binding time is specified precisely where it applies: at individual
variable features. Also, instantiation in MPD is just an attribute of a
concept, while in MPDFM it may be modeled in more details by features.

8 In fact, MPD uses different terminology than MDFM, e.g. a domain in MPD denotes a concept
P in MPDFM. See [20] for a detailed comparison.

ComSIS Vol.2, No.1, June 2005 97

Valentino Vranić

r

t
 e

Feature modeling enables to have a visual control over transformational
analysis in MPDFM. Its output, annotated paradigm instances, provide
enough information about the mapping between the application and
solution domain concepts to obtain the main part of the code skeleton from
their trees, while in MPD, transformational analysis results are only a
guide in choosing a paradigm for an application domain concept.

Negative variability, which is in MPD presented in separate tables
(negative variability tables), is in feature modeling modeled by features.
The negative variability features of paradigms are actually their
specializations (e.g., consider the template specialization [4]).

A design method proposed in connection with multi-paradigm
programming in Leda [22] is also related to MPDFM. However, while
MPDFM is domain-oriented, Leda design method is concerned with the
design of one system.

The substantial difference is that MPDFM is performed in a bottom-up
fashion, and Leda design method in a top-down fashion, which is related to
the large-scale paradigm view it’s being based on. The granularity of large-
scale paradigms corresponds to the top level of a system or subsystem.
However, the selection of the main paradigm for the system or a part of it is
a hard decision to make at once. In Leda design method, a paradigm is
selected based on the analysis of the application of each available paradigm
impact to lower levels of the system.

Application domain feature modeling is a common activity of both
generative p ogramming [17] and MPDFM, so it may be performed without
having to decide which one of these approaches will be employed. Taking a
closer look at generative programming reveals that it also aims at
employing multiple paradigms. The difference is in the selection of
paradigms: while in MPDFM it is performed directly as a matter of the
primary concern, in generative programming it can be viewed as being built
into the generator.

7. Conclusions and Further Work

A new method of multi-paradigm software development called mul i-
paradigm design with feature mod ling (MPDFM) has been proposed in
this article. In this method, feature modeling is used to model both
application and solution domain. For this purpose, Czarnecki-Eisenecker
feature modeling [17] has been extended and adapted.

98 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

Consequently, transformational analysis, the key activity of multi-
paradigm design, in which paradigms (solution domain concepts)
appropriate for given application domain concepts are being selected, has
been proposed in terms of feature modeling as a bottom-up paradigm
instantiation over application domain concepts. Subsequently, code
skeleton, the final output of MPDFM, is obtained by traversing the trees of
annotated paradigm instances, which represent the output of
transformational analysis, and writing the source code manually.

To obtain the whole code skeleton, transformational analysis should be
performed for each application domain concept, as explained in Sect. 4.2. It
is also possible to perform transformational analysis only of some
application domain concepts (e.g., the critical ones) and do the rest of the
design without MPDFM. The rest of the design would be restricted by such
partial transformational analysis results.

Creating a feature model of a solution domain can be viewed as a
specialization of MPDFM with respect to transformational analysis. Parts of
such a specialization of MPDFM to AspectJ regarding its aspect-oriented
paradigms have been presented and applied in this article; its whole
paradigm
model is available in [18]. The AspectJ paradigm model has been
successfully applied in transformational analysis of a feature model of the
domain of feature modeling itself [18] (the feature model of feature
modeling is available also in [19]).

From the viewpoint of aspect-oriented software development,
transformational analysis according to the AspectJ paradigm model enables
an early aspect identification. Of course, such aspects are valid in the
context
of AspectJ only, but this is also the case with language-specific design
notations such as [23], which have to be used due to large differences in
aspect-oriented mechanisms provided by individual aspect-oriented
languages. An important difference is that an application domain model
expressed in such a notation is heavily language-dependent, which is not
the case with an application domain model in MPDFM.

In MPDFM, both application and solution domain feature models are
reused as a whole: different application domains may be implemented in
the same solution domain, and an application domain may be implemented
in several solution domains. However, some domains overlap, and this
happens even if one of them is an application domain and the other one is a
solution domain. Thus, the issue of overlapping domains is worth
considering as a step towards reuse of individual concepts.

ComSIS Vol.2, No.1, June 2005 99

Valentino Vranić

The reuse of individual concepts which are similar to each other would
require their generalization. Subsequently, they would appear as
specializations of a more general concept. This would be particularly useful
for paradigm models of related programming languages. Another
interesting topic for further work would be experimenting with
specialization of MPDFM to design patterns or other intermediate solution
domains and combinations of these in conjunction with programming
languages as such.

Acknowledgements. The work was partially supported by Slovak Science
Grant Agency VEGA, project No. 1/0162/03. I would like to thank Pavol
N´avrat and M´ aria Bielikov´a for their valuable suggestions.

8. References

1. Floyd, R.W.: The paradigms of programming. Communications of the ACM 22
(1979) 455–460

2. Coplien, J.O.: Multi-paradigm design and implementation in C++. Slides and
 notes of the tutorial given at 1st International Conference on Generative and

Component-Based Software Engineering (GCSE’99), Erfurt, Germany (1999)
Available at http://www.old.netobjectdays.org/mirrors /stja.cd/Beitraege/

 JimCoplien/Tutorial.ppt (accessed in June 2005).
3. Vranić, V.: Towards multi-paradigm software development. Journal of
 Computing and Information Technology (CIT) 10 (2002) 133–147
4. Coplien, J.O.: Multi-Paradigm Design for C++. Addison-Wesley (1999)
5. Coplien, J.O.: Multi-Paradigm Design. PhD thesis, Vrije Universiteit Brussel,
 Belgium (2000) Available at
 http://users.rcn.com/jcoplien/Mpd/Thesis/Thesis.pdf (accessed in June 2005).
6. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-

oriented domain analysis (FODA): A feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, USA (1990) Available at [24] (accessed in June 2005).

7. Chastek, G., Donohoe, P., Kang, K.C., Thiel, S.: Product line analysis: A
 practical introduction. Technical Report CMU/SEI-2001-TR-001, Software
 Engineering Institute, Carnegie Mellon University, Pittsburgh, USA (2001)
 Available at [24] (accessed in June 2005). 8. Geyer, L.: Feature modelling using
 design spaces. In: Proc. of the 1st German Product Line Workshop (1. Deutscher

Software-Produktlinien Workshop, DSPL-1), Kaiserslautern, Germany, IESE
(2000) Available at http://wwwagss.informatik.uni-kl.de/Veroeffentl/

 FeatureModelingUsingDesignSpaces.pdf (accessed in June 2005).
9. Griss, M.L., Favaro, J., d’Alessandro, M.: Integrating feature modeling with

100 ComSIS Vol.2, No.1, June 2005

 Multi-Paradigm Design with Feature Modeling

 the RSEB. In Devanbu, P., Poulin, J., eds.: Proc. of 5th International
 Conference on Software Reuse, Victoria, B.C., Canada, IEEE Computer
 Society Press (1998) 76–85 Available at http://www.favaro.net/
 john/home/publications/rseb.pdf (accessed in June 2005).
10. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-
 oriented reuse method with domain-specific reference architectures. Annals of
 Software Engineering 5 (1998) 143–168
11. Simos, M.A.: Organization domain modeling (ODM): Formalizing the core
 domain modeling life cycle. In: Proc. of the 1995 Symposium on Software
 reusability, Seattle, Washington, United States, ACM Press (1995) 196–205
12. Software Engineering Institute, Carnegie Mellon University: A framework for
 software product line practice. (http://www.sei.cmu.edu/productlines/
 framework.html) Accessed in June 2005.
13. Claub, M.: Modeling variability with UML. In: Proc. of Net.ObjectDays 2001,
 Young Researchers Workshop on Generative and Component-Based Software
 Engineering, Erfurt, Germany, tranSIT (2001) 226–230
14. Riebisch, M., B¨ ollert, K., Streitferdt, D., Philippow, I.: Extending feature
 diagrams with UML multiplicities. In: Proc. of the 6th Conference on
 Integrated Design and Process Technology (IDPT 2002), Pasadena, California,
 USA, Society for Design and Process Science (2002) Available at
 http://www.theoinf.tu-ilmenau.de/»riebisch/publ/IDPT2002-paper.pdf, accessed
 in June 2005).
15. Jia, Y., Gu, Y.: The representation of component semantics: A feature-oriented
 approach. In Crnkovi´c, I., Larsson, S., Stafford, J., eds.: Proc. of the Workshop
 on Component-based Software Engineering: Composing Systems From
 Components (a part of 9th IEEE Conference and Workshops on Engineering of
 Computer-Based Systems), Lund, Sweden (2002) Available at
 http://www.idt.mdh.se/»icc/cbse-ecbs2002/jiayu.pdf (accessed in June 2005).
16. Czarnecki, K.: Generative Programming: Principles and Techniques of
 Software Engineering Based on Automated Configuration and Fragment-Based

Component Models. PhD thesis, Technical University of Ilmenau, Germany
 (1998) Available at http://www.prakinf.tu-ilmenau.de/»czarn/diss (accessed in

June 2005).
17. Czarnecki, K., Eisenecker, U.W.: Generative Programing: Methods, Tools, and
 Applications. Addison-Wesley (2000)
18. Vranić, V.: Multi-Pradigm Design with Feature Modeling. PhD thesis, Slovak
 University of Technology in Bratislava, Slovakia (2004) Available at
 http://www.fiit.stuba.sk/»vranic.
19. Vranić, V.: Reconciling feature modeling: A feature modeling metamodel. In
 Weske, M., Liggsmeyer, P., eds.: Proc. of 5th Annual International Conference
 on Object-Oriented and Internet-Based Technologies, Concepts, and
 Applications for a Networked World (Net.ObjectDays 2004). LNCS 3263,
 Erfurt, Germany, Springer (2004) 122–137 20. Vrani´c, V.: AspectJ paradigm
 model: A basis for multi-paradigm design for AspectJ. In Bosch, J., ed.: Proc. of
 3rd International Conference on Generative and Component-Based Software

ComSIS Vol.2, No.1, June 2005 101

Valentino Vranić

 Engineering (GCSE 2001). LNCS 2186, Erfurt, Germany, Springer (2001) 48–
 57
21. Eclipse.org: AspectJ project home page. (http://eclipse.org/aspectj) Accessed in
 June 2005.
22. Knutson, C.D., Budd, T.A., Vidos, H.: Multiparadigm design of a simple
 relational database. ACM SIGPLAN Notices 35 (2000) 51–61
23. Stein, D., Hanenberg, S., Unland, R.: A uml-based aspect-oriented design
 notation for aspectj. In Kiczales, G., ed.: Proc. of 1st International Conference
 on Aspect-Oriented Software Development, ACM Press (2002) 106–112
24. Software Engineering Institute, Carnegie Mellon University: Home page.
 (http://www.sei.cmu.edu) Accessed in June 2005.

Valentino Vranić is a researcher at Institute of Informatics and Software
Engineering, Faculty of Informatics and Information Technology of the
Slovak University of Technology in Bratislava. He holds a Bc. (BSc.) and
Ing. (MSc.) in information technology, and PhD. in program and
information systems, all from the Slovak University of Technology in
Bratislava. His main research interests are multi-paradigm software
development, domain engineering, and aspect-oriented programming.

102 ComSIS Vol.2, No.1, June 2005

Appendix D

Reconciling Feature Modeling:
A Feature Modeling
Metamodel

Valentino Vranić. Reconciling feature modeling: A feature modeling meta-
model. In Matias Weske and Peter Liggsmeyer, editors, Proc. of 5th Annual
International Conference on Object-Oriented and Internet-Based Technolo-
gies, Concepts, and Applications for a Networked World (Net.ObjectDays
2004), LNCS 3263, pages 122–137, Erfurt, Germany, September 2004. Springer.

Reconciling Feature Modeling: A Feature
Modeling Metamodel

Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technology

Slovak University of Technology, Ilkovičova 3, 84216 Bratislava 4, Slovakia
vranic@fiit.stuba.sk, http://www.fiit.stuba.sk/~vranic

Abstract. Feature modeling, a conceptual domain modeling technique
used mainly in domain engineering, proved as useful for representing
configurability of concepts by dealing explicitly with commonality and
variability. This paper introduces feature modeling for multi-paradigm
design as an integrative approach and evaluates other approaches to fea-
ture modeling. These approaches differ mainly in the notation of feature
diagrams, but there are also differences regarding the basic notions. The
commonalities and variabilities of the domain of feature modeling are
concisely expressed using feature modeling itself in the form of a fea-
ture modeling metamodel which may serve both for further reasoning on
feature modeling and as a basis for developing feature modeling tools.

1 Introduction

Feature modeling is a conceptual domain modeling technique in which concepts
are expressed by their features taking into account feature interdependencies and
variability in order to capture the concept configurability [1].

A domain is understood here as an area of interest [2]. Two kinds of domains
can be distinguished based on their role in software development: application and
solution domains [2]. An application domain, sometimes denoted as a problem
domain [2], is a domain to which software development process is being applied.
A solution domain is a domain in which a solution is to be expressed (usually a
programming language).

The origins of feature modeling are in FODA method [3], but several other
approaches to feature modeling have been developed. Feature modeling has been
used to represent models of application domains in many domain engineering
approaches to software development beside FODA such as FORM [4], ODM [5],
or generative programming [1].

Feature modeling is used also in multi-paradigm design with feature modeling
(MPDfm), a method introduced in [6] that follows the same process framework
as Coplien’s multi-paradigm design [2], where it was adapted to express both
application and solution domain concepts in order to simplify finding a corre-
spondence and establishing the mapping between the application and solution
domain concepts in transformational analysis. Feature modeling used in MPDfm

is based on Czarnecki-Eisenecker feature modeling [1]. However, it introduces the
following new concepts: concept instantiation with respect to feature binding
time, representing concept instances visually using feature diagrams, concept
references, parameterization of feature models, expressing constraints and de-
fault dependency rules as logical expressions, and a dot convention for referring
to concepts and features.

The rest of the paper is structured as follows. First, Sect. 2 introduces feature
modeling for multi-paradigm design as an integrative approach to feature model-
ing. Next, Sect. 3 evaluates other approaches to feature modeling. Finally, based
on this analysis, Sect. 4 presents a feature modeling metamodel as a feature
model. Sect. 5 concludes the paper and proposes the issues for further research.

2 Feature Modeling for Multi-Paradigm Design

Feature modeling is a conceptual domain modeling technique in which concepts
are being expressed by their features taking into account feature interdependen-
cies and variability in order to capture the concept configurability [1]. Feature
modeling presented in this section is based on the Czarnecki-Eisenecker feature
modeling [1], which has been adapted and extended to fit the needs of MPDfm.

A concept is an understanding of a class or category of elements in a domain.
Individual elements that correspond to this understanding are called concept
instances.

A feature is an important property of a concept [1]. A feature may be com-
mon, in which case it is present in all concept instances, or variable, in which
case it is present only in some concept instances. The features connected directly
to a concept or feature are being denoted as its direct features; all other features
are its indirect features [1].

Any feature may be isolated and modeled further as a concept, therefore
being a feature is actually a relationship between two concepts. However, the
concepts identified only in the context of other concepts, i.e. as their features,
will be referred to as features exclusively in order to emphasize the main concepts
in a domain.

A feature model consists of a set of feature diagrams, information associated
with concepts and features, and constraints and default dependency rules asso-
ciated with feature diagrams. A feature diagram is a directed tree whose root
represents a concept and the rest of the nodes represent its features.

2.1 Feature Diagrams

Each concept is presented in a separate feature diagram. A feature diagram is
drawn as a directed tree with edge decorations. The root represents a concept,
and the rest of the nodes represent features. Edges connect a concept with its
features, and a feature with its subfeatures.

Concept instances are represented by configurations of concept features,
which are achieved by a selection of the features according to their variabil-
ity. A feature can be included in a concept instance only if its parent has been

included. A concept instance must have all the mandatory features and can have
the optional features.

There are two types of edges used to distinguish between mandatory features,
ended by a filled circle, and optional features, ended by an empty circle. A
concept instance must have all the mandatory features and can have the optional
features.

The edge decorations are drawn as arcs connecting disjunct subsets of the
edges originating in the same node. There are two types of arcs, an empty and
filled one, used to denote alternative features and or-features, respectively. Ex-
actly one feature can be selected from the set of alternative features, and any
subset or all of the features can be selected from the set of or-features. If optional,
each selected alternative or or-feature may still be left out.

A concept or feature may be open, which means it is expected to have new
direct variable subfeatures. This is indicated directly in feature diagrams by
introducing the open concept or feature name in square brackets and optionally
by ellipsis at its subfeatures.

C1

[f3]f2f1 f4

f6f5 f7

...

C1 (R)

C2

g2g1

C1

[f3]f2f1 f4

f6f5 f7

C2

g2g1

...

(a) (b) (c)

Fig. 1. Feature diagram examples.

An example of a feature diagram with different types of features is presented
in Fig. 1a. Features f1, f2, f3, and f4 are direct features of the concept C1,
while other features are its indirect features. Features f1 and f2 are mandatory
alternative features. Feature f3 is an optional feature. Features f5, f6, and f7 are
mandatory or-features. Feature f3 is open; ellipsis indicates that new features
are expected in the existing group of or-features.

A concept can be referenced as a feature in another or even in its own feature
diagram, which is equivalent with the repetition of the whole feature diagram of
the concept. Figure 1b presents the feature diagram of the concept C2 that refers
to the concept C1. Figure 1c presents the same diagram, but with the reference
C1 r© expanded. To distinguish concept references from the rest of the features
in a feature diagram, the r© mark1 is being put after the name of a concept
reference.

1 For technical reasons, it will be presented as (R) in diagrams.

Additional information may be associated with concepts and features, which
depends on the application, so it should be as configurable as possible.2 A con-
cept reference may be associated with its own information as any other feature,
but the information associated with the concept it references applies to it, too.

2.2 Constraints and Default Dependency Rules

Feature diagrams define the main constraints on feature combinations in concept
instances. Since feature diagrams are represented as trees, in all but simplest
cases it is impossible to express all the constraints solely by a feature diagram.
Additional constraints are expressed in a list of constraints associated with the
feature diagram. Also, a list of default dependency rules is associated with each
feature diagram in order to specify which features should or should not appear
together by default.

Constraints and default dependency rules are specified by predicate logic
expressions formed out of specific and parameterized names of concepts and
features (see Sect. 2.3), and commonly used logical connectives (e.g., not ¬, and
∧ , or ∨ , xor ∨ , implication ⇒, and equivalence ⇔), commonly used quantifiers
(e.g., universal quantifier ∀ and existential quantifier ∃), and parentheses. A
feature name f in constraint or default dependency rule expressions stands for
is in instance(f), a predicate which is true if f is embraced in the concept instance,
and false otherwise.

The intention of using predicate logic to express constraints and default de-
pendency rules is to avoid ambiguities natural language is prone to. At this stage,
the automated evaluation of the constraints and default dependency rules has
not been considered, although that would certainly be useful.

Feature names in expressions should be qualified to avoid name clashes, but
since each expression is associated with a specific feature diagram, the domain
and concept name are unnecessary. To avoid repeating long qualifications, as in
A.B.C.x ∨A.B.C.y, the common qualification may be introduced in front of the
expression, e.g. A.B.C.(x ∨ y).

Constraints A list of constraints associated with a feature diagram is a con-
junction of the expressions it consists of. Thus, for a concept instance to be valid,
all the constraints associated with the feature diagram must evaluate to true.
Obviously, in case of a contradiction among the constraints, it is impossible to
instantiate the concept.

Constraints express mutual exclusions and requirements among features, i.e.
they determine which features cannot appear together and which must appear
together, respectively. A single constraint may express both mutual exclusions
and requirements.

Constraints have numerous equivalent forms, but they should be kept in
the form which is as comprehensible as possible. Bearing this in mind, mutual

2 Such a configurability has been implemented in AmiEddi, a feature modeling editor
(available at [19]), through so-called metamodel editor [21, 22].

exclusions may be expressed by connecting features with xor, while requirements
may be expressed as implications or equivalences, depending on whether the
requirement is bidirectional or not.

As has been said, the main constraints are expressed directly in feature dia-
grams and thus need not be repeated in the information associated with them.
However, sometimes it may be needed to change a feature diagram constraint
to associated one, or vice versa. In a feature diagram, a mutual exclusion is
expressed by alternative features. A requirement is expressed by a variable sub-
feature whose parent is also a variable feature: the subfeature requires its parent
to be included. Also, a requirement may be expressed by or-features: at least
one feature is required from a set of or-features.

Default Dependency Rules A list of default dependency rules associated
with a feature diagram is a disjunction of an implicit (not displayed) true and
the expressions it consists of. The implicit true disjunct in a list of default de-
pendency rules assures that it always evaluates to true.

Default dependency rules determine which features should appear together
by default. Default dependency rules are applied at the end of the process of
concept instantiation if there are variable features left such that no explicit
selection has been made among them. Which of these features will be included
in the concept instance is decided according to the default dependency rules.

2.3 Parameterization in Feature Models

A parameterized name of a concept or feature has the form: p1p2 . . . pn, where for
each i ∈ [1, n] pi is either a parameter or specific string and where exists j ∈ [1, n]
such that pj is a parameter. For each parameter, a set of possible strings that
may be substituted for it has to be defined in its description. Parameters are
introduced in <> brackets to distinguish them from specific strings.

Name parameterization enables to reason more generally about concepts and
features. An example of a parameterized name is Singular Form<i>, where <i>
is a natural number. The specific names corresponding to this parameterized
name are: Singular Form1, Singular Form2, etc.

[<Plural Form>]

<Singular Form>1

<Singular Form>

<Singular Form>2

<Singular Form>

...

Fig. 2. Dealing with plural forms using a parameterized concept.

Name parameterization is the only way to express constraints and default
dependency rules about subfeatures of an open feature because their number

is unknown. Consider the feature diagram in Fig. 2 (ignoring the parameteri-
zations of <Singular Form> and <Plural Form> for the moment). The feature
<Plural Form> is open; further direct variable subfeatures of the form <Singular
Form><i>, where <i> is a natural number, are expected at it. The parame-
terized name <Singular Form><i> is exactly how all these features may be
referred to.

A parameterized concept or feature is a concept or feature whose name is
parameterized. Parameterized features may appear only in feature diagrams of
parameterized concepts; otherwise, the feature model would be inconsistent since
it would define a set of different feature diagrams for a single concept. For the
same reason, parameterized concepts may not be referenced in feature diagrams
of specific (i.e., non-parameterized) concepts.

Figure 2 shows an example of a parameterized concept. The name <Plural
Form> is a plural form of <Singular Form><i>.<Singular Form>. Using a
parameterized concept, we avoided drawing a separate feature diagram for each
concept.

2.4 Representing Cardinality in Feature Models

Parameterized concepts are capable of representing UML style cardinalities rep-
resented by a comma separated list of theminimum..maximum cardinality pairs [7].
This may be achieved by a feature diagram in Fig. 3a with the following con-
straint which will assure the appropriate number of features according to the
specified cardinality:

<n>∨

<i>=1

((max<i>6= ∗ ⇒
<max<i>>−<min<i>>+1∨

<j>=<min<i>>

i∧

k=1

<C><k>) ∧

∧ (max<i>= ∗ ⇒
<min<i>>∧

k=1

<C><k>))

[<Cs>:<min1>..<max1>,...,<min<n>>..<max<n>>]

<C>1

<C> (R)

<C>2

<C> (R)

...
Book

Authors:1..* References:1..*

(a) (b)

Fig. 3. Parameterized concept for representing cardinality (a) and an example
of its application (b).

The parameter <Cs> is the plural form of the parameter <C>. Note that
parameters <min<i>> and <max<i>> are in fact doubly parameterized. This

is to enable the parameterization of the number of minimum..maximum cardi-
nality pairs.

The values allowed for both minimum and maximum cardinalities are natural
numbers. Also, an additional value denoted by an asterisk is allowed for the max-
imum cardinality value meaning “many,” as in [7]. Zero cardinality is achieved by
referencing the concept <Cs>:<min1>..<max1>,. . . ,<min<n>>..<max<n>>
as an optional feature.

This parameterized concept may be applied to any domain by including it
in the feature model of the domain. Next, the set of the singular and plural
forms of concept names corresponding to each other (representing possible val-
ues for <C> and <Cs>, respectively) has to be defined. Obviously, a feature
model must include the concepts singular form concept names refer to. Finally,
specific concept name and a set of minimum..maximum cardinality pairs should
be substituted. An example is shown in Fig. 3b; a book has at least one author,
and it may have zero (modeled by the optionality of References:1..*) or more
references.

2.5 Concept Instantiation

An instance I of the concept C at time t is a configuration of C’s features which
includes the C’s concept node and in which each feature whose parent is included
in I obeys the following conditions:

1. All the mandatory features are included in I.
2. Each variable feature whose binding time is earlier than or equal to t is

included or excluded in I according to the constraints of the feature diagram
and those associated with it. If included, it becomes mandatory for I.

3. The rest of the features, i.e. the variable features whose binding time is later
than t, may be included in I as variable features or excluded according to
the constraints of the feature diagram and those associated with it. The con-
straints (both feature diagram and associated ones) on the included features
may be changed as long as the set of concept instances available at later
instantiation times is preserved or reduced.

