Composition and Categorization of Aspect-Oriented
Design Patterns

Radoslav Menkyna
Softec, s.r.o.
Kutuzovova 23, 83103 Bratislava 3, Slovakia
radoslav.menkyna@softec.sk

Abstract—This paper presents a composition of four particular
aspect-oriented design patterns: Policy, Cuckoo’s Egg, Border
Control and Exception Introduction. The composition is studied
in the context of the class deprecation problem in team develop-
ment. Each of these four patterns is a representative of one of
the three structural categories of aspect-oriented design patterns:
pointcut, advice, and inter-type declaration pattern category. Al-
though aspect-oriented patterns mostly can be composed with one
another without having to modify the code of the pattern that has
been applied first, this is not always so. Based on the structural
categorization of aspect-oriented design patterns, a regularity
in their sequential composition is uncovered and discussed in
general and within a detailed example of Policy, Cuckoo’s Egg,
Border Control, and Exception Introduction composition and
further examples of aspect-oriented design pattern compositions.

I. INTRODUCTION

Although the notion of pattern in its original sense pro-
posed by Alexander was indivisible of the notion of pattern
language [1], software patterns are often perceived as more
or less independently applied sublimated pieces of develop-
ment experience [4]. Having it this way, we tend first to
discover new patterns and then think of the opportunities of
their composition rather then to aim at discovery of integral
pattern languages that inherently comprise the ties between the
patterns. This is so with object-oriented design patterns, and
we may see this also applies to aspect-oriented design patterns
that are just being discovered both on individual basis [10],
[14], [16] and as pattern languages [7].

There are already a significant number of aspect-oriented
design patterns discovered. Here we will go through a compo-
sition of four particular aspect-oriented design patterns towards
some general assumptions on aspect-oriented design pattern
composition based on their structure.

Aspect-oriented design patterns discussed here are related
to the mainstream aspect-oriented approach established by
PARC [9] whose main programming language representative
is Aspect]. Numerous other aspect-oriented languages, such
as AspectC++, AspectS, or Weave.NET, follow this paradigm.
Most of existing frameworks that provide aspect-oriented
programming support, such as Spring, JBoss, or Seasor, also
follow the PARC approach.

The rest of the article is organized as follows. First, Sec-
tion II states the problem of class deprecation in team develop-

Valentino Vrani¢ and Ivan PolaSek
Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology
Ilkovicova 3, 84216 Bratislava 4, Slovakia
vranic @fiit.stuba.sk, ipo@gratex.com

ment which we will use to illustrate the pattern composition.
Section IIT describes the structure of the four specific aspect-
oriented design patterns that can help in solving the class
deprecation problem, and introduces a structural categorization
of aspect-oriented design patterns. Section IV shows how
these patterns can be actually composed to solve the class
deprecation problem. Based on the structural categorization
of aspect-oriented design, Section V devises a regularity in
the sequential composition of aspect-oriented design patterns
and discusses it. Section VI presents an overview of related
work. Finally, in Section VII, we make some conclusions and
indicate directions of further work.

II. OVERCOMING THE CLASS DEPRECATION PROBLEM IN
TEAM DEVELOPMENT

This section will define the class deprecation problem on
which we will study application and composition of patterns.
Team development of software requires developers to obey
some common rules and policies. A frequent example is the
introduction of a new version of a class is to the framework
used by application programmers. Sometimes, the old version
of a class cannot be simply replaced with the new one at once.

All developers should be kept informed of the new class
version and warned—or sometimes even forced—to use it.
Just instructing developers to do so simply doesn’t work.
Developers often forget to obey policies or they overlook the
information about a new class version. A better way is to
incorporate this information into the build process. Compiler
messages—warnings and errors—that notify developers of
broken policies and rules have a better chance not to be
overlooked.

In cases when the policy must be strictly fulfilled, the more
radical steps may have to be taken. By introducing a new
version of a class into the framework, its former version
becomes deprecated. It would be useful not just to inform
developers they are not allowed to use the old version any
more, but also to automatically detect all attempts to instantiate
the old class and swap them with the new class instantiation.

