i -
o i
S o o b i
] -
g P ——
= ey e e e i e
=T == e i e b
Ear=
i
i e e
i e i bt
i e e i e e e i s
- |ty
e,
— Pk
o [
—_— e e i e 5
P P—
e ——,—, R

sl i

Summary

Dok A, ekt s i cht
< TheCard s e e St e e T

e

el o kol e s il

B L e

err——
[——
My

[P—————
i b bt e i el b

Tt iy 4w ey b b nged.
B S ey

Assessing the DCI
Approach to Preserving

Use Cases in Code: Qi4)
and Beyond

Jozef Zatko and Valentino Vrani¢

Institute of Informatics and Software

Engineering

ST U SLOVAK UNIVERSITY OF
FIIT

TECHNOLOGY IN BRATISLAVA
I I FACULTY OF INFORMATICS
AND INFORMATION TECHNOLOGIES

vranic@stuba.sk
fiit.sk/~vranic

zatko7o71@gmail.com

INES 2015

Bratislava, September 3, 2015

What is a use case and where is its place
in the overall software system design?

Make a Car/Equipment Insurance Policy
Basic Flow

1. The insurer selects to make an insurance policy for a car or car
equipment.

2. The system prompts the insurer to prepare the insurance contract
by filling in the necessary data.

3. The insurer fills in the information and submits it.

4. The system creates the insurance contract and asks for
confirmation.

5. The insurer confirms the contract

6. The use case ends.

Alternative Flow: Data Validation Error
If the data entered in step 4 of the basic flow are not valid:
1. The system displays an error message indicating the nature of

error.
2. The use case continues with step 3.

@Mixins(InsuranceContext.Mixin.class)
public interface InsuranceContext extends TransientComposite §

Make a Car/Equipment Insurance Policy Logger LOG = Logger.getLogger(InsuranceContext.class);
public void initContext(InsuranceContractRole insurance, InsurerRole insurer, InsurableRole insurable);

Basic Flow public void executeContext();
1. The insurer selects to make an insurance policy for a car or car abstract class Mixin implements InsuranceContext {
equipment.
2. The system prompts the insurer to prepare the insurance contract /* Roles */
by filling in the necessary data. InsuranceContractRole insurance;
3. The insurer fills in the information and submits it. InsurerRole insurer;
4. The system creates the insurance contract and asks for InsurableRole insurable;
confirmation.
5. The insurer confirms the contract /¥ Context initialization */
6. The use case ends. public void initContext(InsuranceContractRole insurance, InsurerRole insurer, InsurableRole insurable) {

LOG.info("InsureContext initialization");
Alternative Flow: Data Validation Error this.insurance = insurance;

this.insurer = insurer;
If the data entered in step 4 of the basic flow are not valid: this.insurable = insurable;

}

1. The system displays an error message indicating the nature of
error. /* Context execution */
2. The use case continues with step 3. public void executeContext() {

LOG.info("InsureContext execution");
this.insurer.preparelnsuranceContract(insurance);
this.insurance.setInsurer(insurer);
this.insurable.insure(insurance);
this.insurer.confirmInsuranceContract(insurance);

CALAMLOGLALLL VWi w i — ALLL YVA ‘!L,

this.insurable = insurable;

|* Context execution */

public void executeContext() {
LOG.info("InsureContext execution");
this.insurer.prepareInsuranceContract(insurance);
this.insurance.setInsurer(insurer);
this.insurable.insure(insurance);
this.insurer.confirmInsuranceContract(insurance);

\ Sella Car/ — Make a Car/

Equipment e Equipment
Insurance

Policy

\
\ Sell a Car/

oy Make a Car/
quipment — Equipment — Rent a Car
Insurance T

Policy

-
— Sell a Car/

, Make a Car/ Adapt the
Equipment . —
e Equipment — Rent a Car sesmmmms Restock Plan e
Insurance = R —

Policy

> A use case as a bead of behavior on the string of the
basic functionality and underlying data

What the system is
Vs.
What the system does

> Use cases are a variable part of a software system: can
be added or removed, but also can change

> The underlying structure may change, too, but far less
frequently

> Use cases are comprehensible to all stakeholders,
including the users

> But once translated into code, a use case model quickly
becomes outdated

> A need to retain/preserve use cases in the code itself

> What can be retained out of a use case in code?

> Something is retained even unintentionally, but some approaches
aim explicitly at preserving use cases in code

> DCI: Data, Context and Interaction (Reenskaug and Coplien)

> Aspect-oriented software development with use cases (Jacobson
and Ng)

> Preserving use case flows in source code (Bystricky and Vranié)

> An opportunistic approach to retaining use cases in OO source
code (Greppel and Vranic)

Make a Car/Equipment
Insurance Policy

AN
: Context

— e —— —
, = .