4. The constraints associated with C’s feature diagram become associated with
the I’s feature diagram.

A concept instance is represented by a feature diagram derived from the
feature diagram of the concept by showing only the features included in the
concept instance. A concept instance is regarded further as a concept and as
such may be considered for further instantiation at later instantiation times.
During instantiation, a concept reference may appear in a concept instance as
any other feature if it is not replaced by the diagram of the concept it references
prior to instantiation.

3 Other Approaches to Feature Modeling

Feature modeling originates from Software Engineering Institute (SEI), where
it was used in FODA method [3] developed there, which became a part of their

MBSEmethod. Recently, MBSE has been replaced by PLP approach [8, 9], which
also employ feature modeling. An adapted version of FODA feature modeling is
also a part of FORM method [4].

Since the publishing of FODA in 1990, several approaches have adopted
FODA feature modeling, often in an adapted version [10, 1, 11]. Some work has
been devoted primarily to extending feature modeling as such (with respect to
UML) [12, 13], or even to formalize it [14].

Czarnecki-Eisenecker feature modeling [1] generalized FODA feature model-
ing notation and accepted a more general notion of a feature from ODM approach
in which features are associated with particular domain practitioners and domain
contexts [5], i.e. a feature is any concept instance property important to some of
the stakeholders [1]. Such an understanding of a feature has been adopted also
by FORM [4], a direct ancestor of FODA.

Czarnecki-Eisenecker feature modeling is also more abstract than FODA or
FORM feature modeling. In Czarnecki-Eisenecker feature modeling, relation-
ships between a feature and its subfeatures don’t have any predefined semantics;
the relationship is fully determined by the semantics of subfeatures. FORM fea-
ture modeling defines three types of relationships of a feature to its subfeature:
composed-of, generalization/specialization, and implemented-by. Moreover, each
feature is classified as a capability, operating environment, domain-technology, or
implementation technique feature.3 According to their type, features are placed
into one of the four layers feature diagrams are divided into. On the other
hand, Matthias Riebisch argues against the classification of features according
to FORM and proposes to classify features into functional, interface, and pa-
rameter features [15]. Therefore, it seems that it is better not to enforce such
predefined feature categories in feature modeling.

Concept instantiation with respect to feature binding time (see Sect. 2.5) is
a generalization of concept instantiation as proposed in [1]. Compared to the
set representation proposed in [1], even if the features are qualified as proposed
in Sect. 2, feature diagrams are a more appropriate way to represent concept
instances. Moreover, they enable to represent concept instantiation in time.

The following sections discuss other solutions to referencing concepts, repre-
senting constraints and default dependency rules, and representing cardinalities.

3.1 Concept References

The problem of coping with complex feature diagrams has been recognized al-
ready in [1], where complex diagram are divided into a number of smaller dia-
grams, which then may be referred to in the main diagram by introducing their
roots.

Concept references, introduced by MPDfm feature modeling, are a logical
extension of this idea. MPDfm feature modeling specifies how the information

3 This classification has been proposed already in [3], but since FODA was concerned
with user visible features, it dealt only with (application) capabilities.

associated with the concept applies to its references and how it may be adapted
to the needs of a particular reference.

Concept references enable a concept to reference itself (directly or indirectly).
This enables feature diagrams to be viewed as trees while being in conformance
with the fact that feature diagrams in general are directed graphs.

To refer to a concept or features unambiguously, a common dot conven-
tion is used in MPDfm feature modeling. A similar convention is used in Fea-
tuRSEB [10], though without taking into account domain names, which may lead
to ambiguities when talking about concepts and features from several domains.

3.2 Representing Constraints and Default Dependency Rules

In MPDfm, constraints and default dependency rules are expressed concisely as
logical expressions. Logical expressions are capable of expressing both mutual
exclusions and requirements among features. In fact, a single logical expression
may encompass both types of the constraints. In FODA feature modeling, as
well as in Czarnecki-Eisenecker feature modeling, constraints are expressed by
explicitly stating which feature is mutually exclusive or requires which other
feature.

In [16], constraints are written in an adapted version of Object Constraint
Language (OCL) used in Unified Modeling Language [7]. It is merely a matter
of preference whether to use OCL syntax or traditional mathematical symbols
for logical connectives (e.g., implies vs. ⇒). However, in [16], constraints are also
accompanied by the information to be passed to the developer who instantiates
the concepts that, for example, another feature has to be selected. This signif-
icantly reduces the readability of constraints. Better, such messages could be
generated or a whole constraint could be passed instead.

Incorporating messages to developers significantly reduces the readability of
such constraints. Moreover, such messages to the developer may be generated
or, even better, a whole constraint may be passed instead.

The proposed form of expressing constraints and default dependency rules
may be applied also to the constraints expressed directly by feature diagrams.
This way, a whole feature diagram may be represented as a set of logical expres-
sions. For the purpose of a graphical representation, a set of views of the feature
diagram could be then defined. For each view, the relationships that should be
shown would have to be specified with respect that the feature diagram should
be a tree. The new constraints for the feature diagram could be then calculated
to avoid duplicity (some of the constraints would be expressed in the feature
diagram). In order to distinguish the primary relationships between the features
expressed in a feature diagram from the constraints associated with it, one of
the views could be denoted as primary.

The need to represent feature diagrams in a graphically independent form
has been identified also in [17]. The formalized feature modeling proposed in [14]
actually relinquishes the feature diagrams completely, and with them the primary
relationships between the features, too.

3.3 Representing Cardinalities

In the original Czarnecki-Eisenecker feature modeling, introducing feature car-
dinalities was strongly avoided arguing that since the only semantics of an edge
is whether to assert a feature or not, cardinality would only mean to assert it
several times, which is useless [1, p. 117]. Instead, to model the cardinality as
a feature was recommended. In spite of this, a later work proposes to use the
UML-style cardinalities with features [18]. Also, a generalized form of alterna-
tive and or-features is introduced in which the number of features which may
be included is specified also as a cardinality (which does not contradict to the
original Czarnecki-Eisenecker feature modeling).4

As has been demonstrated in Sect. 2.4, plural forms of the concepts and
cardinality in general can be specified by parameterized concepts without com-
promising the principles of feature modeling. If preferred, UML cardinalities can
be used instead, provided they are defined as a notational extension with respect
to the parameterized concept.

4 A Feature Modeling Metamodel

The domain of feature modeling is understood here as a domain of the tools
that support feature modeling as a central activity in software development.
The feature modeling based methods, such as generative programming, FODA,
FORM, FeatuRSEB, and feature modeling for multi-paradigm design, all have
in common the central role of a feature model from which traceability links
to other models are provided. The variability lies in the notations of feature
modeling employed by different methods. The systems built in the domain would
represent feature modeling CASE tools suitable for individual methods (possibly
groups of methods).

Based on the information presented in the previous sections, a metamodel
of the feature modeling will be proposed in this section. The metamodel will
be expressed using feature modeling itself in order to capture the variability of
feature modeling notations and to describe the core concepts of feature modeling
in a concise way. The purpose of this metamodel is to provide a basis both for
further reasoning on feature modeling and for developing feature modeling tools.
Therefore, the metamodel embraces features that express functionality, too.

The concepts identified in the domain of feature modeling are: feature model,
feature diagram, node, feature, partition, associated information, AI item, AI
value, constraint, default dependency rule, and link. The model also includes
the parameterized concept Plural Form introduced in Sect. 2.3, where <Singular
Form> <i>.<Singular Form> is a reference to one of the following concepts:
Feature Diagram, Node, Feature, Link, Constraint, Default Dependency Rule,
or AI Value. Dynamic binding of Plural Form features is assumed. In the rest

4 These extensions are implemented in Captain Feature (available at [20]), in which
the whole feature modeling notation should be configurable through a metamodel
represented by a feature model [23, 18], but its editing is not possible.

of the concepts, dynamic binding is indicated where applies; otherwise, static
binding is assumed.

4.1 Feature Model and Feature Diagram

A feature model (Fig. 4) represents the model of a domain obtained by the
application of feature modeling. It consists of a set of feature diagrams (Feature
Diagram Set). and it may have a set of links to other modeling artifacts (Link
Set). Feature diagrams in a feature model may be normalized [1] (Normalize), but
this applies only to those feature modeling notations that embrace or-features.

Feature Diagrams Set

Feature Model

DescriptionName

New feature diagram

Delete feature diagramNormalizeLink Set

Links(R)Feature Diagrams(R)

dynamic dynamic

Fig. 4. Feature Model concept.

A feature diagram (Fig. 5) presents a featural description of a concept graph-
ically. An additional constraint that applies to Feature Diagram is that a root
may not be a concept reference:

¬Root.Node.Reference

A feature diagram contains a set of nodes (Node Set) and a set of features
(Feature Set). It may be represented by a directed tree (Tree). In this case, a
feature diagram describes the features of a domain concept represented by its
root node (Root.Node r©). An operation of adding a feature to a feature diagram
represented as a tree (Tree.Add feature) should preserve the tree structure. A
feature diagram may also be considered to be a connected directed graph.

A set of constraints (Constraint Set) and default dependency rules (Default
Dependency Rule Set) may be associated with a feature diagram, which is needed
by some approaches to feature modeling. Also, a feature diagram may have a
set of links to other modeling artifacts (Link Set). A feature diagram may be
normalized (Normalize).

4.2 Node and Feature

Feature diagram nodes (Fig. 6) represent concepts in general sense (as explained
in Sect. 2), which have they own names (Name), and concept reference nodes
(Reference). It may have a set of links to other modeling artifacts (Link Set).
Some approaches to feature modeling allow feature diagram nodes to be marked
as open, which means that new direct features of a node are expected (Openness).

Default Dependency Rule Set

Feature Diagram

Tree

Name

Description

Normalize

Graph

Default Dependency Rules(R)

Nodes(R)

Link Set

Links(R)

Constraint Set

Constraints(R)

Feature Set

Features(R)

Node Set

Root

Node(R)

Add feature

Add feature

Remove feature

Add node

Remove nodedynamic

dynamic
dynamic

dynamic

dynamic

Fig. 5. Feature Diagram concept.

Name

Node

Openness

open closedDescription
Link Set

Links(R)

Reference

Node(R)

dynamic

dynamic

Fig. 6. Node concept.

A feature is a relationship between two nodes (Fig. 7). It describes the vari-
ability of a subfeature (Subfeature) with respect to its superfeature (Superfea-
ture): the subfeature may be mandatory (mandatory), i.e. it must be included
in a concept instance, or it may be optional (optional), i.e. it may be included
in a concept instance.

In some approaches to feature modeling, relationships between nodes are
named (Name) or may have a type specified (Type). Also, a feature may have a
set of links to other modeling artifacts (Link Set).

4.3 Partition

Features originating in one node may be divided into a set of disjunct partitions
(Fig. 8) marked by arcs in feature diagrams. The features in a partition are
presumed to be alternative, i.e. to have xor semantics (as in FODA). Some
approaches (e.g., Czarnecki-Eisenecker notation and MPDfm) employ also or-
features, so the features in a partition may be either alternative or or-features
(Type). Other approaches (e.g. [18]) employ cardinality, which enables to specify
the number of features (maximum and minimum) in a partition that may be

mandatory optional

Feature

Name

Superfeature

[Type]

Link Set

Associated Information(R)Partition(R)

Subfeature

Node(R) Node(R)

Links(R)

dynamic

Fig. 7. Feature concept.

selected (Cardinality). Some approaches to feature modeling allow partitions to
be marked as open (similarly to openness of a node in a feature diagram), which
means that new direct features in a partition are expected (Openness).

oralternative

Partition

Type Cardinality

open

Openness

closedmin max

dynamicdynamic

Fig. 8. Partition concept.

4.4 Associated Information and Related Concepts

Different approaches to feature modeling, and different applications of it, too,
require different information to be associated with features. The concept of as-
sociated information (Fig. 9) captures this demand by a fully configurable set of
items associated information consists of (AI Items r©).

Add item

Associated Information

AI Items(R) Remove item

Fig. 9. Associated Information concept.

An associated information item (Fig. 10a) applicability may depend on the
optionality of a feature with which it is associated (Applicability). There are
two kinds of an associated information item: textually expressed ones (Textual)
and those represented by a value selected from the extensible set of available
values (Selectable). The concept of an associated information value (Fig. 10b)
represents such a value.

AI Item

Textual Selectable

Text AI Values(R) Add valueRemove value

Applicability

common features variable featuresValue

dynamic
AI Value

Name Description

(a) (b)

Fig. 10. AI Item (a) and AI Value (b) concepts.

4.5 Constraint and Default Dependency Rule

Constraints (Fig. 11a) express mutual exclusions and requirements among fea-
tures beside those specified by the feature diagram. They may be specified either
as logical expressions (Logical expression), textually (Textual), or in a FODA-
like form (see Sect. 3.2).

Logical expression FODA-like

Constraint

Textual Logical expression Textual

Deafult dependency rule

(a) (b)

Fig. 11. Constraint (a) and Default Dependency Rule (b) concepts.

Default dependency rules (Fig. 11b) determine which features should appear
together by default in concept instances. They may be specified either as logical
expressions (Logical expression) or textually (Textual).

4.6 Link

A link (Fig. 12) enables to connect a feature model or its parts to its own nodes
and features, or to other models. These models include feature models, in which
case a link may be more specific and point to a feature diagram in that model,
or a node or feature in that diagram. An additional constraint that applies to
Link concept is that a link may not lead to a node and feature simultaneously:

Node ∨Feature

5 Conclusions and Further Research

This paper brings several improvements into feature modeling. Concept instanti-
ation is defined with respect to instantiation time with concept instances repre-
sented by feature diagrams. Parameterization in feature models enables to reason

Link

File Feature Diagram(R) Feature(R)Node(R)

dynamic

Fig. 12. Link concept.

more generally about concepts and features and to express constraints and de-
fault dependency rules about subfeatures of an open feature. Constraints and
default dependency rules are represented by logical expressions. Concept refer-
ences enable to deal with complex feature models. A dot convention enables re-
ferring to concepts and features unambiguously. A parameterized concept which
enables to represent cardinality in feature modeling is introduced.

Other approaches to feature modeling have been evaluated and compared
with feature modeling for multi-paradigm design. Based on this analysis, a fea-
ture modeling metamodel has been proposed. The metamodel shows how the
commonalities and variabilities of the domain of feature modeling may be mod-
eled by feature modeling itself. This metamodel may serve both for further rea-
soning on feature modeling and as a basis for developing feature modeling tools.

Further research topics include enhancing parameterization in feature mod-
eling with respect to binding time/mode and expressing feature models fully in
the form of constraints (as logical expressions) with defined primary constraints
that are to be presented visually (in feature diagrams).

Acknowledgements The work was partially supported by Slovak Science Grant
Agency VEGA, project No. 1/0162/03.

References

[1] Czarnecki, K., Eisenecker, U.W.: Generative Programing: Principles, Techniques,
and Tools. Addison-Wesley (2000)

[2] Coplien, J. O.: Multi-Paradigm Design for C++. Addison-Wesley (1999)
[3] Kang, K.C., et al.: Feature-oriented domain analysis (FODA): A feasibility study.

Technical Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, USA (1990).

[4] Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-
oriented reuse method with domain-specific reference architectures. Annals of
Software Engineering 5 (1998) 143–168

[5] Simos, M.A.: Organization domain modeling (ODM): Formalizing the core domain
modeling life cycle. In: Proc. of the 1995 Symposium on Software reusability,
Seattle, Washington, United States, ACM Press (1995) 196–205

[6] Vranić, V.: Feature modeling based transformational analysis in multi-paradigm
design. Submitted to Computers and Informatics (CAI), December 2003.

[7] Object Management Group: OMG unified modeling language specification, ver-
sion 1.5 (2003).

[8] Chastek, G., et al.: Product line analysis: A practical introduction. Technical
Report CMU/SEI-2001-TR-001, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, USA (2001).

[9] Software Engineering Institute, Carnegie Mellon University: A framework for
software product line practice — version 3.0. http://www.sei.cmu.edu/plp/

framework.html. Last accessed in June 2004.
[10] Griss, M.L., et al.: Integrating feature modeling with the RSEB. In Devanbu, P.,

Poulin, J., eds.: Proc. of 5th International Conference on Software Reuse, Vicoria,
B.C., Canada, IEEE Computer Society Press (1998) 76–85

[11] Geyer, L.: Feature modelling using design spaces. In: Proc. of the 1st Ger-
man Product Line Workshop (1. Deutscher Software-Produktlinien Workshop,
DSPL-1), Kaiserslautern, Germany, IESE (2000)

[12] Riebisch, M., et al.: Extending feature diagrams with UML multiplicities. In:
Proc. of the 6th Conference on Integrated Design and Process Technology (IDPT
2002), Pasadena, California, USA, Society for Design and Process Science (2002).

[13] Clauβ, M.: Modeling variability with UML. In: Proc. of Net.ObjectDays 2001,
Young Researchers Workshop on Generative and Component-Based Software En-
gineering, Erfurt, Germany, tranSIT (2001) 226–230

[14] Jia, Y., Gu, Y.: The representation of component semantics: A feature-oriented
approach. In Crnković, I., Larsson, S., Stafford, J., eds.: Proc. of the Workshop on
Component-based Software Engineering: Composing Systems From Components
(a part of 9th IEEE Conference and Workshops on Engineering of Computer-
Based Systems), Lund, Sweden (2002).

[15] Riebisch, M.: Towards a more precise definition of feature models. In M. Riebisch,
J. O. Coplien, D.S., ed.: Modelling Variability for Object-Oriented Product Lines,
Norderstedt, BookOnDemand Publ. Co. (2003) 64–76

[16] Streitferdt, D., et al.: Details of formalized relations in feature models using
OCL. In: Proc. of the 10th IEEE Symposium and Workshops on Engineering
of Computer-Based Systems (ECBS’03), Pasadena, California, USA, IEEE Com-
puter Society (2003) 297–304

[17] Lee, K., et al.: Concepts and guidelines of feature modeling for product line
software engineering. In Gacek, C., ed.: Proc. of 7th International Conference
(ICSR-7). LNCS 2319, Austin, Texas, USA, Springer (2002)

[18] Czarnecki, K., et al.: Generative programming for embedded software: An indus-
trial experience report. In Batory, D., et al., eds.: Generative Programming and
Component Engineering: ACM SIGPLAN/SIGSOFT Conference, GPCE 2002.
LNCS 2487, Pittsburgh, PA, USA (2002) 156—172

[19] Czarnecki, K., Eisenecker, U.W.: Generative programming — methods, tools, and
applications. http://www.generative-programming.org. Last accessed in March
2004.

[20] Captain Feature: Project page. https://sourceforge.net/projects/

captainfeature. Last accessed in March 2004.
[21] Blinn, F.: Entwurf und implementierung eines generators für merkmalmetamod-

elle. Master’s thesis, Fachhochschule Zweibrücken, Fachbereich Informatik (2001)
In German. Available at http://www.informatik.fh-kl.de/~eisenecker (last
accessed in March 2004).

[22] Czarnecki, K., et al.: Generative programing: Methods, techniques, and applica-
tions. Slides and notes of the tutorial given at Net.ObjectDays 2003 (2003)

[23] Bednasch, T.: Konzept und implementierung eines konfigurierbaren metamodells
für die merkmalmodellierung. Master’s thesis, Fachhochschule Kaiserslautern,
Standort Zweibrücken, Fachbereich Informatik (2002) In German. Available at
http://www.informatik.fh-kl.de/~eisenecker (last accessed in March 2004).

Appendix E

Binding Time Based Concept
Instantiation in Feature
Modeling

Valentino Vranić and Miloslav Šípka. Binding time based concept instan-
tiation in feature modeling. In Maurizio Morisio, editor, Proc. of 9th In-
ternational Conference on Software Reuse (ICSR 2006), LNCS 4039, pages
407–410, Turin, Italy, June 2006. Springer.

Binding Time Based Concept Instantiation in
Feature Modeling

Valentino Vranić and Miloslav Š́ıpka

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technology

Slovak University of Technology, Ilkovičova 3, 84216 Bratislava 4, Slovakia
vranic@fiit.stuba.sk, miloslav.sipka@gmail.com

Abstract. In this paper, we address the issue of concept instantiation
in feature modeling with respect to binding time. We explain the impact
of such instantiation on applying constraints among features expressed
in feature diagrams and as additional constraints and propose a way to
validate a concept instance under these new conditions.

1 Introduction

Feature modeling aims at expressing concepts by their features as important
properties of concepts taking into account feature interdependencies and vari-
ability in order to capture the concept configurability [3]. A concept is an un-
derstanding of a class or category of elements in a domain [3]. Individual ele-
ments that correspond to this understanding are called concept instances. While
a concept represent a whole class of systems or parts of a system, an instance
represents a specific configuration of a system or a part of a system defined by a
set of features. Concept instances may be used for feature model validation and
manual or automatic configuration of other design models or program code of
specific products in a domain [2, 3].

When designing a family of systems, we have to balance between statically
and dynamically bound features. In general, dynamic binding is more flexible
as we may reconfigure our system at run time, while static binding is more
efficient in terms of time and space. Although they often embrace the information
on feature binding time, contemporary approaches to feature modeling do not
consider the time dimension during concept instantiation.

This paper focuses on the issue of concept instantiation (Sect. 2) and vali-
dation of concept instances with respect to binding time (Sect. 3). The paper is
closed by a discussion (Sect. 4).

2 Concept Instantiation in Time

Binding time describes when a variable feature is to be bound, i.e. selected to
become a mandatory part of a concept instance. The set of possible binding times

depend on a solution domain. For compiled languages they usually include source
time, compile time, link time, and run time [1].

An instance I of the concept C at time t is a concept derived from C by
selecting its features which includes the C’s concept node and in which each
feature f whose parent is included in I obeys the following conditions:

1. If f is a mandatory feature, f is included in I.
2. If f is a variable feature whose binding time is earlier than or equal to t,

f is included in I or excluded from it according to the constraints of the
feature diagram and additional constraints associated with it. If included,
the feature becomes mandatory for I.

3. If f is a variable features whose binding time is later than t, f may be
included in I as a variable feature or excluded from it, or the constraints
(both feature diagram and additional ones) on f may be made more rigid
as long as the set of concept instances available at later instantiation times
is preserved or reduced.

As follows from this definition,1 a feature in a concept instance may be bound,
in which case it appears as a mandatory feature, or unbound, in which case it
stays variable. Mandatory features and features bound in previous instantiations
are considered as bound. A concept instance may be instantiated further at later
instantiation times.

The constraints—both feature diagram and additional ones—on a variable
features whose binding time is later than the instantiation time may be made
more rigid as long as the set of concept instances available at later instantiation
times is preserved or reduced. An example of this is a transformation of a group
of mandatory or-features (Fig. 1a) into a group of alternative features (Fig. 1b).

C

a cb

C

a cb

C

cb

(a) (b) (c)

Fig. 1. Reducing the set of concept instances.

Variable features with binding times later than the instantiation time are
potentially part of concept instances at later binding times. Again, such features
may be excluded at instantiation times earlier than their binding times as long
as the set of concept instances available at later instantiation times is preserved
or reduced. Consider a group of three alternative features (Fig. 1b) with run-
time binding. At source time, one of these features may be excluded (Fig. 1d).
However, none of the two remaining features may be excluded since preserving

1 The definition is based on our earlier concept instance definition [7].

only one of them will force us to make it mandatory, which is illegal, or optional,
which will allow an originally unforeseen concept instance to be created: the one
with no features from the group.

3 Concept Instance Validation

A concept instance is valid if its features satisfy the constraints. In general, a
constraint—be it a feature diagram constraint or an additional one— may be
evaluated only if all the features it refers to are bound. However, some logical
expressions can be evaluated without knowing the values of all of their variables.
Suppose we are instantiating a simple concept in Fig. 2a at source time (with no
additional constraints). If we bind the x feature, the or-group constraint will be
satisfied regardless of the y feature binding. Thus, we may omit this constraint
transforming the y feature into an optional one as shown in Fig. 2b.

It is also possible to omit x. The only possibility for y is to leave it optional,
as shown in Fig. 2c, but it has to be assured it will finally be bound (which can
be done only at run time). For this purpose, we must add a trivial constraint to
this instance: y (y has to be true, i.e. bound).

C

x y

(a) (b) (c)

run timesource time

C

x y

run time

C

y

run time

Fig. 2. Dealing with features whose binding time is later than the instantiation time.

By excluding features from feature diagrams, the feature diagram constraints
are gradually relinquished. After a successful concept instance validation, all
additional constraints that refer to the features whose binding time is not later
than the instantiation time can be safely removed from the model. All other
constraints have to be postponed for further instantiation.

4 Discussion

In this paper, we presented an approach to concept instantiation with respect
to binding time. We analyzed the impact of introducing the time dimension
into concept instantiation on concept instance validation with respect to both
feature diagram and additional constraints. We have also developed a prototype
tool that supports such instantiation (available at http://www.fiit.stuba.sk/
∼vranic/fm/).