ITI. STRUCTURE OF ASPECT-ORIENTED DESIGN PATTERNS

The main construct in PARC aspect-oriented programming
is an aspect. It consists of pointcuts, which specify the join

points the aspect affects, advices that implement the affecting
functionality, and inter-type declarations that statically affect
types by introducing new fields and methods into them,
inheritance relationship, warnings, compile errors, softened
exceptions, and annotations. Here, we will take a closer look
at four aspect-oriented design patterns whose composition we
will study in further sections.

A. Border Control

The Border Control pattern [14] is used to define regions
in the application. These regions are intended for use by other
aspects to ensure they are applied only to appropriate places.
In case of system changes, only declarations of regions in the
Border Control aspect should be changed and the aspects using
these declarations will be automatically redirected. As shown
in Fig. 1, the Border Control pattern can be implemented by
a single aspect consisting only of the pointcuts that define
the regions. Regions may represent types or methods. For
this, within() and withincode() primitive pointcuts are used,
respectively.

public aspect MyRegions {
public pointcut myTypes1(): within(mypackagel.+);
public pointcut myTypes2(): within(mypackage2.+);
public pointcut myTypes(): myTypes1() || myTypes2();

Figure 1. The Border Control pattern.

B. Cuckoo’s Egg

The Cuckoo’s Egg pattern [14] enables to put another object
instead of the one that the creator expected to receive, much
similar to what a cuckoo does with its eggs. The pattern is
implemented by an aspect that consists of a pointcut that
captures constructor calls of the object to be swapped and
an advice that actually does the swapping by simply creating
and returning another object.

Figure 2 shows an example code of the Cuckoo’s Egg
pattern. Several types can be covered by swapping (the code in
the figure shows two classes, MyClassl and MyClass2) with
constructor calls restricted with respect to where they occur.
Note that the swapping object must be a subtype of the original
object class; otherwise, we will get a class cast exception on
the first attempt to instantiate the original class.

C. Policy

The main idea of the Policy pattern [14] is to define some
policy or rules within the application. A breaking of such a
rule or policy involves issuing a compiler warning or error.
This is very useful in projects that involve many developers.
The Policy pattern can be implemented by a single or several
aspects. A single aspect approach is used to define project-
wide rules or policies. If local rules or exceptions have to be
addressed as well, project-wide rules and policies should be
defined in an abstract aspect with an abstract pointcut. This

public aspect MyClassSwapper {
public pointcut myConstructors():
callMyClass1.new()) || callMyClass2.new());

Object around(): myConstructors() {
return new AnotherClass();
}

}

Figure 2. The Cuckoo’s Egg pattern.

pointcut is overridden in concrete aspects that inherit from
the abstract aspect in order to implement local policies and
rules [14].

public abstract aspect GeneralPolicy {
protected abstract pointcut warnAbout();

declare warning: warnAbout(): ”"Warning...”;

}

public aspect MyAppPolicy extends GeneralPolicy {
protected pointcut warnAbout():
call(x *.myMethod(..)) || call(x *.myMethod2());

Figure 3. The Policy pattern.

D. Exception Introduction

If an advice calls a method that draws a checked exception,
it is forced to cope with it. Sometimes, it is not possible to
handle the exception in the advice, so it has to be drawn to a
higher context. However, in Aspect] an advice cannot declare
throwing a checked exception unless the advised joint point
declared this exception, which is unlikely since base concerns
are mostly not expected to be adapted to their aspects. The
Exception Introduction pattern [10] shown in Fig. 4 solves this
problem by catching a checked exception and wrapping it into
a new concern-specific runtime exceptions. Such exceptions
can be then thrown to a higher context where they can be
unwrapped and the real cause of exception revealed [10].