-

" Make a Car/Equipment N

' N Insurance Policy -t
InsuranceContract Insurable
setinsurer() insure()

A AR
/ / \\

Make a Car/Equipment
Insurance Policy

—— — — —
— - b B

+~ Make a Car/Equipment N

Context

'\ N Insurance Policy _ - /
InsuranceContract Insurable
setinsurer() insure()
A AN
/ / N
I . ! . N \
; «bind» ; «bind» \«\blnd»
/ / \
/ / \
'l i \
Insurance Car CarEquipment
passengersinsurange manufacturerName name
emergencyVehiclelnsurange modelName price

cubature description
isNew
price
year
mileage
color D a.ta
usage
safetyAppliance
note

Interaction

— — — — —
" _--

= Make a Car/Equipment TN~
' —
-7 Insurance Policy S o
-
7 .
o e e e e e e e e e e e e e e e e 2 D
- InsuranceContract - Insurable
”
S
~ o
~ . -
“--._H .—v”

— —
‘-
T — — o— o— — —

Interaction

Make a Car/Equipment
Insurance Policy

| Context e m e ———
I - -
=TT T T T T - - 1 -
+* “Make a CarEqupment s -~ Make a Can‘Eqmpment S~
~_ InsurancePolicy .’/ - Insurance Policy ~ o
-— - “
.
/ “\
InsuranceContract Insurable / 4 N\
setlnsurer) insure() !
) = I
/ / . \ : InsuranceContract : Insurable
[wbind» Javind» " bind» \
r ! hY \ /
J J Ay \ Vi
Insurance Car CarEquipment N / 7
passengersinsurange manufacturerN ame name ~ ~ ~
emergencyVehiclelnsurange modelName price ~ - -
cubature description ™ - -
isNew =~ - -
price ~ - -
year el I — -
mileage
color Da.ta.
usage
safetyAppliance
note
—— - . =~ -~
_ - Make a Car/Equipment - o
. —
-~ Insurance Policy S o
P ~
L e ____>
V4
/
/
/
|
\ - Insurance : Car
\
AY
\
N
AN P
- -~
e -
~ . _-
-
-~ - - - —
- -

>The main point in DCI: use cases are expressed in terms of the
roles the (data) objects play in them

> DCI needs a supporting mechanism for role binding
> The Qi4] framework (now Apache Zest) provides one for Java
>What we did:

- Implemented a small car dealer system in a DCI way using Qi4]

- Made some conceptual and implementation specific
observations with respect to the complexity of the realization

Conceptual Observations

> Roles can reduce inheritance use and decrease maintainability
effort

> Generic roles can be played by objects of inappropriate classes

In Qi4], a direct access to the domain model from the generic
context roles is lost

public interface InsuranceContractRole extends TransientComposite {

/* The interface represents the data of the objects playing current role */
public interface InsuranceData {

/* The attributes from the data object */

@Optional Property<Date> createDate();

@Optional Property<Date> signDate();

@Optional Property<InsurerRole> seller();

@Optional Property<Boolean> isApproved)();

}

abstract class Mixin implements InsuranceContractRole {
@This
InsuranceData data;
public void setCreateDate(Date d) { data.createDate().set(d); }
public void setSignDate(Date d) { data.createDate().set(d); }
public void setInsurer(InsurerRole i) { data.seller().set(1); }
public void setApproveFlag(Boolean b) { data.isApproved().set(b); }

In Qi4], entities define their casting rules

public interface SellerEntity extends EntityComposite,
//Data
SellerData,
//Roles
ApproverRole,
ContractorRole,
InsurerRole

i}

In Qi4], intertaces have to be used instead of classes as templates for
objects

public interface CarData {

public String getName();

abstract class Mixin implements CarData {
/™ Returns appended car name (manufacturer + model) */
public String getName() {

StringBufter sb = new StringBuffer(");
sb.append(this.manufacturerName().get());
sb.append("");
sb.append(this.modelName().get());
return sb.toString().trim();

In Qi4], there is no access management of the data class attributes
and methods

public interface CarData {
// All public
@Optional Property<ContractData> contract();
@Optional Property<String> manufacturerName();
@Optional Property<String> modelName();
@Optional Property<String> color();
@Optional Property<Boolean> isNew();
@Optional Property<Double> price();

@Optional Property<Integer> year();

In Qi4], there is no direct support of polymorphism

@Mixins(InsurableRole.Mixin.class)
public interface InsurableRole extends TransientComposite {
public void insure(InsuranceContractRole insurance);
/* The interface represents the data of the objects playing current role */
interface Data {
@Optional Property<Double> price();
@Optional Property<Boolean> isNew();
}
abstract class Mixin implements InsurableRole §
@This
Data data;
public void insure(InsuranceContractRole insurance) {
if (data.isNew()!=null) {
insurance.setAnnualPayment(data.price().get());
}
else {
insurance.setAnnualPayment(new Double(0.0));

Summary

>The DCI approach decouples use cases as a (more) variable part of a software system
from the underlying architecture (the system foundations)

> The Qi4] framework (now Apache Zest) enables to use DCI in Java
> A study of implementing DCI in Qi4] has been performed (a small car dealer system)

> Some conceptual and implementation specific observations with respect to the
complexity of the realization have been reported here

vranic@stuba.sk
fiit.sk/~vranic