Concept instantiation with respect to feature binding time is similar to staged
configuration of feature models proposed in conjunction with cardinality-based

feature modeling [5, 6]. Although consecutive work [4] mentions a possibility of
defining configuration stages in terms of the time dimension, this approach does
not elaborate the issue of feature binding time with respective consequences on
validation of concept specializations.

Concept instantiation with respect to binding time can be used to check for
“dead-end” instances that may result into invalid configurations of a running
system. Such configuration may miss some features required by other, bound
features, which will lead to a system crash if such features are activated. Simi-
larly as staged feature model configuration, concept instantiation with respect
to binding time could be used for creating specialized versions of frameworks [5],
which would represent a source time instantiation, and in software supply chains,
optimization, and policy standards [4].

Partial validation of the constraints that incorporate unbound features may
be improved by transforming them into the normal conjunctive form. This would
enable to extract parts of such a constraint with bound features, while conjuncts
with unbound features would be simple enough to directly determine whether
they can be evaluated or not. As a further work, we plan to explore consequences
of applying this approach to cardinality-based feature models [5].

Acknowledgements The work was supported by Slovak Science Grant Agency
VEGA, project No. 1/3102/06, and Science and Technology Assistance Agency
of Slovak Republic under the contract No. APVT-20-007104.

References

[1] James O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.
[2] Krzysztof Czarnecki and Michal Antkiewicz. Mapping features to models: A tem-

plate approach based on superimposed variants. In Robert Glück and Michael R.
Lowry, editors, Proc. of Generative Programming and Component Engineering, 4th
International Conference, GPCE 2005, LNCS 3676, pages 422–437, Tallinn, Esto-
nia, October 2005. Springer.

[3] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programing: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[4] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinality-
based feature models and their specialization. Software Process: Improvement and
Practice, 10:7–29, January/March 2005.

[5] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configuration
through specialization and multi-level configuration of feature models. Software
Process: Improvement and Practice, 10:143–169, April/June 2005.

[6] Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-based feature mod-
eling and constraints: A progress report. In International Workshop on Software
Factories, OOPSLA 2005, San Diego, USA, October 2005.

[7] Valentino Vranić. Reconciling feature modeling: A feature modeling metamodel.
In Matias Weske and Peter Liggsmeyer, editors, Proc. of 5th Annual International
Conference on Object-Oriented and Internet-Based Technologies, Concepts, and
Applications for a Networked World (Net.ObjectDays 2004), LNCS 3263, pages
122–137, Erfurt, Germany, September 2004. Springer.

Appendix F

Representing Change by
Aspect

Peter Dolog, Valentino Vranić, and Mária Bieliková. Representing change
by aspect. ACM SIGPLAN Notices, 36(12):77–83, December 2001.

Representing Change by Aspect∗

Peter Dolog, Valentino Vranić and Mária Bieliková
Dept. of Computer Science and Engineering

Faculty of Electrical Engineering and Information Technology

Slovak University of Technology

Ilkovičova 3, 812 19 Bratislava, Slovakia,

{dolog,vranic,bielik}@elf.stuba.sk

http://www.dcs.elf.stuba.sk/~{dologp,vranic,bielik}

Abstract. We propose the application of aspect-
oriented programming to software configuration manage-
ment. We believe it could improve the change control
by providing a new basis for reasoning about a change.
To demonstrate this, we designed an abstract-oriented
extension to procedural languages where a change is rep-
resented by an aspect. Consequently, a change gains the
properties of an aspect: it becomes well-localized and sep-
arated from the (unchanged) base program. This goes
beyond the current capabilities of configuration manage-
ment methods and tools: the aspect representing the
change can be applied to other versions of the program
(possibly to different programs).

Keywords: aspect-oriented programming, change con-
trol, change representation.

1 Introduction

Software systems are developed and evolved in a series
of changes. Changes arise as requirements are extended,
reformulated, dropped or corrected, as faults are discov-
ered, and in many other situations. The change is often
required also due to a need for adapting the product to
the user’s context. We are witnesses of growing coop-
eration among software development companies. Many
(often distributed) teams work on the same release of the
software system in parallel. In such a situation, change
control becomes even more important.

The level of change control support provided by the ex-
isting software configuration management tools varies sig-
nificantly. Hence, if two companies decide to cooperate,
there is a big chance that they would have different tools
that provide different repository items representation, dif-
ferent structure representation, etc. The companies can

∗This work was partially supported by Slovak Science Grant
Agency, grant No. G1/7611/20.

also have different configuration management process es-
tablished, including, for example, different branching and
merging strategy, what even more complicates keeping
track of changes in the source code.

We propose a solution to some of these problems by
treating a change at the source code level and by express-
ing it explicitly. To achieve this, we employ the aspect-
oriented programming, a new approach to programming
aiming at separation of crosscutting concerns (see Sec-
tion 3).

The rest of the paper is structured as follows. First, we
put our approach in the context of the existing versioning
models (Section 2) and the aspect-oriented programming
(Section 3). Then we present an abstract aspect-oriented
extension to procedural languages (Section 4). Subse-
quently, we show how this extension can be concretized
to VBScript language (Section 5). Finally, we draw some
conclusions and point some directions for the further work
(Section 6).

2 Version Models and Change

A version model defines the entities to be versioned, ver-
sion identification and organization, as well as operations
for retrieving existing versions and constructing new ver-
sions [4]. Several version models are described in the lit-
erature and used in existing configuration management
tools. We focus on the core issue of versioning, namely the
organization of version space, or to be more specific—the
version description and representation. Our main interest
is to improve change control.

According to the entities being handled, the version
models are classified into state-based and change-based.
State-based models focus on the states of versioned items.
In such approach, versions are usually described in terms
of revisions and variants [2]. A configuration item (the
smallest unit of a system taken under version control) is
maintained usually at the file level. The change in state-

based models can be described as the difference between
two versions. Many commercial systems are state-based
(e.g., Microsoft Visual Source Safe, Rational ClearCase,
PVCS) [3].

The problem with state-based models is that a change
is maintained implicitly, during the modification of a
branch. Merging can be viewed as a re-application of all
the changes to the branches being merged. This requires
the extraction of the changes from the branches and their
subsequent application to the base.

In change-based models the change is treated as a first
class entity and managed explicitly by a developer, either
manually or by a tool. A version is considered as the re-
sult of the application of changes to a baseline. There are
several commercial change-based software configuration
management systems that have the ability to track the
logical changes rather than individual file changes (e.g.,
Continuus/CM, CCC/Harvest). They treat the change
at the level of the source code lines or at the level of the
file versions. Accordingly, they allow to create change
sets or change packages [13]. A change set consists of the
changed code lines. A change package contains references
to the file versions that are the compositions of logical
changes.

In a change-set model, changes are combined freely
to construct new versions according to the requirements.
In [4] such approach is denoted as change-based inten-
sional versioning. The use of change packages is denoted
as change-based extensional versioning, because version
set is defined explicitly by enumerating its members. In
this case, each version is described by changes relative to
some baseline.

Another change-based approach is based on change
identification by language constructs. This can be de-
noted as language-aware approach: the change is handled
by directives for source code inserting, deleting and edit-
ing augmented with the attributes of the change (e.g.,
who and when made the change, etc.). An example of
this approach is VTML (Versioned Text Markup Lan-
guage) [9] or conditional compilation.

The conditional compilation enables to use the prepro-
cessor directives to control the code fragments visibilities.
In this case, all changes (fragments) are stored in one file,
which is hard to maintain. Management of fragments’ vis-
ibilities is necessary for improving change control. This
approach is used, for example, in the EPOS system [5].

The change-based systems are not so widely used as
the state-based ones. The main reason is that devel-
opers think rather at the version-state level. However,
nowadays many state-based systems are being extended
to provide the change-based functionality (e.g., Rational
ClearCase) [8]. The objective is to improve change man-
agement and traceability of the change request in a soft-
ware development process.

The change representation influences the change con-
trol procedure, which consists of the four major steps [1]:
checking whether the change is needed,1 analysis of causes
that led to change, planning the change, and change im-
plementation. In the context of the change control proce-
dure, we are concerned with the change implementation.

The problem with the surveyed change-based ap-
proaches is the granularity of the logical change. As we
mentioned, some of them treat the logical change as the
individual lines of the source code, while other are based
on representing change by preprocessor directives.

3 Aspect-Oriented Extensions

The main idea of the aspect-oriented programming
(AOP)—separation of concerns by separating the cross-
cutting concerns called aspects from the basic functional-
ity crosscut by them—is carried throughout several inde-
pendently developed approaches [10, 12]. Among them,
Xerox PARC AOP [14] holds a significant position. Fur-
ther in the text by the AOP we mean actually the Xerox
PARC AOP.

AOP appeared as a reaction to the problem known from
the generalized procedure languages [7], i.e. programming
languages that use the concept of the procedure to cap-
ture the functionality.2 In such languages the program
code fragments that implement a clearly separable as-
pect of a system (such as synchronization) are scattered
and repeated throughout the overall program code that,
in advance, becomes tangled. AOP aims at factoring out
such aspects into separate program units called by the
same name: aspects. Aspects crosscut the base code in
places called join points. These must be specified so as-
pects could be woven into the base code by the program
called weaver.

The join points can be static or dynamic. Static join
points can be identified in the program text itself. They
can be specified in terms of a programing language syntax
alone. An example of such a join point is the beginning or
end of a method or procedure body. Dynamic join points
are available at run time only. For example, a method
reception by an object is a dynamic join point. In the
weaving process, the static join points are resolved by a
simple program code insertion, while dynamic join points
can be resolved at run time only.

The special language constructs used to capture the
aspects and join points are known as the aspect-oriented
extension of the base language. The two types of aspect-
oriented extension regarding its relationship to the base

1It is possible that some workaround for the existing activity
could be more effective than the change itself.

2Besides the procedural languages, these include functional and
object-oriented languages as well.

language can be distinguished: homogenous and hetero-
geneous. The homogenous extension, besides for some
additional constructs, relies on the base language to the
greatest possible extent, while the heterogeneous exten-
sion introduces a whole new language for capturing the
aspect-oriented part of the program. In general, there can
be several independent aspect-oriented extensions, han-
dled by the same or by separate weavers.
Not unlike programming languages in general, an

aspect-oriented extension (including the corresponding
weaver) can be designed to solve a specific problem, such
as the one presented in [7] (the filtering example), or to
serve a general-purpose, as the AspectJ language [15],
which is a homogenous, general-purpose aspect-oriented
extension to Java. While aspect-oriented extensions pro-
vide a new way of programming, they do so only in the
context of the language they extend. In other words, AOP
is a multi-paradigm approach in its very nature [12], and
AspectJ can be viewed as a multi-paradigm language [11].

4 Aspect-Oriented Extension for
Change Representation

As it was discussed in Section 2, current configura-
tion management approaches do not offer a satisfactory
change representation regarding the change maintenance
and re-applicability to different branches. The use of
AOP enables to maintain changes explicitly by captur-
ing a change into an aspect.
In order to enable change representation by aspect, the

aspect-oriented extension to a given programming lan-
guage should be provided. Since the changes are actually
changes of the program text, all the join points will be
statical. Further, the aspect-oriented extension should be
homogenous—to preserve the base language constructs,
and general-purpose—to cover all the types of changes
(which depend on the base language). Also, the join point
description should not affect the base program.
To illustrate aspect-oriented approach to change rep-

resentation, we developed an aspect-oriented extension
(inspired by AspectJ) to procedural languages. Proposed
language constructs are presented in Fig. 1. Different
type styles are used to distinguish among the keywords,
required parts and optional parts.

The aspects are placed into modules, possibly together
with the ordinary procedures which can be called from
within the aspects, i.e. inside of the block parts. The
block parts must be parsed either by the weaver, or by
the original language parser.

The introductions are used to introduce new procedures
and variables into modules (Mi). The advices enable per-
forming a command block before, after or in place of the
procedures determined by a specified set of join points,

so-called pointcut. While before and after advices are
simple, the around advice requires some explanation. It
enables to run an initial block blocki, then to proceed

with the next action, which is either another aspect, or
the original procedure body, in case there is no other as-
pect affecting the procedure. The optional return clause
in after and around advices enables to modify the return
value (if the procedure returns one) before it is actually
returned to the caller.

The pointcut specification is built out of the point-
cut primitives (listed in the bottom of Fig. 1) using
the logical operators and and or.3 The parentheses
can be used to declare the priority of subexpressions
evaluation. The first two primitive pointcuts, modules
and withincode, designate all the join points within
the modules Mi and procedures specified by the pro-
cedure signature, respectively. The calls pointcut
primitive designates all the procedure calls specified by
the procedure signature. The definitions pointcut
primitive designates the actual definitions, i.e. bodies of
the procedures specified by the procedure signature
(see Fig. 5 for an example). A before advice to a
definitions pointcut will insert its code after all the
declarations of variables in the specified procedure(s)
placed before the first non-declaration statement.

The wild cards * and .. can be used in proce-
dure signature to denote any string of characters and
omitted arguments, respectively. This convention is used
in AspectJ, e.g. * p*(int, *) denotes all the methods
whose name starts with p, with one int argument and
one argument of any type, returning a value of any type.
The most general signature—denoting all the methods—
is then * *(..).

Up to now we said nothing about the optional argu-
ment list in advices. It is used to access the arguments
of the procedures denoted by the pointcut. Suppose we
want to make a before advice to the following C function:

int f(int i) {return i*i;}

Consider these two advices:

1. before(): definitions(int f(int)) {i = i + 1;}

2. before(int x): definitions(int f(x))

{x = x + 1;}

Both advices seem to do the same thing; they add one
to f’s argument before proceeding with the rest of f’s
body.4 However, if we rename i in function f to j, the
first advice will fail to satisfy our intention (moreover,
it will produce a syntax error), so the second version is
obviously more robust.

3Since pointcuts are the sets of join points, the and and or oper-
ators have the meaning of set intersection and union, respectively.

4This is different from AspectJ where the method body is not
visible to advices.

Introductions:

introduction M1,...,Mn {block}
Advices:

before(argument list): pointcut {block}
after(argument list): pointcut {block return clause}
around(argument list): pointcut {blocki proceed...blockf return clause}

Pointcuts:

pointcut pointcutName (argument list): pointcut specification

Pointcut primitives:

modules(M1,...,Mn)

withincode(procedure signature)

calls(procedure signature)

definitions(procedure signature)

Figure 1: Aspect-oriented extension to procedural languages.

The proposed aspect-oriented extension is capable of
describing the following types of changes:

• introduction of a new procedure or (global) variable
into the module;

• extension of a procedure by a code before, after, or
instead of it;

• change to the procedure arguments and return value.

What all of these changes have in common is that they
are all about the functionality. The changes that cannot
be described at the level of functionality are very hard
(or impossible) to deal with using the aspect-oriented ap-
proach. These include renaming a procedure or variable,
adding a white space or comment, changing the position
of a procedure in the source code, etc.
A version is obtained by weaving the aspects that cap-

ture the change into the base program. Since this version
might become a subject of modification as well, it should
be human readable. This is different from the AOP itself
where the process of weaving yields only an intermediate
product not intended to be read by a human. The aspect-
oriented extension proposed principally satisfies this re-
quirement, since it relies on static join points only.

5 Case Study: Script Customiza-
tion

We will show now how the approach we proposed in the
preceding section could help in solving a problem of syn-
chronizing the local customization with the global version

of a program in script languages by the means of an ex-
ample. We will use VBScript-like syntax since VBscript
is widely used as a language for dynamical content gener-
ation and design of the web pages. It is the core language
for Microsoft’s asp pages. Further, some software houses
use VBScript as the language for customizing their prod-
ucts, e.g. InteractCommerce corp.’s SalesLogix.

Suppose that two teams work on one system. The
teams received change requests regarding the same script,
shown in Fig. 2, which is a part of the system, at the same
time, i.e. before synchronization of branches, as depicted
in Fig. 3. The purpose of the script is to extract the list
of sales opportunities from the opportunity table in the
test database. The change request received by the first
team is about extending the list of opportunities by the
list of products. A new recordset, as well as the SQL
statement and several lines of VBScript code must be
added in order to accomplish the task of extracting the
records from the table and generating the page containing
the data.

The modified script is presented in Fig. 4; some com-
mands the same as in Fig. 2 have been omitted (indi-
cated by ellipsis). The code between the change and end

change comments can be separated into the aspect mod-
ule, as presented in Fig. 5. The affected module is spec-
ified by the modules designator in both advices. The
declarations of additional variables are provided in the
before advice. The conjunction of the definitions and
modules designator states that the sequence of variable
declarations in the advice is to be merged after all the
declarations in the main procedure which are placed be-
fore the first non-declaration statement. The sequence of
the directives to be run after the ro.close method in-

sub main

Dim con ’Connection object

Dim s ’Select statement

Dim ro ’Recordset object

Set con = Server.CreateObject("ADODB.Connection")

con.Open "Test"

s = "SELECT * FROM opportunity"

Set ro = con.Execute(s)

call gener_data(ro)

ro.Close

con.Close

Set ro = Nothing

Set con = Nothing

end sub

Figure 2: The code base in VBScript.

Script

Team 1’s
change

Team 2’s
change

Script 1 Script 2

Scripts merged

Figure 3: The branching.

vocation (specified by the calls designator) within the
original main procedure (specified by the withincode des-
ignator) has been enclosed into the after advice. The
result of the merging, i.e. weaving, will be the same code
as displayed in Fig. 4.

The other change request addressed to the second team
resulted in the script shown in Fig. 6. The second team’s
change consists of adding the while loop for updating
the applied and the date of application fields for each
record in the opportunity table, and of adding the se-
quence of commands that generate the list of market-
ing campaigns from the marketing table. We can apply
the aspect from Fig. 5 to the code in Fig. 6 without any
change.

However, that change could have been separated into
the aspect, too, if both teams used the aspect-oriented
approach. In that case, we would simply apply the two
aspects subsequently in order to obtain both functionali-
ties.5

5The priority of aspects is not significant here, but this is not so
in general.

sub main

. . .

’***change of declarations***

Dim rp ’Recordset object

Dim s2 ’Select statement

Dim c ’Command object

’***end of change***

Set con = . . .

. . .

ro.Close

’***change***

s2 = "SELECT * FROM product"

Set c = Server.CreateObject("ADODB.Command")

c.ActiveConnection = con

c.CommandText = s2

Set rp = c.Execute

call gener_data(rp)

rp.close

rp = Nothing

c = Nothing

’***end of change***

. . .

end sub

Figure 4: The change performed by the first team.

6 Conclusions

We proposed a new approach to change-oriented version-
ing based on the aspect-oriented programming. The con-
tribution of this paper is the proposal of the technique
aimed to simplify change control by reifying the changes
into language-level entities: a change is represented by an
aspect and maintained explicitly by a developer.

A homogenous, general aspect-oriented extension has
to be provided for a given programming language first.
For the purposes of our approach, it is sufficient if this
extension supports static join points. Since procedural,
functional and object-oriented languages are easily ex-
tended to support the AOP with static join points, this
approach is low-cost. We proposed such an extension to
procedural languages. Moreover, it can be expected that
general aspect-oriented extensions to other programming
languages will be developed and provided for the sake of
the AOP itself, so no additional effort would be necessary
to employ this approach in such languages. This can be
denoted as self-supported change management: a change
is represented by the constructs that are a part of the
programming language itself.

We assume this as one of the main advantages of the
proposed version space representation. It provides a new
base level for the change control; it is a move from the
change control at the line level to the one at the program-
ming language semantics level. In small software projects
it is directly usable even without a software configuration
management tool. The change comprehension and ori-

before(): modules(script) && definitions(main)

begin

Dim rp ’Recordset object

Dim s2 ’Select statement

Dim c ’Command object

end before

after(): modules(script) && withincode(main)

&& calls(ro.close)

begin

s2 = "SELECT * FROM opportunity_product"

Set c = Server.CreateObject("ADODB.Command")

c.ActiveConnection = con

c.CommandText = s2

Set rp = c.Execute

call gener_data(rp)

rp.close

rp = Nothing

c = Nothing

end after

Figure 5: The change separated into the aspect.

entation in the source code is easier because the change
is well-localized in the aspect and need not be searched
for. A change is possibly re-applicable as is or with some
adaptation of the aspect involved (white-box reuse). Ac-
tually, the aspect can be applied to a completely different
module than it was intended for by a simple modification
of the pointcut.

Aspect-oriented approach can be used also in
post-deployment configuration management [6] for
parametrization (modification of a software system to
take into account the local site context). The local con-
text can be represented by an aspect. The application
of the relevant aspects provides customization of the new
product version according to the local context (developed
for the previous version). Obviously, new aspects will be
also created, in order to customize new features in the
current version of the product.

Our approach can be used with existing software con-
figuration management tools. Moreover, our approach is
independent of the model employed by software configu-
ration management tools. An aspect is a separate item,
so it can be handled in both basic version models (state-
based and change-based). It also supports the implicit
long transaction maintenance because aspect itself repre-
sents a change and it is up to the developer to decide when
the change should be committed. As aspects can be sim-
ply plugged in or out before the compilation, adding of an
individual change into a version or substracting a change
from a version (similarly as in the change-set approaches)
is simple. Even more, the aspects can be combined into
change packages. A change request could be then directly
assigned to the corresponding aspect or change package

sub main

. . .

’***change of declarations***

Dim rm ’Recordset object

Dim com ’Command object

Dim str ’String - select statement

’***end of change declarations***

Set con = . . .

. . .

call gener_data(ro)

’***change***

While Not ro.EOF

ro.Fields("applied") = ’T’

ro.Fields("date_of_application") = Now

Loop

str = "SELECT * FROM marketing"

Set com = Server.CreateObject("ADODB.Command")

com.ActiveConnection = con

com.CommandText = str

Set rm = com.Execute

call gener_data(rm)

rm.close

rm = Nothing

com = Nothing

’***end of change ***

ro.Close

. . .

end sub

Figure 6: The change performed by the second team.

(indicated by the appropriate identifiers).

Our work is now oriented toward a deeper elaboration
of practical use of the proposed approach. Some addi-
tional mechanisms should be added to manipulate ver-
sion history and versions themselves. In order to be able
to control the changes effectively, some meta-data should
be stored within each change (e.g., who and when made
the change). In order to follow a version history, the
meta-data related to changes should be processed and in-
terpreted.

On the other hand, we are already able to partially
track the version history, but it is difficult to determine
which version was created by a developer and which is
just a potential version when storing only changes. The
potential versions can be obtained by applying the combi-
nations of the aspects. However, not all potential versions
make sense [4].

An additional problem is that the aspect representing a
change can become a subject of change, too. As a conse-
quence, a method of dealing with the change of a change
should be proposed. This problem arises in any change-
based version model, of course, but a special method is
needed here because our approach works at other level
of change control than traditional change-based version
models.

References

[1] George W. Allan. An Holistic Model for Change
Control, pages 703–707. Plenum, New York,
1997. Available at http://www.dis.port.ac.uk/

~allangw/chng-man.htm. Accessed on March 6,
2001.

[2] M. Bieliková and P. Návrat. An approach to au-
tomated building of software system configurations.
Int. Journal of Software Engineering and Knowledge
Engineering, 9(1):73–95, 1999.

[3] Jim Buffenbarger and Kirk Gruell. A branch-
ing/merging strategy for parallel software develop-
ment. In Jacky Estublier, editor, Proc. of 9th
Int. Symposium on System Configuration Manage-
ment, pages 86–99, Tolouse, France, September 1999.
Springer LNCS 1675.

[4] Reidar Conradi and Bernhard Westfechtel. Ver-
sion models for software configuration management.
ACM Computing Surveys, 30(2):232–282, June 1998.

[5] Bjorn Gulla, Even-André Karlsson, and Dashing
Yeh. Change-oriented version descriptions in EPOS.
Software Engineering Journal, 6(6):378–386, Novem-
ber 1991.

[6] Dennis Heimbigner and Alexander L. Wolf. Post-
deployment configuration management. In Ian Som-
merville, editor, Proc. of 6th Int. Workshop on
Software Configuration Management, pages 272–276,
Berlin, Germany, March 1996. Springer LNCS 1167.

[7] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Christina Vidiera Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented pro-
gramming. In Mehmet Aksit and Satoshi Matsuoka,
editors, Proc. of 11th European Conf. on Object-
Oriented Programming (ECOOP’97), Jyväskylä,
Finland, June 1997. Springer LNCS 1241. Available
at [15].

[8] David B. Leblang. Managing the software develop-
ment process with ClearGuide. In Reidar Conradi,
editor, Proc. of 7th Int. Workshop on Software Con-
figuration Management, pages 66–80, Boston, USA,
May 1997. Springer LNCS 1235.

[9] Fabio Vitali and David G. Durand. Using ver-
sioning to support collaboration on the WWW.
In Proc. of 4th World Wide Web Conference,
1995. Available at http://www.w3.org/pub/

Conferences/WWW4. Accessed on March 6, 2001.

[10] Valentino Vranić. Multiple software development
paradigms and multi-paradigm software develop-
ment. In J. Zendulka, editor, Proc. of the Informa-
tion Systems Modelling 2000, pages 191–196, Rožnov
pod Radhoštěm, Czech Republic, May 2000. MARQ.