E. Aspect-Oriented Design Pattern Categories

Each aspect-oriented design pattern comprises at least one
aspect. By studying available aspect-oriented design patterns,
one may notice that in the aspects of each pattern one of
the three main parts of an aspect, i.e. a pointcut, advice, or
inter-type declarations, prevails in achieving the purpose of the
pattern. According to the element that dominates the structure
of the aspects that implement them, aspect-oriented design
patterns can be divided into three categories: pointcut patterns,
advice patterns, and inter-type declaration patterns. Each of the
patterns introduced so far is a representative of one of these
categories. In the following text, we present further examples
of patterns and categorize them.

public abstract aspect ConcernAspect {
abstract pointcut operations();

before(): operations() {

try {
concernLogic();
} catch (ConcernCheckedException ex) {
throw new ConcernRuntimeException(ex);
}

}

void concernLogic() throws ConcernCheckedException {

}

Figure 4. The Exception Introduction pattern (adapted from [10]).

Pointcut Patterns: The Border Control pattern described in
Section III-A is an example of a pointcut pattern. It actually
contains no other elements than pointcuts. Other examples
of pointcut patterns include Wormhole and Participant. The
Wormbhole pattern [10] employs pointcuts to connect a method
callee with a caller in such a way that they can share their
context information. It creates a direct connection between two
levels in the call stack. This is very helpful when additional
context information has to be added [10]. Without this pattern
we would have to add extra parameters to each method in the
control flow or to use a global storage.

Usually, aspects introduce some behavior to base concerns
in such a way that the base concern is not aware of the
aspect. In the Participant pattern [10], the roles swap: a class
decides whether it will allow an aspect to affect it by declaring
an appropriate pointcut. This may be useful when it is not
possible to capture classes and methods that have to be affected
by an aspect with the pointcut language in a reasonable way.
For example, if an advice should affect only methods with
some properties not reflected in their names, it is not possible
to capture them by a pointcut other by literally listing them.

Advice Patterns: The Cuckoo’s Egg pattern described in
Section III-B is an example of an advice pattern. Other
examples of advice patterns include Worker Object Creation
and Exception Introduction. The Worker Object Creation pat-
tern [10]—also known as Proceed Object [16]—captures the
original method execution into a runnable object. This way
it may be manipulated further. A typical use is to post its
execution to another thread. This is very useful with Java
Swing framework where all calls that update the GUI must be
performed inside the event dispatch thread. Another example
is improving responsiveness of GUI applications [10]. This
pattern can also be used to advise the call to proceed(). This
is desired when an aspect contains an around advice whose
execution should be, for example, traced or logged [16].

Inter-Type Declaration Patterns: The Policy pattern de-
scribed in Section III-C is an example of an inter-type declara-
tion pattern. Another example of an inter-type declaration pat-
tern is Default Interface Implementation [10] which employs

inter-type declarations to introduce fully implemented methods
into interfaces.! The classes that implement these interfaces
inherit the method implementations and do not have to provide
their implementation if the default one is satisfactory.

IV. COMPOSING ASPECT-ORIENTED DESIGN PATTERNS

This section will show how Policy, Border Control,
Cuckoo’s Egg, and Exception Introduction can be composed
to solve the class deprecation problem presented in Section I1.2
Suppose OldClass is deprecated. In our first approach to this
problem we assume it is sufficient to issue a warning in case of
deprecated class named instantiation. Developers are supposed
to manually change to NewClass. Figure 5 shows how the
Policy pattern can be applied to achieve this. The aspect
Warning will detect every call to the OldClass constructor and
show the provided warning text during compilation. Note that
despite Aspect] 5 supports declaring annotations, so a standard
@deprecated annotation declaration could have been intro-
duced instead of a general warning with a custom message,
this approach was not used because annotations declarations
are made on type patterns, not pointcuts, which significantly
limits the flexibility.

public aspect Warning {
declare warning: call(*.0ldClass.new()):
”Class OldClass deprecated.”;

Figure 5. Capturing instantiations of a deprecated class with the Policy

pattern.

Subsequently, we realize that we have to allow the use of
OldClass within the testing package and third party code. In
this situation, the Border Control pattern (Section III-A) can
be applied. This pattern defines regions in the application that
can be used by other design patterns or aspects. Figure 6
presents an application of the Border Control design pattern to
our problem. The aspect defines three public pointcuts which
represent regions in our application. Afterwards, we will have
to adapt the OldClassDeprecation aspect as shown in Fig. 7.
By this, we actually composed a Policy with an existing Border
Control.

Border Control is a pointcut pattern (Section III-A),
while Policy is an inter-type declaration design pattern (Sec-
tion III-C). As we saw in the example, composing a pointcut
pattern with an existing inter-type declaration pattern requires
changes in the existing inter-type declaration pattern. If we
knew from the beginning there will be exemptions from
banning the use of OldClass, it would be possible to apply
the Border Control pattern first and the Policy pattern could
be then added without having to change the existing code. This
suggests that composing an inter-type declaration pattern with

Laddad actually introduces Default Interface Implementation as an Aspect]
idiom [10].

2Some preliminary results regarding the possibilities of composing aspect-
oriented design patterns have been published in our earlier work [13].

public aspect Regions {

public pointcut Testing():
within(com.myapplication.testing.+);

public pointcut MyApplication():
within(com.myapplication.+);

public pointcut ThirdParty():
within(com.myapplication.thirdpartylibrary.+);

public pointcut ClassSwitcher():
within(com.myapplication.ClassSwitcher);

Figure 6. The Border Control pattern used to partition code into regions.

public aspect Warning {
protected pointcut allowedUse():
Regions.ThirdParty() || Regions.Testing();

declare warning: call(Display.new()) && !allowedUse():
”Class OldClass deprecated.”;

Figure 7. Composing Policy with Border Control.

an existing pointcut pattern can be performed without having
to change the existing pattern.

Assume now we would like to make a change from OldClass
to NewClass automatic while still keeping developers informed
of attempts to instantiate OldClass outside of the testing
package and third party code. This may be achieved with the
Cuckoo’s Egg pattern (Section III-B). This pattern captures
calls to a constructor of a particular class and employs an
around advice to replace each such call with a call to a
constructor of another class.

Figure 8 shows how Cuckoo’s Egg may be applied to
replace OldClass constructions with NewClass construction. A
Cuckoo’s Egg pattern uses the pointcuts defined in an existing
Border Control pattern. Cuckoo’s Egg is an advice design
pattern and it was composed with Border Control without
having to change it. This suggests that composing an advice
pattern with an existing pointcut pattern can be made without
changes in the existing pointcut pattern.

public aspect ClassSwitcher {
public pointcut oldClassConstructor():
call(x.0ldClass.new()) &&
'Regions.ThirdParty() && !Regions.Testing();

Object around(): oldClassConstructor() {
return new MyApplication.NewClass();

}
}

Figure 8. Composing Cuckoo’s Egg with Border Control.

Recall from Section III-B that NewClass must be a subtype
of OldClass; otherwise, we will get a class cast exception on
the first attempt to instantiate OldClass. Moreover, we need

NewClass to be a subtype of OldClass to make it compatible
with the existing references to OldClass to which it would be
assigned. This can be achieved either by defining inheritance
directly in NewClass or by using a declare parents inter-
type declaration (presumably, though not necessarily, in the
OldClassDeprecation aspect itself).

Assume there is a need to log the swapping of the depre-
cated class with the new one. This would seem a simple task.
A logging code could be simply added to the CuckooEgg’s
advice. When there is a need to switch from deprecated class
to new version this advice would be executed. But there is
a problem. When the logging piece of code is added to the
advice, assuming the logging is performed into a text file, it is
needed to deal with an IOException that could occur during
the execution of this code.