[11] Valentino Vranić. AspectJ paradigm model: A ba-
sis for multi-paradigm design for AspectJ. In Proc.
of Third International Conference on Generative
and Component-Based Software Engineering (GCSE
2001), Erfurt, Germany, September 2001. Springer.
Accepted for publishing.

[12] Valentino Vranić. Towards multi-pradigm software
development. Submitted to Journal of Computing
and Information Technology (CIT), 2001.

[13] Darcy Wiborg Weber. Change sets versus change
packages: Comparing implementation of change-
based SCM. In Reidar Conradi, editor, Proc. of
7th Int. Workshop on Software Configuration Man-
agement, pages 25–35, Boston, USA, May 1997.
Springer LNCS 1235.

[14] Xerox PARC. Aspect-Oriented Programming home
page. http://www.parc.xerox.com/aop. Accessed
on July 11, 2001.

[15] Xerox PARC. AspectJ home page. http://

aspectj.org. Accessed on July 11, 2001.

Peter Dolog received his Bc. (BSc.) in 1998, and his Ing. (MSc.)
in 2000, both in information technology, and both from Slovak Uni-
versity of Technology in Bratislava. Since 2000 he is a PhD student
at the Department of Computer Science and Engineering, Faculty of
Electrical Engineering and Information Technology of Slovak Uni-
versity of Technology in Bratislava. His research interests include
hypermedia systems modelling, adaptive presentation of informa-
tion in the Internet, and new approaches to software engineering
in general. He is a member of the Slovak Society for Computer
Science.

Valentino Vranić received his Bc. (BSc.) in 1997, and his Ing.
(MSc.) in 1999, both in information technology, and both from
Slovak University of Technology in Bratislava. Since 1999 he is a
PhD student at the Department of Computer Science and Engi-
neering, Faculty of Electrical Engineering and Information Tech-
nology of Slovak University of Technology in Bratislava. His main
research interests are multi-paradigm software development and
aspect-oriented programming. He is a member of the Slovak So-
ciety for Computer Science.

Mária Bieliková received her Ing. (MSc.) in 1989 from Slovak
University of Technology in Bratislava, and her CSc. (PhD.) degree
in 1995 from the same university. Since 1998, she is an associate
professor at the Department of Computer Science and Engineering
at Slovak University of Technology. Her research interests include
knowledge software engineering, software development and manage-
ment of versions and software configurations, adaptive hypermedia
and educational systems. She is a member of the Slovak Society for
Computer Science, IEE, ACM, IEEE and its Computer Society.

Appendix G

Evolution of Web Applications
with Aspect-Oriented Design
Patterns

Michal Bebjak, Valentino Vranić, and Peter Dolog. Evolution of web ap-
plications with aspect-oriented design patterns. In Marco Brambilla and
Emilia Mendes, editors, Proc. of ICWE 2007 Workshops, 2nd Interna-
tional Workshop on Adaptation and Evolution in Web Systems Engineering,
AEWSE 2007, in conjunction with 7th International Conference on Web En-
gineering, ICWE 2007, pages 80–86, Como, Italy, July 2007.

Evolution of Web Applications with
Aspect-Oriented Design Patterns

Michal Bebjak1, Valentino Vranić1, and Peter Dolog2

1 Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technology

Slovak University of Technology,
Ilkovičova 3, 84216 Bratislava 4, Slovakia

bebjak02@student.fiit.stuba.sk, vranic@fiit.stuba.sk

2 Department of Computer Science
Aalborg University

Fredrik Bajers Vej 7, building E, DK-9220 Aalborg EAST, Denmark
dolog@cs.aau.dk

Abstract. It is more convenient to talk about changes in a domain-
specific way than to formulate them at the programming construct level
or—even worse—purely lexical level. Using aspect-oriented programming,
changes can be modularized and made reapplicable. In this paper, se-
lected change types in web applications are analyzed. They are expressed
in terms of general change types which, in turn, are implemented us-
ing aspect-oriented programming. Some of general change types match
aspect-oriented design patterns or their combinations.

1 Introduction

Changes are inseparable part of software evolution. Changes take place in the
process of development as well as during software maintenance. Huge costs and
low speed of implementation are characteristic to change implementation. Often,
change implementation implies a redesign of the whole application. The necessity
of improving the software adaptability is fairly evident.

Changes are usually specified as alterations of the base application behavior.
Sometimes, we need to revert a change, which would be best done if it was
expressed in a pluggable way. Another benefit of change pluggability is apparent
if it has to be reapplied. However, it is impossible to have a change implemented
to fit any context, but it would be sufficiently helpful if a change could be
extracted and applied to another version of the same base application. Such a
pluggability can be achieved by representing changes as aspects [5]. Some changes
appear as real crosscutting concerns in the sense of affecting many places in the
code, which is yet another reason for expressing them as aspects.

This would be especially useful in the customization of web applications.
Typically, a general web application is adapted to a certain context by a series
of changes. With arrival of a new version of the base application all these changes

have to be applied to it. In many occasions, the difference between the new and
the old application does not affect the structure of changes.

A successful application of aspect-oriented programming requires a struc-
tured base application. Well structured web applications are usually based on the
Model-View-Controller (MVC) pattern with three distinguishable layers: model
layer, presentation layer, and persistence layer.

The rest of the paper is organized as follows. Section 2 establishes a scenario
of changes in the process of adapting affiliate tracking software used throughout
the paper. Section 3 proposes aspect-oriented program schemes and patterns
that can be used to realize these changes. Section 4 identifies several interesting
change types in this scenario applicable to the whole range of web applications.
Section 5 envisions an aspect-oriented change realization framework and puts
the identified change types into the context of it. Section 6 discusses related
work. Section 7 presents conclusions and directions of further work.

2 Adapting Affiliate Tracking Software: A Change
Scenario

To illustrate our approach, we will employ a scenario of a web application
throughout the rest of the paper which undergoes a lively evolution: affiliate
tracking software. Affiliate tracking software is used to support the so-called
affiliate marketing [6], a method of advertising web businesses (merchants) at
third party web sites. The owners of the advertising web sites are called af-
filiates. They are being rewarded for each visitor, subscriber, sale, and so on.
Therefore, the main functions of such affiliate tracking software is to maintain
affiliates, compensation schemes for affiliates, and integration of the advertising
campaigns and associated scripts with the affiliates web sites.

In a simplified schema of affiliate marketing a customer visits an affiliate’s
page which refers him to the merchant page. When he buys something from the
merchant, the provision is given to the affiliate who referred the sale. A general
affiliate tracking software enables to manage affiliates, track sales referred by
these affiliates, and compute provisions for referred sales. It is also able to send
notifications about new sales, signed up affiliates, etc.

Suppose such a general affiliate tracking software is bought by a merchant
who runs an online music shop. The general affiliate software has to be adapted
through a series of changes. We assume the affiliate tracking software is prepared
to the integration with the shopping cart. One of the changes of the affiliate
tracking software is adding a backup SMTP server to ensure delivery of the
news, new marketing methods, etc., to the users.

The merchant wants to integrate the affiliate tracking software with the third
party newsletter which he uses. Every affiliate should be a member of the newslet-
ter. When selling music, it is important for him to know a genre of the music
which is promoted by his affiliates. We need to add the genre field to the generic
affiliate signup form and his profile screen to acquire the information about the
genre to be promoted at different affiliate web sites. To display it, we need to

modify the affiliate table of the merchant panel so it displays genre in a new
column. The marketing is managed by several co-workers with different roles.
Therefore, the database of the tracking software has to be updated with an ad-
ministrator account with limited permissions. A limited administrator should
not be able to decline or delete affiliates, nor modify campaigns and banners.

3 Aspect-Oriented Change Representation

In the AspectJ style of aspect-oriented programming, the crosscutting concerns
are captured in units called aspects. Aspects may contain fields and methods
much the same way the usual Java classes do, but what makes possible for them
to affect other code are genuine aspect-oriented constructs, namely: pointcuts,
which specify the places in the code to be affected, advices, which implement
the additional behavior before, after, or instead of the captured join point3, and
inter-type declarations, which enable introduction of new members into existing
types, as well as introduction of compile warnings and errors.

These constructs enable to affect a method with a code to be executed before,
after, or instead of it, which may be successfully used to implement any kind of
Method Substitution change (not presented here due to space limitations). Here
we will present two other aspect-oriented program schemes that can be used to
realize some common changes in web application. Such schemes may actually
be recognized as aspect-oriented design patterns, but it is not the intent of this
paper to explore this issue in detail.

3.1 Class Exchange

Sometimes, a class has to be exchanged with another one either in the whole
application, or in a part of it. This may be achieved by employing the Cuckoo’s
Egg design pattern [8]. A general code scheme is as follows:

public aspect ExchangeClass {
public pointcut exhangedClassConstructor(): call(ExchangedClass.new(..);
Object around(): exhangedClassConstructor() { return getExchangingObject();}
ExchangeObject getExchangingObject() {

if (. . .)
new ExchangingClass();

else
proceed();

}
}

The exhangedClassConstructor() is a pointcut that captures the ExchangedClass
constructor calls using the call() primitive pointcut. The around advice cap-
tures these calls and prevents the ExchangedClass instance from being created.
Instead, it calls the getExchangingObject() method which implements the ex-
change logic. ExchangingClass has to be a subtype of ExchangedClass.

3 Join points represent well-defined places in the program execution.

The example above sketches the case in which we need to allow the construc-
tion of the original class instance under some circumstances. A more complicated
case would involve several exchanging classes each of which would be appropriate
under different conditions. This conditional logic could be implemented in the
getExchangingObject() method or—if location based—by appropriate pointcuts.

3.2 Perform an Action After an Event

We often need to perform some action after an event, such as sending a noti-
fication, unlocking product download for user after sale, displaying some user
interface control, performing some business logic, etc. Since events are actually
represented by method calls, the desired action can be implemented in an after
advice:

public aspect AdditionalReturnValueProcessing {
pointcut methodCallsPointcut(TargetClass t, int a): . . .;
after(/∗ captured arguments ∗/): methodCallsPointcut(/∗ captured arguments ∗/) {

performAction(/∗ captured arguments ∗/);
}
private void performAction(/∗ arguments ∗/) { /∗ action logic ∗/ }

}

4 Changes in Web Applications

The changes which are required by our scenario include integration changes,
grid display changes, input form changes, user rights management changes, user
interface adaptation, and resource backup. These changes are applicable to the
whole range of web applications. Here we will discuss three selected changes and
their realization.

4.1 Integration Changes

Web applications often have to be integrated with other systems (usually other
web applications). Integration with a newsletter in our scenario is a typical
example of one way integration. When an affiliate signs up to the affiliate tracking
software, we want to sign him up to a newsletter, too. When the affiliate account
is deleted, he should be removed from the newsletter, too.

The essence of this integration type is one way notification: only the integrat-
ing application notifies the integrated application of relevant events. In our case,
such events are the affiliate signup and affiliate account deletion. A user can be
signed up or signed out from the newsletter by posting his e-mail and name to
the one of the newsletter scripts. Such an integration corresponds to the Perform
an Action After an Event change (see Sect. 3.2). In the after advice we will make
a post to the newsletter sign up/sign out script and pass it the e-mail address
and name of the newly signed up or deleted affiliate. We can seamlessly combine
multiple one way integrations to integrate a system with several systems.

Introducing a two way integration can be seen as two one way integration
changes: one applied to each system. A typical example of such a change is data
synchronization (e.g., synchronization of user accounts) across multiple systems.
When the user changes his profile in one of the systems, these changes should be
visible in all of them. For example, we may want to have a forum for affiliates. To
make it convenient to affiliates, user accounts of the forum and affiliate tracking
system should be synchronized.

4.2 Introducing User Rights Management

Many web applications don’t implement user rights management. If the web ap-
plication is structured appropriately, it should be possible to specify user rights
upon the individual objects and their methods, which is a precondition for ap-
plying aspect-oriented programming.

User rights management can be implemented as a Border Control design
pattern [8]. According to our scenario, we have to create a restricted adminis-
trator account that will prevent the administrator from modifying campaigns
and banners and decline/delete affiliates. All the methods for campaigns and
banners are located in the campaigns and banners packages. The appropriate
region specification will be as follows:

pointcut prohibitedRegion(): (within(application.Proxy) && call(void ∗.∗(..)))
|| (within(application.campaigns.+) && call(void ∗.∗(..)))
|| within(application.banners.+)
|| call(void Affiliate.decline(..)) || call(void Affiliate.delete(..));

}

Subsequently, we have to create an around advice which will check whether
the user has rights to access the specified region. This can be implemented using
the Method Substitution change applied to the pointcut specified above.

4.3 Introducing a Resource Backup

As specified in our scenario, we would like to have a backup SMTP server for
sending notifications. Each time the affiliate tracking software needs to send
a notification, it creates an instance of the SMTPServer class which handles
the connection to the SMTP server and sends an e-mail. The change to be
implemented will ensure employing the backup server if the connection to the
primary server fails. This change can be implemented straightforwardly as a
Class Exchange (see Sect. 3.1)

5 Aspect-Oriented Change Realization Framework

The previous two sections have demonstrated how aspect-oriented programming
can be used in the evolution of web applications. Change realizations we have
proposed actually cover a broad range of changes independent of the application

domain. Each change realization is accompanied by its own specification. On the
other hand, the initial description of the changes to be applied in our scenario
is application specific. With respect to its specification, each application specific
change can be seen as a specialization of some generally applicable change. This
is depicted in Fig. 1 in which a general change with two specializations is pre-
sented. However, the realization of such a change is application specific. Thus, we
determine the generally applicable change whose specialization our application
specific change is and adapt its realization scheme.

Fig. 1. General and specific changes with realization.

When planning changes, it is more convenient to think in a domain specific
manner than to cope with programming language specific issues directly. In
other words, it is much easier to select a change specified in an application
specific manner than to decide for one of the generally applicable changes. For
example, in our scenario, an introduction of a backup SMTP server was needed.
This is easily identified as a resource backup, which subsequently brings us to
the realization in the form of the Class Exchange.

6 Related Work

Various researchers have concentrated on the notion of evolution from automatic
adaptation point of view. Evolutionary actions which are applied when partic-
ular events occur have been introduced [9]. The actions usually affect content
presentation and navigation. Similarly, active rules have been proposed for adap-
tive web applications with the focus on evolution [4]. However, we see evolution
as changes of the base application introduced in a specific context. We use aspect
orientation to modularize the changes and reapply them when needed.

Our work is based on early work on aspect-oriented change management [5].
We argue that this approach is applicable in wider context if supported by a ver-
sion model for aspect dependency management [10] and with appropriate aspect
model that enables to control aspect recursion and stratification [1]. Aspect-
oriented programming community explored several specific issues in software
evolution such as database schema evolution with aspects [7] or aspect-oriented
extensions of business processes and web services with crosscutting concerns of
reliability, security, and transactions [3]. However, we are not aware of any work
aiming specifically at capturing changes by aspects in web applications.

7 Conclusions and Further Work

We have proposed an approach to web application evolution in which changes
are represented by aspect-oriented design patterns and program schemes. We
identified several change types that occur in web applications as evolution or
customization steps and discussed selected ones along with their realization. We
also envisioned an aspect-oriented change realization framework.

To support the process of change selection, the catalogue of changes is needed
in which the generalization-specialization relationships between change types
would be explicitly established. We plan to search for further change types and
their realizations. It is also necessary to explore change interactions and evaluate
the approach practically.

Acknowledgements The work was supported by the Scientific Grant Agency
of Slovak Republic (VEGA) grant No. VG 1/3102/06 and Science and Technol-
ogy Assistance Agency of Slovak Republic contract No. APVT-20-007104.

References

[1] E. Bodden, F. Forster, and F. Steimann. Avoiding infinite recursion with stratified
aspects. In Robert Hirschfeld et al., editors, Proc. of NODe 2006, LNI P-88, pages
49–64, Erfurt, Germany, September 2006. GI.

[2] S. Casteleyn et al. Considering additional adaptation concerns in the design of
web applications. In Proc. of 4th Int. Conf. on Adaptive Hypermedia and Adaptive
Web-Based Systems (AH2006), LNCS 4018, Dublin, Ireland, June 2006. Springer.

[3] A. Charfi et al. Reliable, secure, and transacted web service compositions with
ao4bpel. In 4th IEEE European Conf. on Web Services (ECOWS 2006), pages
23–34, Zürich, Switzerland, December 2006. IEEE Computer Society.

[4] F. Daniel, M. Matera, and G. Pozzi. Combining conceptual modeling and active
rules for the design of adaptive web applications. In Workshop Proc. of 6th Int.
Conf. on Web Engineering (ICWE 2006), New York, NY, USA, 2006. ACM Press.

[5] P. Dolog, V. Vranić, and M. Bieliková. Representing change by aspect. ACM
SIGPLAN Notices, 36(12):77–83, December 2001.

[6] S. Goldschmidt, S. Junghagen, and U. Harris. Strategic Affiliate Marketing. Ed-
ward Elgar Publishing, 2003.

[7] R. Green and A. Rashid. An aspect-oriented framework for schema evolution in
object-oriented databases. In Proc. of the Workshop on Aspects, Components and
Patterns for Infrastructure Software (in conjunction with AOSD 2002), Enschede,
Netherlands, April 2002.

[8] R. Miles. AspectJ Cookbook. O’Reilly, 2004.
[9] F. Molina-Ortiz, N. Medina-Medina, and L. Garćıa-Cabrera. An author tool based

on SEM-HP for the creation and evolution of adaptive hypermedia systems. In
Workshop Proc. of 6th Int. Conf. on Web Engineering (ICWE 2006), New York,
NY, USA, 2006. ACM Press.

[10] E. Pulvermüller, A. Speck, and J. O. Coplien. A version model for aspect depen-
dency management. In Proc. of 3rd Int. Conf. on Generative and Component-
Based Software Engineering (GCSE 2001), LNCS 2186, pages 70–79, Erfurt, Ger-
many, September 2001. Springer.

Appendix H

Developing Applications with
Aspect-Oriented Change
Realization

Valentino Vranić, Michal Bebjak, Radoslav Menkyna, and Peter Dolog. De-
veloping applications with aspect-oriented change realization. In Proc. of 3rd
IFIP TC2 Central and East European Conference on Software Engineering
Techniques, CEE-SET 2008, LNCS, Brno, Czech Republic, October 2008.
Springer. Postproceedings, to appear.

Developing Applications with Aspect-Oriented
Change Realization

Valentino Vranić1, Michal Bebjak1, Radoslav Menkyna1, and Peter Dolog2

1 Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology,
Ilkovičova 3, 84216 Bratislava 4, Slovakia

vranic@fiit.stuba.sk, mbebjak@gmail.com, radu@ynet.sk

2 Department of Computer Science
Aalborg University

Selma Lagerlöfs Vej 300, DK-9220 Aalborg EAST, Denmark
dolog@cs.aau.dk

Abstract. An approach to aspect-oriented change realization is pro-
posed in this paper. With aspect-oriented programming changes can
be treated explicitly and directly at the programming language level.
Aspect-oriented change realizations are mainly based on aspect-oriented
design patterns or themselves constitute pattern-like forms in connection
to which domain independent change types can be identified. However,
it is more convenient to plan changes in a domain specific manner. Do-
main specific change types can be seen as subtypes of generally applicable
change types. This relationship can be maintained in a form of a catalog.
Further changes can actually affect the existing aspect-oriented change
realizations, which can be solved by adapting the existing change imple-
mentation or by implementing an aspect-oriented change realization of
the existing change without having to modify its source code. Separating
out the changes this way can lead to a kind of aspect-oriented refactoring
beneficial to the application as such. As demonstrated partially by the
approach evaluation, the problem of change interaction may be avoided
to the large extent by using appropriate aspect-oriented development
tools, but for a large number of changes, dependencies between them
have to be tracked, which could be supported by feature modeling.

Keywords: change, aspect-oriented programming, generally applicable
changes, domain specific changes, change interaction

1 Introduction

To quote a phrase, change is the only constant in software development. Change
realization consumes enormous effort and time. Once implemented, changes get
lost in the code. While individual code modifications are usually tracked by a
version control tool, the logic of a change as a whole vanishes without a proper
support in the programming language itself.

By its capability to separate crosscutting concerns, aspect-oriented program-
ming enables to deal with change explicitly and directly at programming lan-
guage level. Changes implemented this way are pluggable and—to the great
extent—reapplicable to similar applications, such as applications from the same
product line.

Customization of web applications represents a prominent example of that
kind. In customization, a general application is being adapted to the client’s
needs by a series of changes. With each new version of the base application all
the changes have to be applied to it. In many occasions, the difference between
the new and old application does not affect the structure of changes, so if changes
have been implemented using aspect-oriented programming, they can be simply
included into the new application build without any additional effort.

We have already reported briefly our initial efforts in change realization us-
ing aspect-oriented programming [1]. In this paper, we present our improved
view of the approach to change realization and the change types we discovered.
Section 2 presents our approach to aspect-oriented change realization. Section 3
introduces the change types we have discovered so far in the web application
domain. Section 4 discusses how to deal with a change of a change. Section 5
describes the approach evaluation and identifies the possibilities of coping with
change interaction with tool support. Section 6 discusses related work. Section 7
presents conclusions and directions of further work.

2 Changes as Crosscutting Requirements

A change is initiated by a change request made by a user or some other stake-
holder. Change requests are specified in domain notions similarly as initial re-
quirements are. A change request tends to be focused, but it often consists of
several different—though usually interrelated—requirements that specify actual
changes to be realized. By decomposing a change request into individual changes
and by abstracting the essence out of each such change while generalizing it at
the same time, a change type applicable to a range of the applications that
belong to the same domain can be defined.

We will introduce our approach by a series of examples on a common sce-
nario.3 Suppose a merchant who runs his online music shop purchases a general
affiliate marketing software [9] to advertise at third party web sites denoted as
affiliates. In a simplified schema of affiliate marketing, a customer visits an af-
filiate’s site which refers him to the merchant’s site. When he buys something
from the merchant, the provision is given to the affiliate who referred the sale.
A general affiliate marketing software enables to manage affiliates, track sales
referred by these affiliates, and compute provisions for referred sales. It is also
able to send notifications about new sales, signed up affiliates, etc.

The general affiliate marketing software has to be adapted (customized),
which involves a series of changes. We will assume the affiliate marketing software

3 This is an adapted scenario published in our earlier work [1].

is written in Java and use AspectJ, the most popular aspect-oriented language,
which is based on Java, to implement some of these changes.

In the AspectJ style of aspect-oriented programming, the crosscutting con-
cerns are captured in units called aspects. Aspects may contain fields and meth-
ods much the same way the usual Java classes do, but what makes possible
for them to affect other code are genuine aspect-oriented constructs, namely:
pointcuts, which specify the places in the code to be affected, advices, which
implement the additional behavior before, after, or instead of the captured join
point (a well-defined place in the program execution)—most often method calls
or executions—and inter-type declarations, which enable introduction of new
members into types, as well as introduction of compilation warnings and errors.

2.1 Domain Specific Changes

One of the changes of the affiliate marketing software would be adding a backup
SMTP server to ensure delivery of the notifications to users. Each time the
affiliate marketing software needs to send a notification, it creates an instance
of the SMTPServer class which handles the connection to the SMTP server.

An SMTP server is a kind of a resource that needs to be backed up, so
in general, the type of the change we are talking about could be denoted as
Introducing Resource Backup. This change type is still expressed in a domain
specific way. We can clearly identify a crosscutting concern of maintaining a
backup resource that has to be activated if the original one fails and implement
this change in a single aspect without modifying the original code:

class AnotherSMTPServer extends SMTPServer {
. . .

}
public aspect BackupSMTPServer {

public pointcut SMTPServerConstructor(URL url, String user, String password):
call(SMTPServer.new(..)) && args (url, user, password);

SMTPServer around(URL url, String user, String password):
SMTPServerConstructor(url, user, password) {
return getSMTPServerBackup(proceed(url, user, password));

}
SMTPServer getSMTPServerBackup(SMTPServer obj) {

if (obj.isConnected()) {
return obj;

}
else {

return new AnotherSMTPServer(obj.getUrl(), obj.getUser(),
obj.getPassword());

}
}

}

The around() advice captures constructor calls of the SMTPServer class and
their arguments. This kind of advice takes complete control over the captured
join point and its return clause, which is used in this example to control the

type of the SMTP server being returned. The policy is implemented in the
getSMTPServerBackup() method: if the original SMTP server can’t be con-
nected to, a backup SMTP server class instance is created and returned.

2.2 Generally Applicable Changes

Looking at this code and leaving aside SMTP servers and resources altogether,
we notice that it actually performs a class exchange. This idea can be generalized
and domain details abstracted out of it bringing us to the Class Exchange change
type [1] which is based on the Cuckoo’s Egg aspect-oriented design pattern [16]:

public class AnotherClass extends MyClass {
. . .

}
public aspect MyClassSwapper {

public pointcut myConstructors(): call(MyClass.new());
Object around(): myConstructors() {

return new AnotherClass();
}

}

2.3 Applying a Change Type

It would be beneficial if the developer could get a hint on using the Cuckoo’s Egg
pattern based on the information that a resource backup had to be introduced.
This could be achieved by maintaining a catalog of changes in which each domain
specific change type would be defined as a specialization of one or more generally
applicable changes.

When determining a change type to be applied, a developer chooses a par-
ticular change request, identifies individual changes in it, and determines their
type. Figure 1 shows an example situation. Domain specific changes of the D1
and D2 type have been identified in the Change Request 1. From the previously
identified and cataloged relationships between change types, we would know
their generally applicable change types are G1 and G2.

Fig. 1. Generally applicable and domain specific changes.

A generally applicable change type can be a kind of an aspect-oriented design
pattern (consider G2 and AO Pattern 2). A domain specific change realization
can also be complemented by an aspect-oriented design patterns, which is ex-
pressed by an association between them (consider D1 and AO Pattern 1).

Each generally applicable change has a known domain independent code
scheme (G2’s code scheme is omitted from the figure). This code scheme has to
be adapted to the context of a particular domain specific change, which may be
seen as a kind of refinement (consider D1 Code and D2 Code).

3 Catalog of Changes

To support the process of change selection, the catalog of changes is needed
in which the generalization–specialization relationships between change types
would be explicitly established. The following list sums up these relationships
between change types we have identified in the web application domain (the
domain specific change type is introduced first):

– One Way Integration: Performing Action After Event
– Two Way Integration: Performing Action After Event
– Adding Column to Grid: Performing Action After Event
– Removing Column from Grid: Method Substitution
– Altering Column Presentation in Grid: Method Substitution
– Adding Fields to Form: Enumeration Modification with Additional Return

Value Checking/Modification
– Removing Fields from Form: Additional Return Value Checking/Modifica-

tion
– Introducing Additional Constraint on Fields: Additional Parameter Check-

ing or Performing Action After Event
– Introducing User Rights Management: Border Control with Method Substi-

tution
– User Interface Restriction: Additional Return Value Checking/Modifications
– Introducing Resource Backup: Class Exchange

We have already described Introducing Resource Backup and the correspond-
ing generally applicable change, Class Exchange. Here, we will briefly describe
the rest of the domain specific change types we identified in the web application
domain along with the corresponding generally applicable changes. The generally
applicable change types are described where they are first mentioned to make
the sequential reading of this section easier. A real catalog of changes would
require to describe each change type separately.

3.1 Integration Changes

Web applications often have to be integrated with other systems. Suppose that
in our example the merchant wants to integrate the affiliate marketing software
with the third party newsletter which he uses. Every affiliate should be a member

of the newsletter. When an affiliate signs up to the affiliate marketing software,
he should be signed up to the newsletter, too. Upon deleting his account, the
affiliate should be removed from the newsletter, too.

This is a typical example of the One Way Integration change type [1]. Its
essence is the one way notification: the integrating application notifies the inte-
grated application of relevant events. In our case, such events are the affiliate
sign-up and affiliate account deletion.

Such integration corresponds to the Performing Action After Event change
type [1]. Since events are actually represented by methods, the desired action
can be implemented in an after advice:

public aspect PerformActionAfterEvent {
pointcut methodCalls(TargetClass t, int a): . . .;
after(/∗ captured arguments ∗/): methodCalls(/∗ captured arguments ∗/) {

performAction(/∗ captured arguments ∗/);
}
private void performAction(/∗ arguments ∗/) { /∗ action logic ∗/ }

}

The after advice executes after the captured method calls. The actual action is
implemented as the performAction() method called by the advice.

To implement the one way integration, in the after advice we will make a
post to the newsletter sign-up/sign-out script and pass it the e-mail address and
name of the newly signed-up or deleted affiliate. We can seamlessly combine
multiple one way integrations to integrate with several systems.

The Two Way Integration change type can be seen as a double One Way
Integration. A typical example of such a change is data synchronization (e.g.,
synchronization of user accounts) across multiple systems. When a user changes
his profile in one of the systems, these changes should be visible in all of them. In
our example, introducing a forum for affiliates with synchronized user accounts
for affiliate convenience would represent a Two Way Integration.

3.2 Introducing User Rights Management

In our affiliate marketing application, the marketing is managed by several co-
workers with different roles. Therefore, its database has to be updated from an
administrator account with limited permissions. A limited administrator should
not be able to decline or delete affiliates, nor modify the advertising campaigns
and banners that have been integrated with the web sites of affiliates. This is an
instance of the Introducing User Rights Management change type.

Suppose all the methods for managing campaigns and banners are located
in the campaigns and banners packages. The calls to these methods can be
viewed as a region prohibited to the restricted administrator. The Border Control
design pattern [16] enables to partition an application into a series of regions
implemented as pointcuts that can later be operated on by advices [1]:

pointcut prohibitedRegion(): (within(application.Proxy) && call(void ∗.∗(..)))
|| (within(application.campaigns.+) && call(void ∗.∗(..)))

|| within(application.banners.+)
|| call(void Affiliate.decline(..)) || call(void Affiliate.delete(..));

}

What we actually need is to substitute the calls to the methods in the region
with our own code that will let the original methods execute only if the current
user has sufficient rights. This can be achieved by applying the Method Substitu-
tion change type which is based on an around advice that enables to change or
completely disable the execution of methods. The following pointcut captures all
method calls of the method called method() belonging to the TargetClass class:

pointcut allmethodCalls(TargetClass t, int a):
call(ReturnType TargetClass.method(..)) && target(t) && args(a);

Note that we capture method calls, not executions, which gives us the flexibility
in constraining the method substitution logic by the context of the method call.

The pointcut call(ReturnType TargetClass.method(..)) captures all the calls
of TargetClass.method(). The target() pointcut is used to capture the reference
to the target class. The method arguments can be captured by an args() point-
cut. In the example code above, we assume method() has one integer argument
and capture it with this pointcut.

The following example captures the method() calls made within the control
flow of any of the CallingClass methods:

pointcut specificmethodCalls(TargetClass t, int a):
call(ReturnType TargetClass.method(a)) && target(t) && args(a)
&& cflow(call(∗ CallingClass.∗(..)));

This embraces the calls made directly in these methods, but also any of the
method() calls made further in the methods called directly or indirectly by the
CallingClass methods.

By making an around advice on the specified method call capturing pointcut,
we can create a new logic of the method to be substituted:

public aspect MethodSubstition {
pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(TargetClass t, int a): methodCalls(t, a) {

if (. . .) {
. . . } // the new method logic

else
proceed(t, a);

}
}

3.3 User Interface Restriction

It is quite annoying when a user sees, but can’t access some options due to
user rights restrictions. This requires a User Interface Restriction change type
to be applied. We have created a similar situation in our example by a pre-
vious change implementation that introduced the restricted administrator (see

Sect. 3.2). Since the restricted administrator can’t access advertising campaigns
and banners, he shouldn’t see them in menu either.

Menu items are retrieved by a method and all we have to do to remove the
banners and campaigns items is to modify the return value of this method. This
may be achieved by applying a Additional Return Value Checking/Modification
change which checks or modifies a method return value using an around advice:

public aspect AdditionalReturnValueProcessing {
pointcut methodCalls(TargetClass t, int a): . . .;
private ReturnType retValue;
ReturnType around(): methodCalls(/∗ captured arguments ∗/) {

retValue = proceed(/∗ captured arguments ∗/);
processOutput(/∗ captured arguments ∗/);
return retValue;

}
private void processOutput(/∗ arguments ∗/) {

// processing logic
}

}

In the around advice, we assign the original return value to the private attribute
of the aspect. Afterwards, this value is processed by the processOutput() method
and the result is returned by the around advice.

3.4 Grid Display Changes

It is often necessary to modify the way data are displayed or inserted. In web
applications, data are often displayed in grids, and data input is usually realized
via forms. Grids usually display the content of a database table or collation of
data from multiple tables directly. Typical changes required on grid are adding
columns, removing them, and modifying their presentation. A grid that is going
to be modified must be implemented either as some kind of a reusable component
or generated by row and cell processing methods. If the grid is hard coded for a
specific view, it is difficult or even impossible to modify it using aspect-oriented
techniques.

If the grid is implemented as a data driven component, we just have to modify
the data passed to the grid. This corresponds to the Additional Return Value
Checking/Modification change (see Sect. 3.3). If the grid is not a data driven
component, it has to be provided at least with the methods for processing rows
and cells.

Adding Column to Grid can be performed after an event of displaying the
existing columns of the grid which brings us to the Performing Action After
Event change type (see Sect. 3.1). Note that the database has to reflect the
change, too. Removing Column from Grid requires a conditional execution of
the method that displays cells, which may be realized as a Method Substitution
change (see Sect. 3.2).

Alterations of a grid are often necessary due to software localization. For
example, in Japan and Hungary, in contrast to most other countries, the surname

is placed before the given names. The Altering Column Presentation in Grid
change type requires preprocessing of all the data to be displayed in a grid
before actually displaying them. This may be easily achieved by modifying the
way the grid cells are rendered, which may be implemented again as a Method
Substitution (see Sect. 3.2):

public aspect ChangeUserNameDisplay {
pointcut displayCellCalls(String name, String value):

call(void UserTable.displayCell(..)) || args(name, value);
around(String name, String value): displayCellCalls(name, value) {

if (name == ”<the name of the column to be modified>”) {
. . . // display the modified column

} else {
proceed(name, value);

}
}

}

3.5 Input Form Changes

Similarly to tables, forms are often subject to modifications. Users often want
to add or remove fields from forms or perform additional checks of the form
inputs, which constitute Adding Fields to Form, Removing Fields from Form,
and Introducing Additional Constraint on Fields change types, respectively. Note
that to be possible to modify forms using aspect-oriented programming they may
not be hard coded in HTML, but generated by a method. Typically, they are
generated from a list of fields implemented by an enumeration.

Going back to our example, assume that the merchant wants to know the
genre of the music which is promoted by his affiliates. We need to add the genre
field to the generic affiliate sign-up form and his profile form to acquire the
information about the genre to be promoted at different affiliate web sites. This is
a change of the Adding Fields to Form type. To display the required information,
we need to modify the affiliate table of the merchant panel to display genre in
a new column. This can be realized by applying the Enumeration Modification
change type to add the genre field along with already mentioned Additional
Return Value Checking/Modification in order to modify the list of fields being
returned (see Sect. 3.3).

The realization of the Enumeration Modification change type depends on
the enumeration type implementation. Enumeration types are often represented
as classes with a static field for each enumeration value. A single enumeration
value type is represented as a class with a field that holds the actual (usually
integer) value and its name. We add a new enumeration value by introducing
the corresponding static field:

public aspect NewEnumType {
public static EnumValueType EnumType.NEWVALUE =

new EnumValueType(10, ”<new value name>”);
}

The fields in a form are generated according to the enumeration values. The
list of enumeration values is typically accessible via a method provided by it.
This method has to be addressed by an Additional Return Value Checking/-
Modification change.

An Additional Return Value Checking/Modification change is sufficient to re-
move a field from a form. Actually, the enumeration value would still be included
in the enumeration, but this would not affect the form generation.

If we want to introduce additional validations on the form input data to the
system without built-in validation, an Additional Parameter Checking change
can be applied to methods that process values submitted by the form. This
change enables to introduce an additional check or constraint on method argu-
ments. For this, we have to specify a pointcut that will capture all the calls of
the affected methods along with their context similarly as in Sect. 3.2. Their
arguments will be checked by the check() method called from within an around
advice which will throw WrongParamsException if they are not correct:

public aspect AdditionalParameterChecking {
pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(/∗ arguments ∗/) throws WrongParamsException:

methodCalls(/∗ arguments ∗/) {
check(/∗ arguments ∗/);
return proceed(/∗ arguments ∗/);

}
void check(/∗ arguments ∗/) throws WrongParamsException {

if (arg1 != <desired value>)
throw new WrongParamsException();

}
}
Adding a new validator to a system that already has built-in validation is realized
by simply adding it to the list of validators. This can be done by implementing
Performing Action After Event change (see Sect. 3.1), which would implement
the addition of the validator to the list of validators after the list initialization.

4 Changing a Change

Sooner or later there will be a need for a change whose realization will affect
some of the already applied changes. There are two possibilities to deal with this
situation: a new change can be implemented separately using aspect-oriented
programming or the affected change source code could be modified directly.
Either way, the changes remain separate from the rest of the application.

The possibility to implement a change of a change using aspect-oriented
programming and without modifying the original change is given by the aspect-
oriented programming language capabilities. Consider, for example, advices in
AspectJ. They are unnamed, so can’t be referred to directly. The primitive
pointcut adviceexecution(), which captures execution of all advices, can be re-
stricted by thewithin() pointcut to a given aspect, but if an aspect contains sev-
eral advices, advices have to be annotated and accessed by the @annotation()

pointcut, which was impossible in AspectJ versions that existed before Java was
extended with annotations.

An interesting consequence of aspect-oriented change realization is the sepa-
ration of crosscutting concerns in the application which improves its modularity
(and thus makes easier further changes) and may be seen as a kind of aspect-
oriented refactoring. For example, in our affiliate marketing application, the inte-
gration with a newsletter—identified as a kind of One Way Integration—actually
was a separation of integration connection, which may be seen as a concern of
its own. Even if these once separated concerns are further maintained by direct
source code modification, the important thing is that they remain separate from
the rest of the application. Implementing a change of a change using aspect-
oriented programming and without modifying the original change is interesting
mainly if it leads to separation of another crosscutting concern.

5 Evaluation and Tool Support Outlooks

We have successfully applied the aspect-oriented approach to change realization
to introduce changes into YonBan, a student project management system devel-
oped at Slovak University of Technology. It is based on J2EE, Spring, Hibernate,
and Acegi frameworks. The YonBan architecture is based on the Inversion Of
Control principle and Model-View-Controller pattern. We implemented the fol-
lowing changes in YonBan:

– Telephone number validator as Performing Action After Event
– Telephone number formatter as Additional Return Value Checking/Modifi-

cation
– Project registration statistics as One Way Integration
– Project registration constraint as Additional Parameter Checking/Modifica-

tion
– Exception logging as Performing Action After Event
– Name formatter as Method Substitution

No original code of the system had to be modified. Except in the case of
project registration statistics and project registration constraint, which where
well separated from the rest of the code, other changes would require extensive
code modifications if they have had been implemented the conventional way.

We encountered one change interaction: between the telephone number for-
matter and validator. These two changes are interrelated—they would probably
be part of one change request—so it comes as no surprise they affect the same
method. However, no intervention was needed.

We managed to implement the changes easily even without a dedicated tool,
but to cope with a large number of changes, such a tool may become crucial.
Even general aspect-oriented programming support tools—usually integrated
with development environments—may be of some help in this. AJDT (AspectJ
Development Tools) for Eclipse is a prominent example of such a tool. AJDT
shows whether a particular code is affected by advices, the list of join points

affected by each advice, and the order of advice execution, which all are im-
portant to track when multiple changes affect the same code. Advices that do
not affect any join point are reported in compilation warnings, which may help
detect pointcuts invalidated by direct modifications of the application base code
such as identifier name changes or changes in method arguments.

A dedicated tool could provide a much more sophisticated support. A change
implementation can consist of several aspects, classes, and interfaces, commonly
denoted as types. The tool should keep a track of all the parts of a change. Some
types may be shared among changes, so the tool should enable simple inclusion
and exclusion of changes. This is related to change interaction which is exhib-
ited as dependencies between changes. A simplified view of change dependencies
is that a change may require another change or two changes may be mutually
exclusive, but the dependencies between changes could be as complex as fea-
ture dependencies in feature modeling and accordingly represented by feature
diagrams and additional constraints expressed as logical expressions [22] (which
can be partly embedded into feature diagrams by allowing them to be directed
acyclic graphs instead of just trees [8]).

Some dependencies between changes may exhibit only recommending char-
acter, i.e. whether they are expected to be included or not included together, but
their application remains meaningful either way. An example of this are features
that belong to the same change request. Again, feature modeling can be used to
model such dependencies with so-called default dependency rules that may also
be represented by logical expressions [22].

6 Related Work

The work presented in this paper is based on our initial efforts related to aspect-
oriented change control [6] in which we related our approach to change-based
approaches in version control. We identified that the problem with change-based
approaches that could be solved by aspect-oriented programming is the lack of
programming language awareness in change realizations.

In our work on the evolution of web applications based on aspect-oriented de-
sign patterns and pattern-like forms [1], we reported the fundamentals of aspect-
oriented change realizations based on the two level model of domain specific and
generally applicable change types, as well as four particular change types: Class
Exchange, Performing Action After Event, and One/Two Way Integration.

Applying feature modeling to maintain change dependencies (see Sect. 4)
is similar to constraints and preferences proposed in SIO software configura-
tion management system [4]. However, a version model for aspect dependency
management [19] with appropriate aspect model that enables to control aspect
recursion and stratification [2] would be needed as well.

We tend to regard changes as concerns, which is similar to the approach of
facilitating configurability by separation of concerns in the source code [7]. This
approach actually enables a kind of aspect-oriented programming on top of a ver-
sioning system. Parts of the code that belong to one concern need to be marked

manually in the code. This enables to easily plug in or out concerns. However,
the major drawback, besides having to manually mark the parts of concerns, is
that—unlike in aspect-oriented programming—concerns remain tangled in code.

Others have explored several issues generally related to our work, but none
of this work aims at capturing changes by aspects. These issuse include data-
base schema evolution with aspects [10] or aspect-oriented extensions of business
processes and web services with crosscutting concerns of reliability, security, and
transactions [3]. Also, an increased changeability of components implemented us-
ing aspect-oriented programming [13, 14, 18] and aspect-oriented programming
with the frame technology [15], as well as enhanced reusability and evolvability
of design patterns achieved by using generic aspect-oriented languages to im-
plement them [20] have been reported. The impact of changes implemented by
aspects has been studied using slicing in concern graphs [11].

While we do see potential of configuration and reconfiguration of applications,
our work does not aim at automatic adaptation in application evolution, such
as event triggered evolutionary actions [17], evolution based on active rules [5],
or adaptation of languages instead of software systems [12].

7 Conclusions and Further Work

In this paper, we have described our approach to change realization using aspect-
oriented programming. We deal with changes at two levels distinguishing be-
tween domain specific and generally applicable change types. We introduced
change types specific to web application domain along with corresponding gen-
erally applicable changes. We also discussed consequences of having to implement
a change of a change.

Although the evaluation of the approach has shown the approach can be
applied even without a dedicated tool support, we believe that tool support is
important in dealing with change interaction, especially if their number is high.
Our intent is to use feature modeling. With changes modeled as features, change
dependencies could be tracked through feature dependencies. For further evalu-
ation, it would be interesting to expand domain specific change types to other
domains like service-oriented architecture for which we have available suitable
application developed in Java [21].

Acknowledgements The work was supported by the Scientific Grant Agency
of Slovak Republic (VEGA) grant No. VG 1/3102/06. We would like to thank
Michael Grossniklaus for sharing his observations regarding our work with us.

References

[1] M. Bebjak, V. Vranić, and P. Dolog. Evolution of web applications with aspect-
oriented design patterns. In M. Brambilla and E. Mendes, editors, Proc. of

ICWE 2007 Workshops, 2nd International Workshop on Adaptation and Evo-
lution in Web Systems Engineering, AEWSE 2007, in conjunction with 7th Inter-
national Conference on Web Engineering, ICWE 2007, pages 80–86, Como, Italy,
July 2007.

[2] E. Bodden, F. Forster, and F. Steimann. Avoiding infinite recursion with stratified
aspects. In R. Hirschfeld et al., editors, Proc. of NODe 2006, LNI P-88, pages
49–64, Erfurt, Germany, Sept. 2006. GI.

[3] A. Charfi, B. Schmeling, A. Heizenreder, and M. Mezini. Reliable, secure, and
transacted web service compositions with AO4BPEL. In 4th IEEE European
Conf. on Web Services (ECOWS 2006), pages 23–34, Zürich, Switzerland, Dec.
2006. IEEE Computer Society.

[4] R. Conradi and B. Westfechtel. Version models for software configuration man-
agement. ACM Computing Surveys, 30(2):232–282, June 1998.

[5] F. Daniel, M. Matera, and G. Pozzi. Combining conceptual modeling and active
rules for the design of adaptive web applications. In Workshop Proc. of 6th Int.
Conf. on Web Engineering (ICWE 2006), New York, NY, USA, 2006. ACM Press.

[6] P. Dolog, V. Vranić, and M. Bieliková. Representing change by aspect. ACM
SIGPLAN Notices, 36(12):77–83, Dec. 2001.

[7] Z. Fazekas. Facilitating configurability by separation of concerns in the source
code. Journal of Computing and Information Technology (CIT), 13(3):195–210,
Sept. 2005.

[8] R. Filkorn and P. Návrat. An approach for integrating analysis patterns and
feature diagrams into model driven architecture. In P. Vojtáš, M. Bieliková, and
B. Charron-Bost, editors, Proc. 31st Conference on Current Trends in Theory and
Practice of Informatics (SOFSEM 2005), LNCS 3381, Liptovský Jan, Slovakia,
Jan. 2005. Springer.

[9] S. Goldschmidt, S. Junghagen, and U. Harris. Strategic Affiliate Marketing. Ed-
ward Elgar Publishing, 2003.

[10] R. Green and A. Rashid. An aspect-oriented framework for schema evolution in
object-oriented databases. In Proc. of the Workshop on Aspects, Components and
Patterns for Infrastructure Software (in conjunction with AOSD 2002), Enschede,
Netherlands, Apr. 2002.

[11] S. Khan and A. Rashid. Analysing requirements dependencies and change im-
pact using concern slicing. In Proc. of Aspects, Dependencies, and Interactions
Workshop (affiliated to ECOOP 2008), Nantes, France, July 2006.

[12] J. Kollár, J. Porubän, P. Václav́ık, J. Bandáková, and M. Forgáč. Functional
approach to the adaptation of languages instead of software systems. Computer
Science and Information Systems Journal (ComSIS), 4(2), Dec. 2007.

[13] A. A. Kvale, J. Li, and R. Conradi. A case study on building COTS-based sys-
tem using aspect-oriented programming. In 2005 ACM Symposium on Applied
Computing, pages 1491–1497, Santa Fe, New Mexico, USA, 2005. ACM.

[14] J. Li, A. A. Kvale, and R. Conradi. A case study on improving changeability of
COTS-based system using aspect-oriented programming. Journal of Information
Science and Engineering, 22(2):375–390, Mar. 2006.

[15] N. Loughran, A. Rashid, W. Zhang, and S. Jarzabek. Supporting product line
evolution with framed aspects. In Workshop on Aspects, Componentsand Patterns
for Infrastructure Software (held with AOSD 2004, International Conference on
Aspect-Oriented Software Development), Lancaster, UK, Mar. 2004.

[16] R. Miles. AspectJ Cookbook. O’Reilly, 2004.

[17] F. Molina-Ortiz, N. Medina-Medina, and L. Garćıa-Cabrera. An author tool based
on SEM-HP for the creation and evolution of adaptive hypermedia systems. In
Workshop Proc. of 6th Int. Conf. on Web Engineering (ICWE 2006), New York,
NY, USA, 2006. ACM Press.

[18] O. Papapetrou and G. A. Papadopoulos. Aspect-oriented programming for a
component based real life application: A case study. In 2004 ACM Symposium on
Applied Computing, pages 1554–1558, Nicosia, Cyprus, 2004. ACM.

[19] E. Pulvermüller, A. Speck, and J. O. Coplien. A version model for aspect depen-
dency management. In Proc. of 3rd Int. Conf. on Generative and Component-
Based Software Engineering (GCSE 2001), LNCS 2186, pages 70–79, Erfurt, Ger-
many, Sept. 2001. Springer.

[20] T. Rho and G. Kniesel. Independent evolution of design patterns and applica-
tion logic with generic aspects—a case study. Technical Report IAI-TR-2006-4,
University of Bonn, Bonn, Germany, Apr. 2006.

[21] V. Rozinajová, M. Braun, P. Návrat, and M. Bieliková. Bridging the gap between
service-oriented and object-oriented approach in information systems develop-
ment. In D. Avison, G. M. Kasper, B. Pernici, I. Ramos, and D. Roode, editors,
Proc. of IFIP 20th World Computer Congress, TC 8, Information Systems, Mi-
lano, Italy, Sept. 2008. Springer Boston.

[22] V. Vranić. Multi-paradigm design with feature modeling. Computer Science and
Information Systems Journal (ComSIS), 2(1):79–102, June 2005.

Appendix I

Aspect-Oriented Change
Realizations and Their
Interaction

Valentino Vranić, Radoslav Menkyna, Michal Bebjak, and Peter Dolog.
Aspect-oriented change realizations and their interaction. e-Informatica
Software Engineering Journal, 3(1):43–58, 2009.

e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Aspect-Oriented Change Realizations
and Their Interaction

Valentino Vranić∗, Radoslav Menkyna∗, Michal Bebjak∗, Peter Dolog∗∗
∗Institute of Informatics and Software Engineering, Faculty of Informatics and Information Technologies,

Slovak University of Technology in Bratislava, Slovakia
∗∗Department of Computer Science, Aalborg University, Denmark

vranic@fiit.stuba.sk, radu@ynet.sk, mbebjak@gmail.com, dolog@cs.aau.dk

Abstract
With aspect-oriented programming, changes can be treated explicitly and directly at the pro-
gramming language level. An approach to aspect-oriented change realization based on a two-level
change type model is presented in this paper. In this approach, aspect-oriented change realizations
are mainly based on aspect-oriented design patterns or themselves constitute pattern-like forms
in connection to which domain independent change types can be identified. However, it is more
convenient to plan changes in a domain specific manner. Domain specific change types can be
seen as subtypes of generally applicable change types. These relationships can be maintained in a
form of a catalog. Some changes can actually affect existing aspect-oriented change realizations,
which can be solved by adapting the existing change implementation or by implementing an
aspect-oriented change realization of the existing change without having to modify its source
code. As demonstrated partially by the approach evaluation, the problem of change interaction
may be avoided to a large extent by using appropriate aspect-oriented development tools, but for
a large number of changes, dependencies between them have to be tracked. Constructing partial
feature models in which changes are represented by variable features is sufficient to discover
indirect change dependencies that may lead to change interaction.