As mentioned in Section III-D, an aspect cannot declare
throwing of an exception that was not declared by the advised
join point. Another possibility is to throw a runtime exception.
In this case the Exception Introduction pattern can be used.
This pattern suggests to use a concern-specific runtime excep-
tion, which extends a runtime exception. By this, it becomes
easier to distinguish between exceptions thrown by various
aspects. Also, if a runtime exception has been used there
would be no difference between exceptions thrown by various
concerns [10]. Figure 9 presents an example implementation
of a concern-specific exception and a use of the Exception
Introduction pattern adapted to our problem.

public class SwitchLoggingException extends RuntimeException {
public SwitchLoggingException(Throwable cause) {
super(cause);

}

public aspect SwitchLogging {
before(): adviceexecution() && Regions.ClassSwitcher() {

try {
logSwapEvent()

} catch(IOException e) {
throw new SwitchLoggingException(e);

}

Figure 9. Composing Exception Introduction with Cuckoo’s Egg and Border
Control.

Exception Introduction is considered to be an Advice pattern
and it was added to the Cockoo’s Egg pattern without having
to make any change in it. As can be seen in Fig. 9, it can
also reuse definitions from the already applied Border Control
pattern.

V. REGULARITY IN ASPECT-ORIENTED DESIGN PATTERN
COMPOSITION

As we will see in this section, the composition of aspect-
oriented design patterns is substantially affected by their
structural category (defined in Section III-E). Under a compo-
sition of two patterns we understand a subsequent interrelated

application of two patterns to a problem at hand. In other
words, one of the patterns is applied to the problem, and
afterwards another one is applied in connection to the artifacts
of the former pattern.

Thanks to the crosscutting nature of aspects, most aspect-
oriented design patterns can be composed with other patterns
without the need to modify the already applied patterns. An
example of a pattern that can be composed with almost any
other pattern is Exception Introduction, which represents an
advice pattern. Exception Introduction can simply be added to
the program without having to make any change to already
applied patterns.

Another pattern that can be used with other, already applied
patterns without having to make any changes to them is Policy,
which is an inter-type declaration pattern. This pattern defines
a pointcut that captures the join points in a base concern or
another pattern whose occurrence represents breaking of some
policy. If such a joint point occurs, a compile error or warning
is issued.

It is also possible to compose a pointcut pattern with
another pointcut pattern without having to change it. In such
a composition, the new pattern will actually use the pointcuts
of the already applied pointcut pattern. A simple example
of this would be composing a Wormhole pattern [10] with
an already applied Border Control pattern. This way, the
Wormhole pattern would be able to use regions defined by
the Border Control pattern in its own pointcuts.

However, composing a pointcut pattern with an already
applied advice or inter-type declaration pattern usually requires
a change of this pattern. An example of composing a pointcut
pattern with an already applied inter-type declaration pattern
has been presented in Section IV where we had the Policy
pattern applied and composed the Border Control pattern with
it. Recall also from the same section that if we go the other
way around, i.e. if we compose an inter-type declaration
pattern (e.g., Policy) or advice pattern (e.g., Cuckoo’s Egg)
with an already applied pointcut pattern (e.g., Border Control),
this can be done without having to change them.

Assume the pointcuts of a particular non-pointcut pattern
in a developing application can no longer be defined in a
simple way because it is not certain whether the pattern should
be applied to new classes. Such a pattern can be composed
with a Participant pattern, which is a pointcut pattern, which
would enable individual classes to declare participation in
this pattern application. However, the implementation of a
Participant pattern requires the already applied pattern code
to be altered.

Figure 10 presents schematically the compositions of the
aspect-oriented design patterns we discussed. Pattern category
is indicated graphically: oval nodes represent advice patterns,
rectangular nodes are pointcut patterns, and rhomboid nodes
stand for inter-type declaration patterns. Where any pattern of
the given category is applicable, its name is shown as asterisk.
The edge direction corresponds to the direction of pattern
application: an edge originates in the pattern being applied
and ends in the pattern to which this pattern is applied to

achieve pattern composition. Dashed edges mean no change
of the pattern at the edge end is required, while solid lines
mean the change is necessary.