1. Introduction

Change realization consumes enormous effort
and time during software evolution. Once imple-
mented, changes get lost in the code. While in-
dividual code modifications are usually tracked
by a version control tool, the logic of a change
as a whole vanishes without a proper support in
the programming language itself.

By its capability to separate crosscutting
concerns, aspect-oriented programming enables
to deal with change explicitly and directly at
programming language level. Changes imple-
mented this way are pluggable and — to the
great extent — reapplicable to similar applica-
tions, such as applications from the same prod-
uct line.

Customization of web applications repre-
sents a prominent example of that kind. In
customization, a general application is being
adapted to the client’s needs by a series of
changes. With each new version of the base ap-
plication, all the changes have to be applied to
it. In many occasions, the difference between
the new and old application does not affect the
structure of changes, so if changes have been im-
plemented using aspect-oriented programming,
they can be simply included into the new appli-
cation build without any additional effort.

Even conventionally realized changes may in-
teract, i.e. they may be mutually dependent or
some change realizations may depend on the
parts of the underlying system affected by other
change realizations. This is even more remark-

44 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

able in aspect-oriented change realization due to
pervasiveness of aspect-oriented programming
as such.

We have already reported briefly our initial
work in change realization using aspect-oriented
programming [1]. In this paper1, we present
our improved view of the approach to change
realization based on a two-level change type
model. Section 2 presents our approach to
aspect-oriented change realization. Section 3 de-
scribes briefly the change types we have discov-
ered so far in the web application domain. Sec-
tion 4 discusses how to deal with a change of a
change. Section 5 proposes a feature modeling
based approach of dealing with change interac-
tion. Section 6 describes the approach evalua-
tion and outlooks for tool support. Section 7
discusses related work. Section 8 presents con-
clusions and directions of further work.

2. Changes as Crosscutting
Requirements

A change is initiated by a change request made
by a user or some other stakeholder. Change
requests are specified in domain notions simi-
larly as initial requirements are. A change re-
quest tends to be focused, but it often consists of
several different — though usually interrelated
— requirements that specify actual changes to
be realized. By decomposing a change request
into individual changes and by abstracting the
essence out of each such change while generaliz-
ing it at the same time, a change type applicable
to a range of the applications that belong to the
same domain can be defined.

We will present our approach by a series of
examples on a common scenario2. Suppose a
merchant who runs his online music shop pur-
chases a general affiliate marketing software [11]
to advertise at third party web sites denoted
as affiliates. In a simplified schema of affiliate
marketing, a customer visits an affiliate’s site
which refers him to the merchant’s site. When
he buys something from the merchant, the pro-

vision is given to the affiliate who referred the
sale. A general affiliate marketing software en-
ables to manage affiliates, track sales referred
by these affiliates, and compute provisions for
referred sales. It is also able to send notifications
about new sales, signed up affiliates, etc.

The general affiliate marketing software has
to be adapted (customized), which involves a
series of changes. We will assume the affiliate
marketing software is written in Java, so we can
use AspectJ, the most popular aspect-oriented
language, which is based on Java, to implement
some of these changes.

In the AspectJ style of aspect-oriented pro-
gramming, the crosscutting concerns are cap-
tured in units called aspects. Aspects may con-
tain fields and methods much the same way the
usual Java classes do, but what makes possi-
ble for them to affect other code are genuine
aspect-oriented constructs, namely: pointcuts,
which specify the places in the code to be af-
fected, advices, which implement the additional
behavior before, after, or instead of the captured
join point (a well-defined place in the program
execution) — most often method calls or execu-
tions — and inter-type declarations, which en-
able introduction of new members into types, as
well as introduction of compilation warnings and
errors.

2.1. Domain Specific Changes

One of the changes of the affiliate marketing
software would be adding a backup SMTP server
to ensure delivery of the notifications to users.
Each time the affiliate marketing software needs
to send a notification, it creates an instance of
the SMTPServer class which handles the con-
nection to the SMTP server.

An SMTP server is a kind of a resource that
needs to be backed up, so in general, the type
of the change we are talking about could be
denoted as Introducing Resource Backup. This
change type is still expressed in a domain spe-
cific way. We can clearly identify a crosscutting
concern of maintaining a backup resource that

1 This paper represents an extended version of our paper presented at CEE-SET 2008 [28].
2 This is an adapted scenario published in our earlier work [1].

Aspect-Oriented Change Realizations and Their Interaction 45

has to be activated if the original one fails and
implement this change in a single aspect without
modifying the original code:
public class SMTPServerM extends SMTPServer {
...
}
...
public aspect SMTPServerBackupA {
public pointcut SMTPServerConstructor(URL url,

String user,
String password):

call(SMTPServer.new (..)) && args(url, user,
password);

SMTPServer around(URL url, String user,
String password):

SMTPServerConstructor(url, user, password)
{
return getSMTPServerBackup(proceed(url, user,

password));
}
private SMTPServer
getSMTPServerBackup(SMTPServer obj)
{
if (obj.isConnected()) {
return obj;

} else {
return new SMTPServerM(obj.getUrl(),

obj.getUser(),
obj.getPassword());

}
}

}

The around() advice captures constructor
calls of the SMTPServer class and their ar-
guments. This kind of advice takes complete
control over the captured join point and its
return clause, which is used in this example
to control the type of the SMTP server be-
ing returned. The policy is implemented in the
getSMTPServerBackup() method: if the original
SMTP server can’t be connected to, a backup
SMTP server class SMTPServerM instance is
created and returned.

We can also have another aspect — say
SMTPServerBackupB — intended for another
application configuration that would implement
a different backup policy or simply instantiate a
different backup SMTP server.

2.2. Generally Applicable Changes

Looking at this code and leaving aside SMTP
servers and resources altogether, we notice that

it actually performs a class exchange. This
idea can be generalized and domain details ab-
stracted out of it bringing us to the Class
Exchange change type [1] which is based on
the Cuckoo’s Egg aspect-oriented design pat-
tern [20]:
public class AnotherClass extends MyClass {
...
}
...
public aspect MyClassSwapper {
public pointcut myConstructors():
call(MyClass.new ());

Object around(): myConstructors()
{
return new AnotherClass();

}
}

2.3. Applying a Change Type

It would be beneficial if the developer could get a
hint on using the Cuckoo’s Egg pattern based on
the information that a resource backup had to
be introduced. This could be achieved by main-
taining a catalog of changes in which each do-
main specific change type would be defined as a
specialization of one or more generally applica-
ble changes.

When determining a change type to be ap-
plied, a developer chooses a particular change
request, identifies individual changes in it, and
determines their type. Figure 1 shows an exam-
ple situation. Domain specific changes of the D1
and D2 type have been identified in the Change
Request 1. From the previously identified and
cataloged relationships between change types we
would know their generally applicable change
types are G1 and G2.

A generally applicable change type can be a
kind of an aspect-oriented design pattern (con-
sider G2 and AO Pattern 2). A domain specific
change realization can also be complemented
by an aspect-oriented design pattern (or several
ones), which is expressed by an association be-
tween them (consider D1 and AO Pattern 1).

Each generally applicable change has a
known domain independent code scheme (G2’s
code scheme is omitted from the figure). This
code scheme has to be adapted to the context

46 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

Figure 1. Generally applicable and domain specific changes

of a particular domain specific change, which
may be seen as a kind of refinement (consider
D1 Code and D2 Code).

3. Catalog of Changes

To support the process of change selection,
the catalog of changes is needed in which the
generalization–specialization relationships be-
tween change types would be explicitly estab-
lished. The following list sums up these relation-
ships between change types we have identified in
the web application domain (the domain specific
change type is introduced first):
– One Way Integration: Performing Action Af-

ter Event,
– Two Way Integration: Performing Action Af-

ter Event,
– Adding Column to Grid: Performing Action

After Event,
– Removing Column from Grid: Method Sub-

stitution,
– Altering Column Presentation in Grid:

Method Substitution,
– Adding Fields to Form: Enumeration Modifi-

cation with Additional Return Value Check-
ing/Modification,

– Removing Fields from Form: Additional Re-
turn Value Checking/Modification,

– Introducing Additional Constraint on Fields:
Additional Parameter Checking or Perform-
ing Action After Event,

– Introducing User Rights Management: Bor-
der Control with Method Substitution,

– User Interface Restriction: Additional Re-
turn Value Checking/Modifications,

– Introducing Resource Backup: Class Ex-
change.
We have already described Introducing Re-

source Backup and the corresponding generally
applicable change, Class Exchange. Here, we will
briefly describe the rest of the domain specific
change types we identified in the web applica-
tion domain along with the corresponding gen-
erally applicable changes. The generally appli-
cable change types are described where they are
first mentioned to make sequential reading of
this section easier. In a real catalog of changes,
each change type would be described separately.

3.1. Integration Changes

Web applications often have to be integrated
with other systems. Suppose that in our ex-
ample the merchant wants to integrate the af-
filiate marketing software with the third party
newsletter which he uses. Every affiliate should
be a member of the newsletter. When an affili-
ate signs up to the affiliate marketing software,
he should be signed up to the newsletter, too.
Upon deleting his account, the affiliate should
be removed from the newsletter, too.

This is a typical example of the One Way
Integration change type [1]. Its essence is the
one way notification: the integrating application
notifies the integrated application of relevant
events. In our case, such events are the affiliate
sign-up and affiliate account deletion.

Such integration corresponds to the Per-
forming Action After Event change type [1].
Since events are actually represented by meth-
ods, the desired action can be implemented in
an after advice:

Aspect-Oriented Change Realizations and Their Interaction 47

public aspect PerformActionAfterEvent {
pointcut methodCalls(TargetClass t, int a):...;
after(/∗ captured arguments ∗/):

methodCalls(/∗ captured arguments ∗/)
{

performAction(/∗ captured arguments ∗/);
}
private void performAction(/∗ arguments ∗/)
{
/∗ action logic ∗/

}
}

The after advice executes after the captured
method calls. The actual action is implemented
as the performAction() method called by the ad-
vice.

To implement the one way integration, in the
after advice we will make a post to the newslet-
ter sign-up/sign-out script and pass it the e-mail
address and name of the newly signed-up or
deleted affiliate. We can seamlessly combine
multiple one way integrations to integrate with
several systems.

The Two Way Integration change type can
be seen as a double One Way Integration. A typ-
ical example of such a change is data synchro-
nization (e.g., synchronization of user accounts)
across multiple systems. When a user changes
his profile in one of the systems, these changes
should be visible in all of them. In our exam-
ple, introducing a forum for affiliates with syn-
chronized user accounts for affiliate convenience
would represent a Two Way Integration.

3.2. Introducing User Rights
Management

In our affiliate marketing application, the mar-
keting is managed by several co-workers with
different roles. Therefore, its database has to
be updated from an administrator account with
limited permissions. A restricted administrator
should not be able to decline or delete affiliates,
nor modify the advertising campaigns and ban-
ners that have been integrated with the web sites
of affiliates. This is an instance of the Introduc-
ing User Rights Management change type.

Suppose all the methods for managing cam-
paigns and banners are located in the campaigns

and banners packages. The calls to these meth-
ods can be viewed as a region prohibited to
the restricted administrator. The Border Con-
trol design pattern [20] enables to partition an
application into a series of regions implemented
as pointcuts that can later be operated on by
advices [1]:
pointcut prohibitedRegion():
(within(application.Proxy)
&& call(void ∗. ∗ (..)))
|| (within(application.campaigns. +)
&& call(void ∗. ∗ (..)))
|| within(application.banners. +)
|| call(void Affiliate . decline (..))
|| call(void Affiliate . delete (..));

What we actually need is to substitute the
calls to the methods in the region with our own
code that will let the original methods execute
only if the current user has sufficient rights. This
can be achieved by applying the Method Substi-
tution change type which is based on an around
advice that enables to change or completely dis-
able the execution of methods. The following
pointcut captures all method calls of the method
called method() belonging to the TargetClass
class:
pointcut allmethodCalls(TargetClass t, int a):
call(ReturnType TargetClass.method(..)) &&
target(t) && args(a);

Note that we capture method calls, not ex-
ecutions, which gives us the flexibility in con-
straining the method substitution logic by the
context of the method call. The call() pointcut
captures all the calls of TargetClass.method(),
the target() pointcut is used to capture the ref-
erence to the target object, and the method ar-
guments (if we need them) are captured by an
args() pointcut. In the example code, we assume
method() has one integer argument and capture
it with this pointcut.

The following example captures the
method() calls made within the control flow
of any of the CallingClass methods:
pointcut specificmethodCalls(TargetClass t, int a):

call(ReturnType TargetClass.method(a))
&& target(t) && args(a)
&& cflow(call(∗ CallingClass .∗(..)));

48 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

This embraces the calls made directly in these
methods, but also any of the method() calls
made further in the methods called directly or
indirectly by the CallingClass methods.

By making an around advice on the specified
method call capturing pointcut, we can create a
new logic of the method to be substituted:
public aspect MethodSubstition {

pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(TargetClass t, int a):

methodCalls(t, a) {
if (. . .) {

. . . } // the new method logic
else

proceed(t, a);
}

}

3.3. User Interface Restriction

It is quite annoying when a user sees, but can’t
access some options due to user rights restric-
tions. This requires a User Interface Restriction
change type to be applied. We have created a
similar situation in our example by a previous
change implementation that introduced the re-
stricted administrator (see Sect. 3.2). Since the
restricted administrator can’t access advertising
campaigns and banners, he shouldn’t see them
in menu either.

Menu items are retrieved by a method and
all we have to do to remove the banners and
campaigns items is to modify the return value of
this method. This may be achieved by applying
a Additional Return Value Checking/Modifica-
tion change which checks or modifies a method
return value using an around advice:
public aspect AdditionalReturnValueProcessing {

pointcut methodCalls(TargetClass t, int a): . . .;
private ReturnType retValue;
ReturnType around():

methodCalls(/∗ captured arguments ∗/) {
retValue = proceed(/∗ captured arguments ∗/);
processOutput(/∗ captured arguments ∗/);
return retValue;

}
private void processOutput(/∗ arguments ∗/) {

// processing logic
}

}

In the around advice, we assign the original re-
turn value to the private attribute of the as-
pect. Afterwards, this value is processed by the
processOutput() method and the result is re-
turned by the around advice.

3.4. Grid Display Changes

It is often necessary to modify the way data
are displayed or inserted. In web applications,
data are often displayed in grids, and data in-
put is usually realized via forms. Grids usually
display the content of a database table or colla-
tion of data from multiple tables directly. Typi-
cal changes required on grid are adding columns,
removing them, and modifying their presenta-
tion. A grid that is going to be modified must be
implemented either as some kind of a reusable
component or generated by row and cell pro-
cessing methods. If the grid is hard coded for a
specific view, it is difficult or even impossible to
modify it using aspect-oriented techniques.

If the grid is implemented as a data driven
component, we just have to modify the data
passed to the grid. This corresponds to the Ad-
ditional Return Value Checking/Modification
change (see Sect. 3.3). If the grid is not a data
driven component, it has to be provided at least
with the methods for processing rows and cells.

Adding Column to Grid can be performed af-
ter an event of displaying the existing columns
of the grid which brings us to the Performing
Action After Event change type (see Sect. 3.1).
Note that the database has to reflect the change,
too. Removing Column from Grid requires a
conditional execution of the method that dis-
plays cells, which may be realized as a Method
Substitution change (see Sect. 3.2).

Alterations of a grid are often necessary due
to software localization. For example, in Japan
and Hungary, in contrast to most other coun-
tries, the surname is placed before the given
names. The Altering Column Presentation in
Grid change type requires preprocessing of all
the data to be displayed in a grid before actually
displaying them. This may be easily achieved by
modifying the way the grid cells are rendered,

Aspect-Oriented Change Realizations and Their Interaction 49

which may be implemented again as a Method
Substitution (see Sect. 3.2):
public aspect ChangeUserNameDisplay {

pointcut displayCellCalls(String name, String value):
call(void UserTable.displayCell (..)) ||

args(name, value);
around(String name, String value):

displayCellCalls (name, value) {
if (name ==

"<the name of the column to be modified>") {
. . . // display the modified column

} else {
proceed(name, value);

}
}

}

3.5. Input Form Changes

Similarly to tables, forms are often subject to
modifications. Users often want to add or re-
move fields from forms or pose additional con-
straints on their input fields. Note that to be
possible to modify forms using aspect-oriented
programming they may not be hard coded in
HTML, but generated by a method. Typically
they are generated from a list of fields imple-
mented by an enumeration.

Going back to our example, assume that the
merchant wants to know the genre of the music
which is promoted by his affiliates. We need to
add the genre field to the generic affiliate sign-up
form and his profile form to acquire the informa-
tion about the genre to be promoted at different
affiliate web sites. This is a change of the Adding
Fields to Form type. To display the required in-
formation, we need to modify the affiliate table
of the merchant panel to display genre in a new
column. This can be realized by applying the
Enumeration Modification change type to add
the genre field along with already mentioned Ad-
ditional Return Value Checking/Modification in
order to modify the list of fields being returned
(see Sect. 3.3).

The realization of the Enumeration Modifi-
cation change type depends on the enumeration
type implementation. Enumeration types are of-
ten represented as classes with a static field for
each enumeration value. A single enumeration
value type is represented as a class with a field

that holds the actual (usually integer) value and
its name. We add a new enumeration value by
introducing the corresponding static field:
public aspect NewEnumType {

public static EnumValueType
EnumType.NEWVALUE =

new EnumValueType(10, "<new value name>");
}

The fields in a form are generated according
to the enumeration values. The list of enumera-
tion values is typically accessible via a method
provided by it. This method has to be addressed
by an Additional Return Value Checking/Mod-
ification change.

For Removing Fields from Form, an Ad-
ditional Return Value Checking/Modification
change is sufficient. Actually, the enumeration
value would still be included in the enumeration,
but this would not affect the form generation.

If we want to introduce additional vali-
dations on form input fields in an applica-
tion without a built-in validation, which consti-
tutes an Introducing Additional Constraint on
Fields change, an Additional Parameter Check-
ing change can be applied to methods that pro-
cess values submitted by the form. This change
enables to introduce an additional validation or
constraint on method arguments. For this, we
have to specify a pointcut that will capture all
the calls of the affected methods along with their
context similarly as in Sect. 3.2. Their argu-
ments will be checked by the check() method
called from within an around advice which will
throw WrongParamsException if they are not
correct:
public aspect AdditionalParameterChecking {

pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(/∗ arguments ∗/) throws

WrongParamsException:
methodCalls(/∗ arguments ∗/) {
check(/∗ arguments ∗/);
return proceed(/∗ arguments ∗/);

}
void check(/∗ arguments ∗/) throws

WrongParamsException {
if (arg1 != <desired value>)

throw new WrongParamsException();
}

}
Adding a new validator to an application

that already has a built-in validation is realized

50 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

by simply including it in the list of validators.
This can be done by implementing the Perform-
ing Action After Event change (see Sect. 3.1),
which would add the validator to the list of val-
idators after the list initialization.

4. Changing a Change

Sooner or later there will be a need for a change
whose realization will affect some of the already
applied changes. There are two possibilities to
deal with this situation: a new change can be im-
plemented separately using aspect-oriented pro-
gramming or the affected change source code
could be modified directly. Either way, the
changes remain separate from the rest of the ap-
plication.

The possibility to implement a change of
a change using aspect-oriented programming
and without modifying the original change is
given by the aspect-oriented programming lan-
guage capabilities. Consider, for example, ad-
vices in AspectJ. They are unnamed, so can’t
be referred to directly. The primitive pointcut
adviceexecution(), which captures execution
of all advices, can be restricted by the within()
pointcut to a given aspect, but if an aspect con-
tains several advices, advices have to be an-
notated and accessed by the @annotation()
pointcut, which was impossible in AspectJ ver-
sions that existed before Java was extended with
annotations.

An interesting consequence of aspect-oriented
change realization is the separation of cross-
cutting concerns in the application which im-
proves its modularity (and thus makes easier
further changes) and may be seen as a kind of
aspect-oriented refactoring. For example, in our
affiliate marketing application, the integration
with a newsletter — identified as a kind of One
Way Integration — actually was a separation
of integration connection, which may be seen
as a concern of its own. Even if these once
separated concerns are further maintained by
direct source code modification, the important
thing is that they remain separate from the
rest of the application. Implementing a change

of a change using aspect-oriented programming
and without modifying the original change is
interesting mainly if it leads to separation of
another crosscutting concern.

5. Capturing Change Interaction by
Feature Models

Some change realizations can interact: they may
be mutually dependent or some change realiza-
tions may depend on the parts of the underly-
ing system affected by other change realizations.
With increasing number of changes, change in-
teraction can easily escalate into a serious prob-
lem: serious as feature interaction.

Change realizations in the sense of the ap-
proach presented so far actually resemble fea-
tures as coherent pieces of functionality. More-
over, they are virtually pluggable and as such
represent variable features. This brings us to
feature modeling as an appropriate technique
for managing variability in software develop-
ment including variability among changes. This
section will show how to model aspect-oriented
changes using feature modeling.

5.1. Representing Change Realizations

There are several feature modeling nota-
tions [26] of which we will stick to a widely
accepted and simple Czarnecki–Eisenecker basic
notation [5]. Further in this section, we will show
how feature modeling can be used to manage
change interaction with elements of the notation
explained as needed.

Aspect-oriented change realizations can be
perceived as variable features that extend an
existing system. Fig. 2 shows the change re-
alizations from our affiliate marketing scenario
a feature diagram. A feature diagram is com-
monly represented as a tree whose root repre-
sents a concept being modeled. Our concept is
our affiliate marketing software. All the changes
are modeled as optional features (marked by an
empty circle ended edges) that can but do not
have to be included in a feature configuration —
known also as concept instance — for it to be

Aspect-Oriented Change Realizations and Their Interaction 51

SMTP Server
Backup A

Newsletter
Sign Up

User Name
Display Change

 Restricted
Administrator Account

Hide Options Unavailable
to Restricted Administrator

Affiliate
Marketing

SMTP Server
Backup B

Figure 2. Affiliate marketing software change realizations in a feature diagram

valid. Recall adding a backup SMTP server dis-
cussed in Sect. 2.1. We considered a possibility
of having another realization of this change, but
we don’t want both realizations simultaneously.
In the feature diagram, this is expressed by alter-
native features (marked by an arc), so no Affili-
ate Marketing instance will contain both SMTP
Server Backup A and SMTP Server Backup B.

A change realization can be meaningful only
in the context of another change realization. In
other words, such a change realization requires
the other change realization. In our scenario,
hiding options unavailable to a restricted ad-
ministrator makes sense only if we introduced
a restricted administrator account (see Sect. 3.3
and 3.2). Thus, the Hide Options Unavailable
to Restricted Administrator feature is a subfea-
ture of the Restricted Administrator Account
feature. For a subfeature to be included in a
concept instance its parent feature must be in-
cluded, too.

5.2. Identifying Direct Change
Interactions

Direct change interactions can be identified in a
feature diagram with change realizations mod-
eled as features of the affected software con-
cept. Each dependency among features repre-
sents a potential change interaction. A direct
change interaction may occur among alterna-
tive features or a feature and its subfeatures:
such changes may affect the common join points.
In our affiliate marketing scenario, alternative
SMTP backup server change realizations are an
example of such changes. Determining whether
changes really interact requires analysis of de-

pendant feature semantics with respect to the
implementation of the software being changed.
This is beyond feature modeling capabilities.

Indirect feature dependencies may also rep-
resent potential change interactions. Additional
dependencies among changes can be discovered
by exploring the software to which the changes
are introduced. For this, it is necessary to have
a feature model of the software itself, which is
seldom the case. Constructing a complete fea-
ture model can be too costly with respect to ex-
pected benefits for change interaction identifica-
tion. However, only a part of the feature model
that actually contains edges that connect the
features under consideration is needed in order
to reveal indirect dependencies among them.

5.3. Partial Feature Model Construction

The process of constructing partial feature
model is based on the feature model in which
aspect-oriented change realizations are repre-
sented by variable features that extend an ex-
isting system represented as a concept (see
Sect. 5.1).

The concept node in this case is an abstract
representation of the underlying software sys-
tem. Potential dependencies of the change real-
izations are hidden inside of it. In order to reveal
them, we must factor out concrete features from
the concept. Starting at the features that rep-
resent change realizations (leaves) we proceed
bottom up trying to identify their parent fea-
tures until related changes are not grouped in
common subtrees. Figure 3 depicts this process.

The process will be demonstrated on Yon-
Ban, a student project management system de-

52 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

[Application
Concept]

[Feature A]

[Change 1]

[Feature D]

[Feature E]

[Feature B]

[Change 6][Feature C]

[Change 5][Change4]

[Change 3][Change 2]

Figure 3. Constructing a partial feature model

veloped at Slovak University of Technology. We
will consider the following changes in YonBan
and their respective realizations indicated by
generally applicable change types:
– Telephone Number Validating (realized as

Performing Action After Event): to validate
a telephone number the user has entered;

– Telephone Number Formatting (realized as
Additional Return Value Checking/Modifi-
cation): to format a telephone number by
adding country prefix;

– Project Registration Statistics (realized as
One Way Integration): to gain statistic in-
formation about the project registrations;

– Project Registration Constraint (realized as
Additional Parameter Checking/Modifica-
tion): to check whether the student who
wants to register a project has a valid e-mail
address in his profile;

– Exception Logging (realized as Performing
Action After Event): to log the exceptions
thrown during the program execution;

– Name Formatting (realized as Method Sub-
stitution): to change the way how student
names are formatted.
These change realizations are captured in the

initial feature diagram presented Fig. 4. Since
there was no relevant information about direct
dependencies among changes during their speci-
fication, there are no direct dependencies among

the features that represent them either. The con-
cept of the system as such is marked as open (in-
dicated by square brackets), which means that
new variable subfeatures are expected at it. This
is so because we show only a part of the analyzed
system knowing there are other features there.

Following this initial stage, we attempt to
identify parent features of the change realiza-
tion features as the features of the underly-
ing system that are affected by them. Fig-
ure 5 shows such changes identified in our case.
We found that Name Formatting affects the
Name Entering feature. Project Registration
Statistic and Project Registration Constraint
change User Registration. Telephone Number
Formatting and Telephone Number Validating
are changes of Telephone Number Entering. Ex-
ception Logging affects all the features in the
application, so it remains a direct feature of the
concept. All these newly identified features are
open because we are aware of the incompleteness
of their subfeature sets.

We continue this process until we are able to
identify parent features or until all the changes
are found in a common subtree of the feature
diagram, whichever comes first. In our example,
we reached this stage within the following —
and thus last — iteration which is presented in
Fig. 6: we realized that Telephone Number En-
tering is a part of User Registration.

Aspect-Oriented Change Realizations and Their Interaction 53

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

Figure 4. Initial stage of the YonBan partial feature model construction

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

[Telephone Number
Entering]

[User
Registration]

[Name
Entering]

Figure 5. Identifying parent features in YonBan partial feature model construction

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

[Telephone Number
Entering]

[User
Registration]

[Name
Entering]

Figure 6. The final YonBan partial feature model

5.4. Dependency Evaluation

Dependencies among change realization features
in a partial feature model constitute potential
change realization interactions. A careful analy-
sis of the feature model can reveal dependencies
we have overlooked during its construction.

Sibling features (direct subfeatures of the
same parent feature) are potentially interdepen-
dent. This problem can occur also among the
features that are — to say so — indirect siblings,

so we have to analyze these, too. Speaking in
terms of change implementation, the code that
implements the parent feature altered by one of
the sibling change features can be dependent on
the code altered by another sibling change fea-
ture or vice versa. The feature model points us
to the locations of potential interaction.

In our example, we have a partial feature
model (recall Fig. 6) and we understand the
way the changes should be implemented based
on their type (see Sect. 5.3). Project Registra-

54 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

tion Constraint and Project Registration Statis-
tic change are both direct subfeatures of User
Registration. The two aspects that would im-
plement these changes would advise the same
project registration method, and this indeed
can lead to interaction. In such cases, prece-
dence of aspects should be set (in AspectJ,
dominates inter-type declaration enables this).
Another possible problem in this particular situ-
ation is that the Project Registration Constraint
change can disable the execution of the project
registration method. If the Project Registra-
tion Statistic change would use an execution()
pointcut, everything would be all right. On the
other hand, if the Project Registration Statistic
change would use a call() pointcut, the regis-
tration statistic advice would be still executed
even when the registration method would not
be executed. This would cause an undesirable
system behavior where also registrations can-
celed by Project Registration Constraint would
be counted in statistic. The probability of a mis-
take when a call() pointcut is used instead of
the execution() pointcut is higher if the Project
Registration Statistic change would be added
first.

Telephone Number Formatting and Tele-
phone Number Validating are another exam-
ple of direct subfeatures. In this case, the as-
pects that would implement these changes ap-
ply to different join points, so apparently, no
interaction should occur. However, a detailed
look uncovers that Telephone Number Format-
ting change alters the value which the Telephone
Number Validating change has to validate. This
introduces a kind of logical dependency and to
this point the two changes interact. For instance,
altering Telephone Number Formatting to for-
mat the number in a different way may require
adapting Telephone Number Validating.

We saw that the dependencies between
changes could be as complex as feature depen-
dencies in feature modeling and accordingly rep-
resented by feature diagrams. For dependencies
appearing among features without a common
parent, additional constraints expressed as log-
ical expressions [27] could be used. These con-
straints can be partly embedded into feature di-

agrams by allowing them to be directed acyclic
graphs instead of just trees [10].

Some dependencies between changes may ex-
hibit only recommending character, i.e. whether
they are expected to be included or not included
together, but their application remains mean-
ingful either way. An example of this are fea-
tures that belong to the same change request.
Again, feature modeling can be used to model
such dependencies with so-called default depen-
dency rules that may also be represented by log-
ical expressions [27].

6. Evaluation and Tool Support
Outlooks

We have successfully applied the aspect-oriented
approach to change realization to introduce
changes into YonBan, the student project man-
agement system discussed in previous section.
YonBan is based on J2EE, Spring, Hibernate,
and Acegi frameworks. The YonBan architecture
is based on the Inversion of Control principle
and Model-View-Controller pattern.

We implemented all the changes listed in
Sect. 5.3. No original code of the system had to
be modified. Except in the case of project reg-
istration statistics and project registration con-
straint, which where well separated from the rest
of the code, other changes would require exten-
sive code modifications if they have had been
implemented the conventional way.

As we discussed in Sect 5.4, we encountered
one change interaction: between the telephone
number formatting and validating. These two
changes are interrelated — they would probably
be part of one change request — so it comes as
no surprise they affect the same method. How-
ever, no intervention was needed in the actual
implementation.

We managed to implement the changes easily
even without a dedicated tool, but to cope with
a large number of changes, such a tool may be-
come crucial. Even general aspect-oriented pro-
gramming support tools — usually integrated
with development environments — may be of
some help in this. AJDT (AspectJ Development

Aspect-Oriented Change Realizations and Their Interaction 55

Tools) for Eclipse is a prominent example of such
a tool. AJDT shows whether a particular code
is affected by advices, the list of join points af-
fected by each advice, and the order of advice
execution, which all are important to track when
multiple changes affect the same code. Advices
that do not affect any join point are reported
in compilation warnings, which may help detect
pointcuts invalidated by direct modifications of
the application base code such as identifier name
changes or changes in method arguments.

A dedicated tool could provide a much more
sophisticated support. A change implementation
can consist of several aspects, classes, and in-
terfaces, commonly denoted as types. The tool
should keep a track of all the parts of a change.
Some types may be shared among changes, so
the tool should enable simple inclusion and ex-
clusion of changes. This is related to change in-
teraction, which can be addressed by feature
modeling as we described in the previous sec-
tion.

7. Related Work

The work presented in this paper is based
on our initial efforts related to aspect-oriented
change control [8] in which we related our ap-
proach to change-based approaches in version
control. We concluded that the problem with
change-based approaches that could be solved
by aspect-oriented programming is the lack of
programming language awareness in change re-
alizations.

In our work on the evolution of web applica-
tions based on aspect-oriented design patterns
and pattern-like forms [1], we reported the fun-
damentals of aspect-oriented change realizations
based on the two level model of domain specific
and generally applicable change types, as well as
four particular change types: Class Exchange,
Performing Action After Event, and One/Two
Way Integration.

Applying feature modeling to maintain
change dependencies (see Sect. 4) is similar to
constraints and preferences proposed in SIO
software configuration management system [4].

However, a version model for aspect dependency
management [23] with appropriate aspect model
that enables to control aspect recursion and
stratification [2] would be needed as well.

We tend to regard changes as concerns,
which is similar to the approach of facilitating
configurability by separation of concerns in the
source code [9]. This approach actually enables a
kind of aspect-oriented programming on top of a
versioning system. Parts of the code that belong
to one concern need to be marked manually in
the code. This enables to easily plug in or out
concerns. However, the major drawback, besides
having to manually mark the parts of concerns,
is that — unlike in aspect-oriented programming
— concerns remain tangled in code.

Others have explored several issues gener-
ally related to our work, but none of these
works aims at actual capturing changes by as-
pects. These issues include database schema evo-
lution with aspects [12] or aspect-oriented ex-
tensions of business processes and web services
with crosscutting concerns of reliability, secu-
rity, and transactions [3]. Also, an increased
changeability of components implemented using
aspect-oriented programming [17], [18], [22] and
aspect-oriented programming with the frame
technology [19], as well as enhanced reusabil-
ity and evolvability of design patterns achieved
by using generic aspect-oriented languages to
implement them [24] have been reported. The
impact of changes implemented by aspects has
been studied using slicing in concern graphs [15].

While we do see potential of aspect-orien-
tation for configuration and reconfiguration of
applications, our current work does not aim at
automatic adaptation in application evolution,
such as event triggered evolutionary actions [21],
evolution based on active rules [6], adaptation
of languages instead of software systems [16],
or as an alternative to version model based
context-awareness [7], [13].

8. Conclusions and Further Work

In this paper, we have described our approach
to change realization using aspect-oriented pro-

56 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

gramming and proposed a feature modeling
based approach of dealing with change interac-
tion. We deal with changes at two levels dis-
tinguishing between domain specific and gen-
erally applicable change types. We described
change types specific to web application domain
along with corresponding generally applicable
changes. We also discussed consequences of hav-
ing to implement a change of a change.

The approach does not require exclusive-
ness in its application: a part of the changes
can be realized in a traditional way. In fact,
the approach is not appropriate for realization
of all changes, and some of them can’t be re-
alized by it at all. This is due to a techni-
cal limitation given by the capabilities of the
underlying aspect-oriented language or frame-
work. Although some work towards addressing
method-level constructs such as loops has been
reported [14], this is still uncommon practice.
What is more important is that relying on the
inner details of methods could easily compro-
mise the portability of changes across the ver-
sions since the stability of method bodies be-
tween versions is questionable.

Change interaction can, of course, be an-
alyzed in code, but it would be very benefi-
cial to deal with it already during modeling.
We showed that feature modeling can success-
fully be applied whereby change realizations
would be modeled as variable features of the
application concept. Based on such a model,
change dependencies could be tracked through
feature dependencies. In the absence of a fea-
ture model of the application under change,
which is often the case, a partial feature model
can be developed at far less cost to serve the
same purpose.

For further evaluation, it would be interest-
ing to develop catalogs of domain specific change
types of other domains like service-oriented ar-
chitecture for which we have a suitable applica-
tion developed in Java available [25]. Although
the evaluation of the approach has shown the
approach can be applied even without a dedi-
cated tool support, we believe that tool support
is important in dealing with change interaction,
especially if their number is high.

By applying the multi-paradigm design with
feature modeling [27] to select the generally ap-
plicable changes (understood as paradigms) ap-
propriate to given application specific changes
we may avoid the need for catalogs of domain
specific change types or we can even use it to
develop them. This constitutes the main course
of our further research.

Acknowledgements The work was sup-
ported by the Scientific Grant Agency of Slovak
Republic (VEGA) grant No. VG 1/0508/09.

References

[1] M. Bebjak, V. Vranić, and P. Dolog. Evolu-
tion of web applications with aspect-oriented
design patterns. In M. Brambilla and
E. Mendes, editors, Proc. of ICWE 2007 Work-
shops, 2nd International Workshop on Adap-
tation and Evolution in Web Systems Engi-
neering, AEWSE 2007, in conjunction with 7th
International Conference on Web Engineering,
ICWE 2007, pages 80–86, Como, Italy, July
2007.

[2] E. Bodden, F. Forster, and F. Steimann. Avoid-
ing infinite recursion with stratified aspects. In
R. Hirschfeld et al., editors, Proc. of NODe
2006, LNI P-88, pages 49–64, Erfurt, Germany,
Sept. 2006. GI.

[3] A. Charfi, B. Schmeling, A. Heizenreder, and
M. Mezini. Reliable, secure, and transacted
web service compositions with AO4BPEL. In
4th IEEE European Conf. on Web Services
(ECOWS 2006), pages 23–34, Zürich, Switzer-
land, Dec. 2006. IEEE Computer Society.

[4] R. Conradi and B. Westfechtel. Version models
for software configuration management. ACM
Computing Surveys, 30(2):232–282, June 1998.

[5] K. Czarnecki and U. W. Eisenecker. Generative
Programing: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[6] F. Daniel, M. Matera, and G. Pozzi. Combin-
ing conceptual modeling and active rules for the
design of adaptive web applications. In Work-
shop Proc. of 6th Int. Conf. on Web Engineering
(ICWE 2006), New York, NY, USA, 2006. ACM
Press.

[7] F. Dantas, T. Batista, N. Cacho, and A. Gar-
cia. Towards aspect-oriented programming for
context-aware systems: A comparative study. In
Proc. of 1st International Workshop on Soft-
ware Engineering for Pervasive Computing Ap-

Aspect-Oriented Change Realizations and Their Interaction 57

plications, Systems, and Environments, SEP-
CASE’07, Minneapolis, USA, May 2007. IEEE.

[8] P. Dolog, V. Vranić, and M. Bieliková. Rep-
resenting change by aspect. ACM SIGPLAN
Notices, 36(12):77–83, Dec. 2001.

[9] Z. Fazekas. Facilitating configurability by sepa-
ration of concerns in the source code. Journal of
Computing and Information Technology (CIT),
13(3):195–210, Sept. 2005.

[10] R. Filkorn and P. Návrat. An approach for
integrating analysis patterns and feature dia-
grams into model driven architecture. In P. Voj-
táš, M. Bieliková, and B. Charron-Bost, edi-
tors, Proc. 31st Conference on Current Trends
in Theory and Practice of Informatics (SOF-
SEM 2005), LNCS 3381, Liptovský Jan, Slo-
vakia, Jan. 2005. Springer.

[11] S. Goldschmidt, S. Junghagen, and U. Harris.
Strategic Affiliate Marketing. Edward Elgar
Publishing, 2003.

[12] R. Green and A. Rashid. An aspect-oriented
framework for schema evolution in
object-oriented databases. In Proc. of the
Workshop on Aspects, Components and
Patterns for Infrastructure Software (in
conjunction with AOSD 2002), Enschede,
Netherlands, Apr. 2002.

[13] M. Grossniklaus and M. C. Norrie. An
object-oriented version model for context-aware
data management. In M. Weske, M.-S. Hacid,
and C. Godart, editors, Proc. of 8th Interna-
tional Conference on Web Information Systems
Engineering, WISE 2007, LNCS 4831, Nancy,
France, Dec. 2007. Springer.

[14] B. Harbulot and J. R. Gurd. A join point for
loops in AspectJ. In Proc. of 5th International
Conference on Aspect-Oriented Software Devel-
opment, AOSD 2006, pages 63–74, Bonn, Ger-
many, 2006. ACM.

[15] S. Khan and A. Rashid. Analysing require-
ments dependencies and change impact using
concern slicing. In Proc. of Aspects, Depen-
dencies, and Interactions Workshop (affiliated
to ECOOP 2008), Nantes, France, July 2006.

[16] J. Kollár, J. Porubän, P. Václavík,
J. Bandáková, and M. Forgáč. Functional
approach to the adaptation of languages
instead of software systems. Computer Science
and Information Systems Journal (ComSIS),
4(2), Dec. 2007.

[17] A. A. Kvale, J. Li, and R. Conradi. A case
study on building COTS-based system us-
ing aspect-oriented programming. In 2005
ACM Symposium on Applied Computing, pages

1491–1497, Santa Fe, New Mexico, USA, 2005.
ACM.

[18] J. Li, A. A. Kvale, and R. Conradi. A case study
on improving changeability of COTS-based sys-
tem using aspect-oriented programming. Jour-
nal of Information Science and Engineering,
22(2):375–390, Mar. 2006.

[19] N. Loughran, A. Rashid, W. Zhang, and
S. Jarzabek. Supporting product line evolu-
tion with framed aspects. In Workshop on As-
pects, Componentsand Patterns for Infrastruc-
ture Software (held with AOSD 2004, Interna-
tional Conference on Aspect-Oriented Software
Development), Lancaster, UK, Mar. 2004.

[20] R. Miles. AspectJ Cookbook. O’Reilly, 2004.
[21] F. Molina-Ortiz, N. Medina-Medina, and

L. García-Cabrera. An author tool based on
SEM-HP for the creation and evolution of adap-
tive hypermedia systems. In Workshop Proc.
of 6th Int. Conf. on Web Engineering (ICWE
2006), New York, NY, USA, 2006. ACM Press.

[22] O. Papapetrou and G. A. Papadopoulos.
Aspect-oriented programming for a component
based real life application: A case study. In 2004
ACM Symposium on Applied Computing, pages
1554–1558, Nicosia, Cyprus, 2004. ACM.

[23] E. Pulvermüller, A. Speck, and J. O. Coplien.
A version model for aspect dependency man-
agement. In Proc. of 3rd Int. Conf. on Gener-
ative and Component-Based Software Engineer-
ing (GCSE 2001), LNCS 2186, pages 70–79, Er-
furt, Germany, Sept. 2001. Springer.

[24] T. Rho and G. Kniesel. Independent evolu-
tion of design patterns and application logic with
generic aspects — a case study. Technical Re-
port IAI-TR-2006-4, University of Bonn, Bonn,
Germany, Apr. 2006.

[25] V. Rozinajová, M. Braun, P. Návrat, and
M. Bieliková. Bridging the gap between
service-oriented and object-oriented approach in
information systems development. In D. Avi-
son, G. M. Kasper, B. Pernici, I. Ramos,
and D. Roode, editors, Proc. of IFIP 20th
World Computer Congress, TC 8, Information
Systems, Milano, Italy, Sept. 2008. Springer
Boston.

[26] V. Vranić. Reconciling feature model-
ing: A feature modeling metamodel. In
M. Weske and P. Liggsmeyer, editors, Proc.
of 5th Annual International Conference on
Object-Oriented and Internet-Based Technolo-
gies, Concepts, and Applications for a Net-
worked World (Net.ObjectDays 2004), LNCS

58 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

3263, pages 122–137, Erfurt, Germany, Sept.
2004. Springer.

[27] V. Vranić. Multi-paradigm design with feature
modeling. Computer Science and Information
Systems Journal (ComSIS), 2(1):79–102, June
2005.

[28] V. Vranić, M. Bebjak, R. Menkyna, and
P. Dolog. Developing applications with as-

pect-oriented change realization. In Proc. of
3rd IFIP TC2 Central and East European Con-
ference on Software Engineering Techniques
CEE-SET 2008, LNCS, Brno, Czech Republic,
2008.

Appendix J

Aspect-Oriented Change
Realization Based on
Multi-Paradigm Design with
Feature Modeling

Radoslav Menkyna and Valentino Vranić. Aspect-oriented change realization
based on multi-paradigm design with feature modeling. In Proc. of 4th IFIP
TC2 Central and East European Conference on Software Engineering Tech-
niques, CEE-SET 2009, Krakow, Poland, October 2009. Postproceedings,
to appear.

Aspect-Oriented Change Realization Based on
Multi-Paradigm Design with Feature Modeling

Radoslav Menkyna and Valentino Vranić

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology,
Ilkovičova 3, 84216 Bratislava 4, Slovakia
radu@ynet.sk, vranic@fiit.stuba.sk

Abstract. It has been shown earlier that aspect-oriented change real-
ization based on a two-level change type framework can be employed
to deal with changes so they can be realized in a modular, pluggable,
and reusable way. In this paper, this idea is extended towards enabling
direct change manipulation using multi-paradigm design with feature
modeling. For this, generally applicable change types are considered to
be (small-scale) paradigms and expressed by feature models. Feature
models of the Method Substitution and Performing Action After Event
change types are presented as examples. In this form, generally applicable
change types enter an adapted process of the transformational analysis
to determine their application by their instantiation over an application
domain feature model. The application of the transformational analysis
in identifying the details of change interaction is presented.

Keywords: change, aspect-oriented programming, multi-paradigm de-
sign, feature modeling, change interaction

1 Introduction

Changes of software applications exhibit crosscutting nature either intrinsically
by being related to many different parts of the application they affect or by their
perception as separate units that can be included or excluded from a particular
application build. It is exactly aspect-oriented programming that can provide
suitable means to capture this crosscutting nature of changes and to realize
them in a pluggable and reapplicable way [17].

Particular mechanisms of aspect-oriented change introduction determine the
change type. Some of these change types have already been documented [1, 17],
so by just identifying the type of the change being requested, we can get a pretty
good idea of its realization. This is not an easy thing to do. One possibility is to
have a two-level change type model with some change types being close to the
application domain and other change types determining the realization, while
their mapping is being maintained in a kind of a catalog [17].

But what if such a catalog for a particular domain does not exist? To postpone
change realization and develop a whole catalog may be unacceptable with respect

to time and effort needed. The problem of selecting a suitable realizing change
type resembles paradigm selection in multi-paradigm design [16]. This other
way around—to treat change realization types as paradigms and employ multi-
paradigm design to select the appropriate one—is the topic of this paper.

We first take a look at the two-level aspect-oriented change realization model
(Sect. 2). Subsequently, the approach to modeling change realization types as
paradigms using feature modeling is introduced (Sect. 3). The approach em-
ploys the application domain feature model with changes expressed as features
(Sect. 4). The key part of the approach is the transformational analysis—the
process of finding a suitable paradigm—tailored to change realization (Sect. 5).
Afterwards, it is shown how the transformational analysis results can be used to
identify change interaction (Sect. 6). The approach is discussed with respect to
related work (Sect. 7). Concluding notes close the paper (Sect. 8).

2 Two-Level Change Realization Framework

In our earlier work [1, 17], we proposed a two-level aspect-oriented change real-
ization framework. Changes come in the form of change requests each of which
may consist of several changes. We understand a change as a requirement fo-
cused on a particular issue perceived as indivisible from the application domain
perspective.

Given a particular change, a developer determines the domain specific change
type that corresponds to it. Domain specific change types represent abstractions
and generalizations of changes expressed in the vocabulary of a particular do-
main. A developer gets a clue to the change realization from the cataloged map-
pings of domain specific change types to generally applicable change types, which
represent abstractions and generalizations of change realizations in a given solu-
tion domain (aspect-oriented language or framework). Each generally applicable
change type provides an example code of its realization. It can also be a kind
of an aspect-oriented design pattern or a domain specific change can even be
directly mapped to one or more aspect-oriented design patterns.

As an example, consider some changes in the general affiliate marketing soft-
ware purchased by a merchant who runs his online music shop to advertise
at third party web sites (denoted as affiliates).1 This software tracks customer
clicks on the merchant’s commercials (e.g., banners) placed in affiliate sites and
whether they led to buying goods from the merchant in which case the affiliate
who referred the sale would get the provision.

Consider a change that subsumes the integration of the affiliate marketing
software with the third party newsletter used by the merchant so that every
affiliate would be a member of the newsletter. When an affiliate signs up to the
affiliate marketing software, he should be signed up to the newsletter, too. Upon
deleting his account, the affiliate should be removed from the newsletter. This
is an instance of the change type called One Way Integration [1], one of the web

1 This is an extended scenario originally published in our earlier work [1, 17].

application domain specific change types. Its essence is the one way notification:
the integrating application notifies the integrated application of relevant events.
In this case, such events are the affiliate sign up and affiliate account deletion.

The catalog of changes [17] would point us to the Performing Action After
Event generally applicable change type. As follows from its name, it describes
how to implement an action after an event in general. Since events are actu-
ally represented by methods, the desired action can be implemented in an after
advice [1]:

public aspect PerformActionAfterEvent {
pointcut methodCalls(TargetClass t, int a): . . .;
after(/∗ captured arguments ∗/): methodCalls(/∗ captured arguments ∗/) {

performAction(/∗ captured arguments ∗/);
}
private void performAction(/∗ arguments ∗/) { /∗ action logic ∗/ }

}

The after advice executes after the captured method calls. The actual action is
implemented as the performAction() method called by the advice.

To implement the newsletter sign up change, in the after advice we will make
a post to the newsletter sign up/sign out script and pass it the e-mail address
and name of the newly signed-up or deleted affiliate.