In Fig. 10 we see that a composition of a pointcut pattern
with an existing pointcut pattern requires no change to the ex-
isting pattern: we simply define further pointcuts. Composing
a pointcut pattern with an already applied advice or inter-type
declaration pattern requires their change since the composition
assumes the use of pointcuts defined in the pointcut pattern
by the patterns of the latter two categories. This is caused
by the nature of pointcut patterns: they define pointcuts to be
used by other aspects in the application. On the other hand,
a composition of an advice pattern or inter-type declaration
pattern with another patterns of any category can be in most
cases achieved without having to change the already applied
design pattern.

VI. RELATED WORK

Hanenberg et al. present a set of Aspect] idioms® and a
scheme for their interrelated application [7]. Similarly to the
well-known scheme of GoF patterns [6], it is represented by a
graph in which patterns that can be composed are connected
by directed edges. Each edge is annotated with the role of the
pattern in which it originates plays in the pattern in which the
edge terminates. However, no attempt is made to categorize
the idioms.

There is a certain analogy between our categories and
those proposed by Gamma et al. for object-oriented design
patterns [6]. Advice patterns recall behavioral patterns since
they affect behavior. Pointcut patterns deal with how aspects
are composed with classes, objects, and other aspects, which
is a paraphrase of the description of structural patterns. It
has to be admitted that inter-type declarations correspond to
creational patterns to a lesser extent, but we may see them as
patterns of creating new elements and relationships.

Aspect-oriented design patterns represent a particular way
of crosscutting concern realization. There have been attempts
to make a classification of crosscutting concerns according to
their invasiveness [15] or their purpose [11].

Cacho et al. studied aspect-oriented implementation of
object-oriented design patterns and identified four categories
of their composition: invocation-based, class-level interlacing,
method-level interlacing, and overlapping [3]. This categoriza-
tion can be applied to intrinsic aspect-oriented design pattern
composition, too, in addition to the categorization of aspect-
oriented design patterns as such proposed here.

Class deprecation, used as our case study, is applicable as an
aspect-oriented change realization [2]. Captured in an aspect, a
change becomes pluggable and reapplicable. The reapplication
of a change implemented as an aspect to a new product version
in its simplest form takes only including the aspect in a build,
which dramatically improves product customization [5].

3 Although denoted as idioms, they are applicable to PARC style aspect-
oriented languages as much as the patterns presented in this paper.

Border Control

<> o

Participant

\
._Exception Introduction

Legend

Pointcut pattern

Inter-Type Declaration Advice pattern
Pattern

_ Do changes,

with changeg

Figure 10. Composition of aspect-oriented design patterns and changes required by it.

VII. CONCLUSIONS AND FURTHER WORK

In this paper, we proposed a categorization of aspect-
oriented design patterns according to their structure into three
categories: pointcut, advice, and inter-type declaration pat-
terns. This categorization is particularly useful in determining
whether a composition of an aspect-oriented design pattern
with another, already applied pattern requires a change in this
pattern.

We studied the composition of aspect-oriented design pat-
terns of different categories with respect to the stability of the
already applied patterns in detail on the composition of Policy,
Cuckoo’s Egg, Border Control, and Exception Introduction
applied to the class deprecation problem in team development.

Our further work involves exploring the possibilities of
employing aspect-oriented design patterns and their compo-
sitions in capturing changes in a pluggable and reapplicable
way. Class deprecation treated in this paper may be seen as
one such change. It would also be interesting to explore the
possibilities of the guided design pattern instantiation [12]
or feature modeling based design pattern instantiation [17]
with respect to aspect-oriented patterns and making use of
the composition constraints based on aspect-oriented pattern
categories in such a process. We will also seek further parallels
between categorization of GoF object-oriented design patterns
and our categorization of aspect-oriented design patterns by
exploring aspect-oriented implementations of GoF object-
oriented design patterns [8].

ACKNOWLEDGEMENTS

The work was supported by the Scientific Grant Agency of
Slovak Republic (VEGA) grant No. VG 1/0508/09.

REFERENCES

[1] Christopher Alexander. The Timeless Way of Building. Oxford University
Press, 1979.

Michal Bebjak, Valentino Vrani¢, and Peter Dolog. Evolution of web
applications with aspect-oriented design patterns. In Marco Brambilla
and Emilia Mendes, editors, Proc. of ICWE 2007 Workshops, 2nd
International Workshop on Adaptation and Evolution in Web Systems
Engineering, AEWSE 2007, in conjunction with 7th International Con-
ference on Web Engineering, ICWE 2007, pages 80-86, Como, Italy,
July 2007.

2

[3] Nelio Cacho, Claudio Sant’Anna, Eduardo Figueiredo, Alessandro Gar-
cia, Thais Batista, and Carlos Lucena. Composing design patterns:
A scalability study of aspect-oriented programming. In Proc. of 5th
international Conference on Aspect-Oriented Software Development,
AOSD 2006, pages 109-121, Bonn, Germany, 2006. ACM.

[4] James O. Coplien. The culture of patterns. Computer Science and
Information Systems (ComSIS), 1(2), November 2004.

[5] Peter Dolog, Valentino Vrani¢, and Mdria Bielikovd. Representing
change by aspect. ACM SIGPLAN Notices, 36(12):77-83, December
2001.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[7] Stefan Hanenberg, Arno Schmidmeier, and Rainer Unland. Aspect]
idioms for aspect-oriented software construction. In Proc. of Sth
European Conf. on Pattern Languages of Programs, EuroPLoP 2003,
Irsee, Germany, June 2003.

[8] Jan Hannemann and Gregor Kiczales. Design pattern implementation in
Java and Aspect]. In Proc. of the 17th Conf. on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), November
2002.

[9] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Christina Vidiera Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-

oriented programming. In Mehmet Aksit and Satoshi Matsuoka, editors,

Proc. of 11th European Conference on Object-Oriented Programming

(ECOOP’97), LNCS 1241, Jyviskyld, Finland, June 1997. Springer.

Ramnivas Laddad. Aspect] in Action: Practical Aspect-Oriented Pro-

gramming. Manning, 2003.

Marius Marin, Leon Moonen, and Arie van Deursen. Design pattern

implementation in Java and Aspect]. In Proc. of 21st IEEE International

Conference on Software Maintenance, ICSM 2005, pages 673-676,

Budapest, Hungary, September 2005.

Vladimir Marko. Template based, designer driven design pattern instan-

tiation support. In Proc. of 8th East European Conf. on Advances in

Databases and Information Systems, ADBIS 2004, Budapest, Hungary,

September 2004.

Radoslav Menkyna. Towards combining aspect-oriented design patterns.

In Maria Bielikova, editor, Proc. Informatics and Information Technolo-

gies Student Research Conference, IIT.SRC 2007, pages 1-8, Bratislava,

Slovakia, 2007.

Russell Miles. AspectJ Cookbook. O’Reilly, 2004.

Freddy Munoz, Benoit Baudry, and Olivier Barais. A classification of

invasive patterns in AOP. Technical Report INRIA Research report

00266555, (IRISA/INRIA) Institut National de Recherche en Infor-

matique et Automatique, INRIA Bretagne Atlantique, Rennes, France,

March 2008. http://freddy.cellcore.org/files/pdf/reportO8a.pdf.

Arno Schmidmeier. Patterns and an antiidiom for aspect oriented

programming. In Proc. of 9th European Conf. on Pattern Languages

of Programs, EuroPLoP 2004, Irsee, Germany, July 2004.

Lubomir Majtds. Tool based support of the pattern instance creation.

e-Informatica Software Engineering Journal, 3(1):89-102, 2009.

(10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