As another example, consider a change is needed to prevent attempts to
register without providing an e-mail address. This is actually an instance of
the change type called Introducing Additional Constraint on Fields [1], which
can be realized using Performing Action After Event or Additional Parameter
Checking, but if we assume no form validation mechanism is present, even the
most general Method Substitution (which wasn’t considered originally [17] for
this) can be used to capture method calls:

public aspect MethodSubstition {
pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(TargetClass t, int a): methodCalls(t, a) {

if (. . .) { . . . } // the new method logic
else proceed(t, a);

}
}

3 Generally Applicable Change Types as Paradigms

Generally applicable change types are independent of the application domain and
may even apply to different aspect-oriented languages and frameworks (with an
adapted code scheme, of course). The expected number of generally applica-
ble change types that would cover all significant situations is not high. In our
experiments, we managed to cope with all situations using only six of them.

On the other hand, in the domain of web applications, eleven application
specific changes we identified so far cover it only partially. Each such change
type requires a thorough exploration in order to discover all possible realizations

by generally applicable change types and design patterns with conditions for
their use, and it is not likely that someone would be willing to invest effort into
developing a catalog of changes apart of the momentarily needs.

The problem of selecting a suitable generally applicable change type re-
sembles the problem of the selection of a paradigm suitable to implement a
particular application domain concept, which is a subject of multi-paradigm ap-
proaches [14]. Here, we will consider multi-paradigm design with feature modeling
(MPDfm), which is based on an adapted Czarnecki–Eisenecker [4] feature mod-
eling notation [15]. Section 3.1 explains how paradigms are modeled in MPDfm.
Section 3.2 and 3.3 introduces two examples of change paradigm models.

3.1 Modeling Paradigms

In MPDfm, paradigms are understood as solution domain concepts that cor-
respond to programming language mechanisms (like inheritance or class). Such
paradigms are being denoted as small-scale to distinguish them from the common
concept of the (large-scale) paradigm as a particular approach to programming
(like object-oriented or procedural programming) [16].

In MPDfm, feature modeling is used to express paradigms. A feature model
consists of a set of feature diagrams, information associated with concepts and
features, and constraints and default dependency rules associated with feature
diagrams. A feature diagram is usually understood as a directed tree whose
root represents a concept being modeled and the rest of the nodes represent its
features [19].

The features may be common to all concept instances (feature configurations)
or variable, in which case they appear only in some of the concept instances.
Features are selected in a process of concept instantiation. Those that have been
selected are denoted as bound. The time at which this binding (or choosing
not to bind) happens is called binding time. In paradigm modeling, the set of
binding times is given by the solution model. In AspectJ we may distinguish
among source time, compile time, load time, and runtime.

Each paradigm is considered to be a separate concept and as such presented
in its own feature diagram that describes what is common to all paradigm in-
stances (its applications), and what can vary, how it can vary, and when this
happens. Consider the AspectJ aspect paradigm feature model shown in Fig. 1.
Each aspect is named, which is modeled by a mandatory feature Name (indi-
cated by a filled circle ended edge). The aspect paradigm articulates related
structure and behavior that crosscuts otherwise possibly unrelated types. This
is modeled by optional features Inter-Type Declarations, Advices, and Pointcuts
(indicated by empty circle ended edges). These features represent references to
equally named auxiliary concepts that represent plural forms of respective con-
cepts that actually represent paradigms in their own right (and their own feature
models [16]). To achieve its intent, an aspect may—similarly to a class—employ
Methods (with the method being yet another paradigm) and Fields.

An aspect in AspectJ is instantiated automatically by occurrence of the join
points it addresses in accordance with Instantiation Policy. The features that

Aspect

Inter-Type
Declarations®

Instantiation
Policy

Aspects®

Static

Name

FinalAdvices®

Pointcuts®

Fields

Methods®

Singleton Per Object
Per Control Flow

Pointcut® Pointcut® Whole Below

Scope

Interfaces® Classes®

Inheritances®

Access®

Privileged

Abstract

Constraints:

final ∨ abstract

Fig. 1. The AspectJ aspect paradigm (adopted from [16]).

represent different instantiation policies are mandatory alternative features (in-
dicated by an arc over mandatory features), which means that exactly one of
them must be selected. An aspect can be Abstract, in which case it can’t be
instantiated, so it can’t have Instantiation Policy either, which is again modeled
by mandatory alternative features.

An aspect can be declared to be Static or Final. It doesn’t have to be either of
the two, but it can’t be both, which is modeled by optional alternative features
of which only one may be selected (indicated by an arc over optional features).
An aspect can also be Privileged over other aspects and it has its type of Access,
which is modeled as a reference to a separately expressed auxiliary concept. All
the features in the aspect paradigm are bound at source time.

The constraint associated with the aspect paradigm feature diagram means
that the aspect is either Final or Abstract. We use first-order predicate logic
to express constraints associated with feature diagrams, but OCL could be em-
ployed, too, as a widely accepted and powerful notation for such uses (but even
of wider applicability, e.g. instead of object algebras [13]).

Generally applicable changes may be seen as a kind of conceptually higher
language mechanisms and modeled as paradigms in the sense of MPDfm.

3.2 Method Substitution

Figure 2 shows the Method Substitution change type paradigm model. All the
features have source time binding. This change type enables to capture calls to
methods (Original Method Calls) with or without the context (Context) and to
alter the functionality they implement by the additional functionality it provides
(Altering Functionality) which includes the possibility of affecting the arguments
(Check/Modify Arguments) or return value (Check/Modify Return Value), or
even blocking the functionality of the methods whose calls have been captured

altogether (Proceed with Original Methods). Note the Context feature subfea-
tures. They are or-features, which means at least one them has to be selected.

Method Substitution

Original
Method Calls

Altering
FunctionalityAspect® Context

Method
Arguments

Target
Class

Proceed with
Original Methods

Check/Modify
Arguments

Check/Modify
Return Value

Constraints:

Aspect.Pointcut
Aspect.Advice.Around

Fig. 2. Method Substitution.

Method Substitution is implemented by an aspect (Aspect) with a pointcut
specifying the calls to the methods to be altered by an around advice, which is
expressed by the constraints associated with its feature diagram (Fig. 2).

3.3 Performing Action After Event

Figure 3 shows the Performing Action After Event change type paradigm model.
All the features have source time binding. This change type is used when an ad-
ditional action (Action After Event) is needed after some events (Events) of
method calls or executions, initialization, field reading or writing, or advice ex-
ecution (modeled as or-features) taking or not into account their context (Con-
text).

Performing Action
After Event

Action
After EventAspect® Context

Calls Executions Method
Arguments

Target
Class

Initializations

Field
Readings

Field
Writings

Advice
Executions

Events

Check/Modify
Return Value

Constraints:

Aspect.Pointcut
Aspect.Advice.After

Fig. 3. Performing Action After Event.

Performing Action After Event is implemented by an aspect (Aspect) with
a pointcut specifying the events and an after advice over this pointcut used to
perform the desired actions, which is expressed by the constraints associated
with its feature diagram (Fig. 3).

4 Feature Model of Changes

For the transformational analysis, the application domain feature model that
embraces the changes is needed. We will present how changes can be expressed
in the application domain feature model in our running example of affiliate
tracking software.

4.1 Expressing Changes in a Feature Model

In our affiliate marketing example, we may consider the following changes:

– SMTP Server Backup A/B —to introduce a backup server for sending noti-
fications (with two different implementations, A and B)

– Newsletter Sign Up —to sign up an affiliate to a newsletter when he signs
up to the tracking software

– Account Registration Constraint —to check whether the affiliate who wants
to register submitted a valid e-mail address

– Restricted Administrator Account —to create an account with a restriction
of using some resources

– Hide Options Unavailable to Restricted Administrator —to restrict the user
interface

– User Name Display Change — to adapt the order of displaying the first name
and surname

– Account Registration Statistics —to gain statistical information about the
affiliate registrations

These changes are captured in the initial feature diagram presented in Fig. 4.
The concept we model is our affiliate marketing software.2 All the changes are
modeled as optional features as they can, but don’t have to be applied. We may
consider the possibility of having different realizations of a change of which only
one may be applied. This is expressed by alternative features. In the example,
no Affiliate Marketing instance can contain both SMTP Server Backup A and
SMTP Server Backup B.

SMTP Server
Backup A

Newsletter
Sign Up

User Name
Display Change

 Restricted
Administrator

Account

Hide Options Unavailable
to Restricted Administrator

Affiliate Marketing

SMTP Server
Backup B

Account
Registration
Constraint

Account
Registration

Statistics

Fig. 4. Changes in the affiliate marketing software.

2 In general, there may be several top-level concepts in one application domain.

Some change realizations make sense only in the context of some other change
realizations. In other words, such change realization require the other change
realizations. In our scenario, hiding options unavailable to a restricted adminis-
trator makes sense only if we have introduced a restricted administrator account.
This is modeled by having Hide Options Unavailable to Restricted Administra-
tor to be a subfeature of Restricted Administrator Account. For a subfeature to
be included in a concept instance, its parent feature must be included, too.

The feature–subfeature relationship represents a direct dependency between
two features. Such dependency can be an indication of a possible interaction be-
tween change realizations. However, with alternative features, no interaction can
occur because an application instance can contain only one change realization.

4.2 Partial Feature Model

Often, no feature model of the system is available. Creating the feature model
of the whole system is difficult and time consuming. Fortunately, as it has been
shown [18]—for the purpose of change interaction analysis, it is a partial feature
model is sufficient. The process of constructing a partial feature model starts with
the feature model in which aspect-oriented change realizations are represented
by variable features that extend the existing system represented by a concept
node as an abstract representation of the underlying software system, which is
exactly the model we discussed in the previous section.

In partial feature model construction, only the features that potentially take
part in change interaction are being identified and modeled. Starting at change
features, we proceed bottom up identifying their parent features until related
features become grouped in common subtrees [18].

A partial feature model constructed from the initial feature model of the
changes being introduced into our affiliate marketing software (presented in
Fig. 4) is depicted in Fig. 5. All the identified change parent features are open
because the sets of their subfeatures are incomplete, since we model only the
changes that affect them, and since there may be other changes in the future.

At this stage, it is possible to identify potential locations of interaction. Such
locations are represented as features of the system to which changes are intro-
duced. The highest probability of interaction is among sibling features (direct
subfeatures of the same parent feature) because they are potentially interdepen-
dent. This is caused by the fact that changes represented by such features usually
employ the same or similar pointcuts which is generally a source of unwanted
interaction. Such locations should represent primary targets of evaluation during
the transformational analysis, which is the topic of the following section.

Interaction can occur also between indirect siblings or non-sibling features.
However, with an increasing distance between features that represent changes,
the probability of their interaction decreases.

Newsletter
Sign Up

[Displaying
Menu Items]

[Banner
Management]

Hide Options
Unavailable to

Restricted
Administrator

[Affiliate Marketing]

[SMTP Server
Creation]

Account
Registration
Constraint

Account
Registration

Statistics

SMTP Server
Backup B

[Affiliate
Sign Up]

User Name
Display Change

[Displaying Grid
Data]

 Restricted
Administrator

Account

[Campaign
Management]

 Restricted
Administrator

Account

SMTP Server
Backup A

Constraints:

Hide Operations Unavailable to Restricted Administrator ⇒
Restricted Administration Account

Fig. 5. A partial feature model of the affiliate marketing software.

5 Transformational Analysis

The input to the transformational analysis in multi-paradigm design with fea-
ture modeling [16] are two feature models: the application domain one and the
solution domain one. The output of the transformational analysis is a set of
paradigm instances annotated with application domain feature model concepts
and features that define the code skeleton.

A concept instance is defined as follows [16]:

An instance I of the concept C at time t is a C’s specialization achieved
by configuring its features which includes the C’s concept node and in
which each feature whose parent is included in I obeys the following
conditions:

1. All the mandatory features are included in I.

2. Each variable feature whose binding time is earlier than or equal to
t is included or excluded in I according to the constraints of the
feature diagram and those associated with it. If included, it becomes
mandatory for I.

3. The rest of the features, i.e. the variable features whose binding
time is later than t, may be included in I as variable features or
excluded according to the constraints of the feature diagram and
those associated with it. The constraints (both feature diagram and
associated ones) on the included features may be changed as long as
the set of concept instances available at later instantiation times is
preserved or reduced.

4. The constraints associated with C’s feature diagram become associ-
ated with the I’s feature diagram.

5.1 Transformational Analysis of Changes

For determining change types that correspond to the changes that have to be
realized, a simplified transformational analysis can be used. Changes presented
in the application domain feature model are considered to be application domain
concepts, and generally applicable change types to be paradigms. A complete
application domain feature model may be used if available, otherwise a partial
feature model has to be constructed. For each change C from the application
domain feature model, the following steps are performed:

1. Select a generally applicable change type P that has not been considered for
C yet.

2. If there are no more paradigms to select, the process for C has failed.
3. Try to instantiate P over C at source time. If this couldn’t be performed or

if P ’s root doesn’t match with C’s root, go to step 1. Otherwise, record the
paradigm instance created.

Paradigm instantiation over application domain concepts means that the
inclusion of some of the paradigm nodes is being stipulated by the mapping of
the nodes of one or more application domain concepts to them in order to ensure
the paradigm instances correspond to these application domain concepts.

If the transformational analysis fails for some change, this change is probably
an instance of a new change type. The process should continue with AspectJ
paradigms, which is the subject of the general transformational analysis [16].

5.2 Example

We will demonstrate the transformational analysis on several changes in the
affiliate marketing software (introduced in Sect. 4.1) with the AspectJ paradigm
model [16] extended by feature models of the generally applicable change types
(see Sect. 3) as a solution domain.

The Restricted Administrator Account change provides an additional check
of access rights upon execution of specified methods. Methods should be executed
only if access is granted. This scenario suites best to the Method Substitution
change type which can control the execution of selected methods, and ensure
displaying an error message or logging in case of an access violation event.

Figure 6 shows the transformational analysis of the Restricted Administrator
Account change. The Target Class and Method Arguments features are included
to capture additional context which is needed by the Proceed with Original
Methods feature when the access is granted. The If Access Granted annotation
indicates the condition of proceeding with the original methods. Note that the
Banner Management and Campaign Management features are mapped to the
Original Method Calls feature expressed by an annotation. This means that the
change affects the behavior represented by them. Such annotations are crucial
to change interaction evaluation (discussed in the next section).

The transformational analysis of Account Registration Constraint would be
similar. Again, we would employ the Method Substitution change type. The

Method Substitution

Original
Method Call

Proceed With
Original Methods

Aspect®

Restricted
Administrator

Account

Campaign
Management

If Access
Is Granted

Banner
Management

Context

Method
Arguments

Target
Class

Altering
Functionality

Fig. 6. Transformational analysis of the Restricted User Account change.

Original Method Calls feature would map to the Affiliate Sign Up feature and
the original method will be executed only if a valid e-mail address is provided.

Figure 7 shows the transformational analysis of the Newsletter Sign Up
change. Recall that this change adds a new affiliate to the existing list of newslet-
ter recipients, which can be best realized as Performing Action After Event. In
this case, the Events feature is mapped to the Affiliate Sign Up feature which
represents the execution of the affiliate sign up method. Through Method Argu-
ments, the data about the affiliate being added can be accessed (Affiliate Data)
from which his e-mail address can be retrieved and subsequently added to the
newsletter recipient list by the Action After Events feature. A similar transfor-
mation would apply to the Account Registration Statistics change.

Performing Action
After Event

Events Action After
EventsAspect®

Newsletter
Sign Up

ExecutionAffiliate
Sign Up

Add Affiliate
to Newsletter

Recipients

Context

Method
Arguments Affiliate Data

Fig. 7. Transformational analysis of the Newsletter Sign Up change.

6 Change Interaction

Change realizations can interact: they may be mutually dependent or some
change realizations may depend on the parts of the underlying system affected
by other change realizations [17]. The interaction is most probable if multiple
changes affect the same functionality. As has been shown, such situations could
be identified in part already during the creation of a partial feature model [18],
but the transformational analysis can reveal more details needed to avoid the
interaction of change realizations.

Consider, for example, the Newsletter Sign Up and Account Registration
Statistics changes. Despite they share the target functionality (Affiliate Sign
Up), no interaction occurs. This is because both changes are realized using the
Performing Action After Event change type which employs an after() advice.
In such a situation, it is important to check whether the execution order of the
advices is significant. In this particular case, it is not.

The Account Registration Constraint change represents a potential source of
interaction with Newsletter Sign Up and Account Registration Statistics because
it also targets the same functionality. This change is realized using the Method
Substitution paradigm through which it can disable the execution of the method
that registers a new affiliate. If the Newsletter Sign Up and Account Registra-
tion Statistics change realizations rely on method executions, not calls, i.e. they
employ an execution() pointcut, no interaction occurs. On the other hand, if
the realizations of these changes would rely on method calls, i.e. they would em-
ploy a call() pointcut, their advices would be executed even if the registration
method haven’t been executed, which is an undesirable system behavior.

In most cases, the interaction can be solved by adapting change realizations.
Unsolvable change interaction should be introduced in the application domain
model by constraints that will prevent affected changes from occurring together.

7 Related Work

The impact of changes implemented by aspects has been studied using slicing
in concern slice dependency graphs [6]. It has been shown that the application
domain feature model can be derived from concern slice dependency graphs [11].
Concern slice dependency graphs provide in part also a dynamic view of change
interaction that could be expressed using a dedicated notation (such as UML
state machine or activity diagrams) and provided along with the feature model
covering the structural view.

Applying program slicing to features implemented as aspects with interaction
understood as a slice intersection has been applied so far only to a very simplified
version of AspectJ. Extension to cover complicated constructs has been identified
as problematic. Even at this simplified level, it appears to be too coarse for
applications in which the behavior is embedded in data structures [12].

Even if the original application haven’t been a part of a product line, changes
modeled as its features tend to form a kind of a product line out of it. This could
be seen as a kind of evolutionary development of a new product line [2].

As an alternative to our transformational analysis, framed aspects [9, 10] can
be applied to the application domain feature model with each change maintained
in its own frame in order to keep it separate.

Annotations that determine the feature implementation in so-called crosscut-
ting feature models [8] are similar to annotations used in our transformational
analysis, but no formal process to determine them is provided.

An approach to introduce program changes by changing the interpreter in-
stead based on grammar weaving has been reported [5]. With respect to suitabil-

ity of aspect-oriented approach to deal with changes, it is worth mentioning that
weaving—a prominent characteristic of aspect-oriented programming—has been
identified as crucial for the automation of multi-paradigm software evolution [7].

8 Conclusions and Further Work

The work reported here is a part of our ongoing efforts of comprehensively cov-
ering aspect-oriented change realization whose aim is to enable change realiza-
tion in a modular, pluggable, and reusable way. In this paper, we extended
the original idea of having two-level change type framework to facilitate easier
aspect-oriented change realization by enabling direct change manipulation using
multi-paradigm design with feature modeling (MPDfm) with generally applica-
ble change types as (small-scale) paradigms.

We introduced the paradigm models of the Method Substitution and Per-
forming Action After Event change types. We also developed paradigm mod-
els of other generally applicable change types not presented in this paper such
as Enumeration Modification with Additional Return Value Checking/Modifi-
cation, Additional Return Value Checking/Modification, Additional Parameter
Checking or Performing Action After Event, and Class Exchange.

We adapted the process of the general transformational analysis in MPDfm
to work with changes as application domain concepts and generally applicable
change types as paradigms. We demonstrated how such transformational analysis
can help in identifying the details of change interaction.

Our further work includes extending our approach to cover the changes real-
ized by a collaboration of multiple generally applicable change types and design
patterns. We also work on improving change type models by expressing them in
the Theme notation of aspect-oriented analysis and design [3].

Acknowledgements The work was supported by the Scientific Grant Agency
of Slovak Republic (VEGA) grant No. VG 1/0508/09 and SOFTEC, s. r. o.,
Bratislava, Slovakia.

References

[1] M. Bebjak, V. Vranić, and P. Dolog. Evolution of web applications with aspect-
oriented design patterns. In M. Brambilla and E. Mendes, editors, Proc. of
ICWE 2007 Workshops, 2nd International Workshop on Adaptation and Evo-
lution in Web Systems Engineering, AEWSE 2007, in conjunction with 7th Inter-
national Conference on Web Engineering, ICWE 2007, pages 80–86, Como, Italy,
July 2007.

[2] J. Bosch. Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. Addison-Wesley, 2000.

[3] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design: The Theme
Approach. Addison-Wesley, 2005.

[4] K. Czarnecki and U. W. Eisenecker. Generative Programing: Methods, Tools, and
Applications. Addison-Wesley, 2000.

[5] M. Forgáč and J. Kollár. Adaptive approach for language modification. Journal
of Computer Science and Control Systems, 2(1):9–12, 2009.

[6] S. Khan and A. Rashid. Analysing requirements dependencies and change im-
pact using concern slicing. In Proc. of Aspects, Dependencies, and Interactions
Workshop (affiliated to ECOOP 2008), Nantes, France, July 2006.

[7] J. Kollár, J. Porubän, P. Václav́ık, M. Tóth, J. Bandáková, and M. Forgáč. Multi-
paradigm approaches to systems evolution. In Computer Science and Technology
Research Survey, Košice, Slovakia, 2007.

[8] U. Kulesza, A. Garcia, F. Bleasby, and C. Lucena. Instantiating and customizing
aspect-oriented architectures using crosscutting feature models. In Workshop on
Early Aspects held with OOPSLA 2005, San Diego, USA, Nov. 2005. Available at
http://www.early-aspects.net/oopsla05ws/.

[9] N. Loughran, A. Rashid, W. Zhang, and S. Jarzabek. Supporting product line
evolution with framed aspects. In Workshop on Aspects, Componentsand Patterns
for Infrastructure Software (held with AOSD 2004, International Conference on
Aspect-Oriented Software Development), Lancaster, UK, Mar. 2004.

[10] N. Loughran, A. Sampaio, and A. Rashid. From requirements documents to
feature models for aspect oriented product line implementation. In MDD for
Software Product-lines: Fact or Fiction?, a workshop held with ACM/IEEE 8th
International Conference on Model Driven Engineering Languages and Systems,
MoDELS/UML 2005), Montego Bay, Jamaica, Oct. 2005.

[11] R. Menkyna. Dealing with interaction of aspect-oriented change realizations using
feature modeling. In M. Bieliková, editor, Proc. of 5th Student Research Confer-
ence in Informatics and Information Technologies , IIT.SRC 2009, Bratislava,
Slovakia, Apr. 2009.

[12] M. Monga, F. Beltagui, and L. Blair. Investigating feature interactions by exploit-
ing aspect oriented programming. Technical Report comp-002-2003, Lancaster
University, Lancaster, UK, 2003. Available at http://www.comp.lancs.ac.uk/

computing/aose/.
[13] M. Navarčik and I. Polášek. Object model notation. In Proc. of 8th International

Conference on Information Systems Implementation and Modelling, ISIM 2005,
Rožnov pod Radhoštěm, Czech Republic, 2005.

[14] V. Vranić. Towards multi-paradigm software development. Journal of Computing
and Information Technology (CIT), 10(2):133–147, 2002.

[15] V. Vranić. Reconciling feature modeling: A feature modeling metamodel. In
M. Weske and P. Liggsmeyer, editors, Proc. of 5th Annual International Confer-
ence on Object-Oriented and Internet-Based Technologies, Concepts, and Applica-
tions for a Networked World (Net.ObjectDays 2004), LNCS 3263, pages 122–137,
Erfurt, Germany, Sept. 2004. Springer.

[16] V. Vranić. Multi-paradigm design with feature modeling. Computer Science and
Information Systems Journal (ComSIS), 2(1):79–102, June 2005.

[17] V. Vranić, M. Bebjak, R. Menkyna, and P. Dolog. Developing applications with
aspect-oriented change realization. In Proc. of 3rd IFIP TC2 Central and East
European Conference on Software Engineering Techniques CEE-SET 2008, LNCS,
Brno, Czech Republic, Oct. 2008. Springer. Postproceedings, to appear.

[18] V. Vranić, R. Menkyna, M. Bebjak, and P. Dolog. Aspect-oriented change real-
izations and their interaction. Submitted to e-Informatica Software Engineering
Journal, CEE-SET 2008 special issue.

[19] V. Vranić and M. Š́ıpka. Binding time based concept instantiation in feature
modeling. In M. Morisio, editor, Proc. of 9th International Conference on Software
Reuse (ICSR 2006), LNCS 4039, pages 407–410, Turin, Italy, June 2006. Springer.

	Introduction
	Aspect-Oriented Paradigm
	Multi-Paradigm Software Development
	AspectJ Paradigm Model

	Changes as Aspects
	The Customization Problem
	Two-Level Aspect-Oriented Change Realization Model
	Change Interaction

	Applying Multi-Paradigm Design to Change Realization
	Generally Applicable Change Types as Paradigms
	Transformational Analysis of Changes

	Related Work
	Conclusions
	Bibliography
	Towards Multi-Paradigm Software Development
	AspectJ Paradigm Model: A Basis for Multi-Paradigm Design for AspectJ
	Multi-Paradigm Design with Feature Modeling
	Reconciling Feature Modeling: A Feature Modeling Metamodel
	Binding Time Based Concept Instantiation in Feature Modeling
	Representing Change by Aspect
	Evolution of Web Applications with Aspect-Oriented Design Patterns
	Developing Applications with Aspect-Oriented Change Realization
	Aspect-Oriented Change Realizations and Their Interaction
	Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling

