
Establishing a Pattern Language for the Organization of
Distributed Software Development

Shakirullah Waseeb
Waheedullah Sulaiman Khail

Valentino Vranić
shakir.waseeb@gmail.com
wsulimankhail@gmail.com

vranic@stuba.sk
Institute of Informatics, Information Systems and Software Engineering, Faculty of Informatics and Information

Technologies, Slovak University of Technology in Bratislava
Slovakia

ABSTRACT
Despite considerable efforts to address organizational problems
of distributed software development, currently available solutions
do not seem to be sufficient. They are fragmented into individual
patterns either not forming coherent pattern languages to address
organizational distributed software development or being incor-
porated into extensive pattern languages for organizing software
development in general. Another problem is their disconnection
from the current technological support for collaboration. We at-
tempt at overcoming these problems by providing a set of six or-
ganizational patterns for distributed software development. We
relate them to each other and to other known patterns and prac-
tices practically establishing a pattern language for the organization
of distributed software development. The overall idea of how this
pattern language can be used is presented using a pattern story of
a real company.

CCS CONCEPTS
• Software and its engineering→ Patterns.

KEYWORDS
organizational patterns, distributed software development, distributed
teams, offshore/multi-site development

ACM Reference Format:
Shakirullah Waseeb, Waheedullah Sulaiman Khail, and Valentino Vranić.
2021. Establishing a Pattern Language for the Organization of Distributed
Software Development. In European Conference on Pattern Languages of
Programs (EuroPLoP’21), July 7–11, 2021, Graz, Austria. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3489449.3489979

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP’21, July 7–11, 2021, Graz, Austria
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8997-6/21/07. . . $15.00
https://doi.org/10.1145/3489449.3489979

1 INTRODUCTION
Software development is becoming significantly multi-site, globally
distributed, and multicultural [23, 25, 37]. The software industry is
seeking lower costs [29] access to competencies worldwide, reach-
ing proximity to market and mobility in resources [23, 37]. Software
development in distributed context imposes challenges in communi-
cation, control and coordination. Agile software development has a
significant impact on the software industry because of its potential
to improve communication and, therefore, reduce coordination and
control overhead in software projects. However, merging agile in
distributed software development raises communication problems
and increases the overhead of control and coordination. Practices
and documented experience from numerous conferences, such as
EuroPLoP, ICGSE, Euromicro, HICSS, COMPSAC, ASPEC, Agile, XP,
and EuroSPI, show the successful implementation of agile values
and principles in different distributed projects [38].

In this work, we document the best practices of distributed soft-
ware development we have observed in the form of patterns. As
Buschman et al. [5] point out, the cliché pattern definition, which
says that a pattern is a solution to a problem that arises within
a specific context, does not help much. Therefore, Buschman et
al. [5] are more specific, explaining that patterns provide working,
concrete, and adaptable solutions to problems that arise again and
again in certain situations during software development, from or-
ganizational to programming contexts. In this spirit, we provide
the following definition for a pattern of distributed software devel-
opment:

A pattern of distributed software development de-
scribes a recurring software development problem
that arises due to dispersion and presents a well-
proven generic approach for its solution.

The rest of the paper is structured as follows. Section 2 provides
an insight into the organizational problems of distributed software
development and what solutions to them are currently available.
Section 3 brings the story behind the patterns of distributed soft-
ware development we discovered and explains the format we used
to present them. Sections 4–9 presents these patterns and relate
them to each other and to other known patterns and practices
practically establishing a pattern language for the organization of
distributed software development. Section 10 draws conclusions
and outlines further work.

https://orcid.org/0000-0003-4790-5141
https://orcid.org/0000-0003-1494-2499
https://orcid.org/0000-0001-9044-4593
https://doi.org/10.1145/3489449.3489979
https://doi.org/10.1145/3489449.3489979

EuroPLoP’21, July 7–11, 2021, Graz, Austria S. Waseeb, W. Sulaiman Khail, and V. Vranić

2 DISTRIBUTED SOFTWARE DEVELOPMENT:
PROBLEMS AND SOLUTIONS

Software development team members might be co-located, remote,
and even distributed. Organizations are expanding their business
by making use of the opportunities in different locations. Having
all team members co-located is implausible due to the availability
of local experts, business opportunities at the local market, the way
of working, etc., causing a part of the team to be physically located
in different places.

Experts with proven expertise and domain knowledge are some-
times challenging to be available in the local market due to high
demand or sometimes not feasible financially. Reaching proximity
to the market requires companies to expand their business and
services into different locations. There might be a significantly high
moving cost to have a co-located team by shifting locations of peo-
ple. Remote working team members are more isolated rather than
being co-located.

With advancements in network and communication technolo-
gies, remote collaboration became more robust and perceived as
more natural. This brought significant opportunities for devel-
oping software in distributed settings. Distributed software de-
velopment teams enable organizations to access highly special-
ized expertise across geographic locations [30]. Software devel-
opment using distributed teams is being a subject of research for
decades [8, 20, 25, 29, 37, 38, 42].

Global software development, distributed development teams,
and offshoring are being the subject of research for more than a
decade [8, 20, 25, 29, 36–38, 42]. However, few attempts are be-
ing taken to document them in the pattern format. Berczuk [3]
presents a pattern language with four patterns named Loose Inter-
faces, Parser/Builder, Hierarchy of Factories, and Handlers, which
are intended for developing ground software for satellite telemetry
system with distributed teams. They focus on how to take orga-
nization into account in the architecture. Also, van Heesch [43]
reported two collaboration patterns named Experience Mix and Dis-
solve Geographical Boundaries) for software projects with offshore
contributions, which he observed in industrial practice and in the
literature.

Sutherland et al. [42] analyze and recommended best practices for
globally distributed agile teams. The two companies SirsiDynix and
StarSoft situation of distributed Scrums is given as the context. Five
complexity drivers (problem, solution, technical, compliance, and
team) and six top issues (communication, cultural, strategies, project
and process management, culture, technical, and security) are listed
as forces. Integrated Scrums are given as a solution, which is further
divided into: team formation, Scrum meetings, sprints, product
specifications, testing, configuration management, XP practices,
and measuring progress.

Coplien and Harrison [12] in their patterns book also cover the
problem of distributed teams by relevant patterns such as Organiza-
tion Follows Locations, Organization Follows Market, Stand Linking
Location, Standards Linking Location, or Face-to-Face Before Working
Remotely.

Sutherland et al. [41] in their Scrum Book provide a collection
of patterns that describe the elements of the Scrum framework.
This builds and expands on Coplien and Harrison’s organizational

patterns book [12]. For example, the Scrum Team pattern comprises
both the Collocated Team and a Cross-Functional Team patterns,
since a Scrum team operates as a small organization and is inde-
pendent in making decisions in responding to stakeholders and the
market [41].

It is not unusual to consider a pattern composition as a pat-
tern [40].

Hvatum [26] provides a collection of twenty individual patterns—
i.e., not connected into a pattern language—for distributed teams ad-
dressing human interaction with respect to personal, team, project,
and company/organization issues.

Cavrak et al. [10] identified a set of collaboration patterns by
analysing collaboration links within distributed students that can
assist teachers in understanding dynamics in distributed projects.

3 THE PATTERNS
In this paper, we documented six patterns (highlighted blue in
Figure 1) of distributed software development teams. We have ob-
served these patterns in practice during the last three years while
working in distributed software development teams. Iterative and
creative approaches [18, 19, 31, 45] were being taken into account
in writing and documenting these patterns. We used document
analysis, interviewing, and expert collaboration to collect the most
relevant and high-quality information, as is known in the litera-
ture [8, 20, 24, 25, 29, 30, 37, 38, 42].

3.1 The Story Behind the Patterns
Before presenting the patterns, let’s explore them in a real world
setting. We’ll tell you a story of a company called TFEService.Inc,
an international company with its headquarters in the USA. The
name is fake (for privacy reasons), but everything else is real. In
the story, we refer to the corresponding organizational patterns in
parentheses.

Reaching for the proximity to the market, offshore development,
and having high operational efficiency, the company has teams in
UAE, India, Afghanistan, Jordan, and other countries (Distributed
Development Team, Section 4). Following the opportunities in the
market, TFEService.Inc ran a project in Kabul, Afghanistan (Orga-
nization Follows Market [12]). The goal of the project was to design
and implement a system that collects and computes data at large
scale from different mobile network operators in Afghanistan.

The company already had development a task force having expe-
rience of developing such data stream pipe-lining and distributed
computing systems. Now, the company was required to build a
distributed development team by assigning existing staff and hiring
new staff to implement the project (Distributed Development Team,
Section 4).

Initially, the company established two additional roles at the
customer site: the project manager and assistant project manager
(Size the Organization [12]). They were responsible for the coordi-
nation between the customer, development team, business team,
and headquarters (Distributed Team Configuration, Section 5, and
Communication Bridge, Section 6). The headquarters also had a
regional coordinator for handling cultural and language communi-
cation (Communication Bridge, Section 6). In order to understand
the mobile network operator systems, the company hired (Phasing

Establishing a Pattern Language for the Organization of Distributed Software Development EuroPLoP’21, July 7–11, 2021, Graz, Austria

Figure 1: Organizational patterns of distributed software development.

It In [12]) telecommunication experts (Domain Expertise in Role [12])
who were working with mobile network operators and had suffi-
cient domain knowledge.

Architecture is at the core of every system. Therefore, the solu-
tion architect traveled from India to Kabul for to closely analyze the
situation (Face-to-Face Before Working Remotely [12]). He worked
together with his local team and customer on-site to understand
the requirements and develop a solid architectural solution. As the
development team had competencies in the technology stack, the
only issue was understanding the mobile network operator systems,
which was streamlined by experts from mobile network operators
in their local teams.

Once the software architecture was finalized, the development
team began its implementation. The solution architect followed the
Design by Contract approach [32], where the system is viewed as a
set of communicating components whose interaction is based on the
specification of the mutual obligations called contracts (Architecture
as Team Coordination Tool, Section 7). The teams were structured
and configured according to the system’s architecture (Conway’s
Law [12, 41]). For easier management and lower communication
overhead, the teams were partitioned based on technology and
architecture.

There were three teams: front-end (UX) developers, back-end
developers, and DevOps. The teams were configured in a two-two-
one fashion: two senior, two junior, and one leader (Distributed
Team Configuration, Section 5)). The Design by Contract approach
is observed to cut down the communication and system integration
overhead between teams (Reduce Dependencies, Section 8). Design
by Contract approach has helped assigning responsibilities of each
design and architect entity to different teams. This supported inde-
pendent development of different components while guaranteeing
smooth integration. This approach is a proven technical counter-
part of the bindings between parties involved in distributed and
concurrent development of a system [2].

The solution architect traveled several times to the customer’s
site to ensure the deliverable meets the requirements. The company
established a well structured corporate technological communi-
cation channels (Technology Mediated Communication, Section 9).
Skype andWhatsApp were used for instant, spontaneous, and other
ad hoc communication. E-mails were used for formal communica-
tion.

Microsoft Teams was used for meetings, discussions, file sharing,
notifications, etc. Through Microsoft Teams, the company success-
fully built trust between members by sharing their profile details
and giving them an equal chance to participate in virtual meetings.
Several technology means were used to enable team members to
communicate and better know each other.

3.2 Pattern Format
We expressed the patterns (Sections 4–9) in Coplien and Harrison’s
pattern format [12] with the conflict of the the most prominent
contradicting forces expressed in the but form proposed by Vranić
and Vranić [44]. This is the format:

<Pattern Name>

. . . – The context in which the pattern occurs.

✥✥✥ – The text in bold describes the actual problem
as a conflict of the two most prominent contradicting
forces.

Therefore – The solution.

✥✥✥ – An optional part with resulting consequences
upon applying the given pattern.

Description optional description to explain the pat-
tern.

EuroPLoP’21, July 7–11, 2021, Graz, Austria S. Waseeb, W. Sulaiman Khail, and V. Vranić

4 DISTRIBUTED DEVELOPMENT TEAM
. . . due to various reasons such as physical distance, business set-
tings, and business requirements, it is neither feasible nor efficient
to continue with co-located teams.

✥✥✥

Co-located teams are efficient and effective, but sometimes
barriers, such as the physical location of teammembers, pre-
vent the team from being co-located. In addition, sometimes
business opportunities or availability of experts step up part
of the team to be physically located in different places.

Developing complex software requires experts with proven expe-
rience and domain knowledge, but creating a team of experts with
such competencies is challenging. These challenges often include a
lack of experts in the local market or the local experts in very high
demand, which might not be feasible financially.

Co-located teams are very effective and productive, but limited
resources, tight budgets, and time constraints motivate the organi-
zations to have multi-site software development.

With a co-located team, we have synchronized but limited work-
ing hours. A distributed team can benefit from round-the-clock
development, but synchronizing the communication and collabora-
tion of different sites is difficult to manage.

Therefore:

Create a distributed teamwhere teammembers are physi-
cally in different locations but still work towards a common
goal.

Establish a distributed team with sites at different locations that
reach market proximity and access a large pool of experts. This
should be based on business opportunities, the availability of ex-
perts and resources, and the feasibility of round-the-clock develop-
ment in different time zones (see Figure 2).

Build sites where business opportunities are at maximum (see
the Organization Follows Market and Organization Follows Loca-
tion patterns [12]). Onboard high skilled and competence experts
(see these patterns: Distributed Team Configuration, Section 5, Do-
main Expertise In Roles [12], Size the Organization [12], and Few
Roles [12]). Choose locations where round-the-clock development
is feasible and prepare a proper plan for managing works depen-
dencies between teams in various time zones. Ensure that team
members collaboration is synchronized as much as possible by
bridging the communication gaps (see the Communication Bridge
pattern, Section 6).

✥✥✥

Communication is essential for team collaboration and coordi-
nation. Distributed development of software fraught consequences
due to the temporal, spatial, cultural, and configurational dispersion
that are not experienced in traditional systems development [14, 22,
25]. Subsequently, affecting the communication, coordination and
control of the distributed team [1]. Temporal distance is a measure
of the dislocation in time experienced by two actors wishing to in-
teract; geographical distance is a measure of the effort required for
one actor to visit another, and sociocultural distance is a measure of
an actor’s understanding of another actor’s values and normative
practices [1].

Cross-organizational and cross-national collaboration is very
common in the marketplace. Organizations are having projects
across the state, country, and even across the globe. A project might
be distributed over more than one site. Organizations struggle to
reach market proximity, expand through acquisitions, cut costs,
work round-the-clock, increase operational efficiency, and many
others. Such attainments would be impossible by staying on-site.

5 DISTRIBUTED TEAM CONFIGURATION
. . .when a distributed development team is determined, it is time to
take care of its setup.

✥✥✥

A distributed team opens up plenty of opportunities, but
configuring and building such a team brings various chal-
lenges.

Too many sites will expand the market coverage but create coor-
dination complexity. As the number of sites increases, so does the
technical and social complexity of coordination, interaction, and
communication. Similarly, members at minority sites (few sites in
neighboring) may feel more isolated and thus face more significant
communication challenges.

In a distributed team, people from different ethnic, professional,
technical, functional, and organizational backgrounds have to coop-
erate. This may result in inter-group relations problems that may
engender less trust and more conflicts (teamness within the team).

Similarly, the team dispersed across different time zones makes
synchronous collaboration difficult and reduces real-time problem-
solving.

Therefore:

Begin with a small team. Grow it smartly, build trust, and
organize sites independent of spatial and temporal distances.

Begin with few business sites in central locations where business
opportunities are at maximum. Slowly expand the business sites in
the neighboring based on the experience of existing sites. Choose
development sites where development task force availability is high
and are close to the client site (see near-shoring).

Arrange the team members across sites independent of spatial
and temporal distances among them.

Some potential arrangements of members across different sites
include; multiple sites without isolation (e.g., three sites with 4-3-3
and 2-3-3), balanced isolation (e.g., 2-2-2, 3-3-3), and highly isolated
(e.g., 3-1-1, and 1-2-1). The degree of isolation decreases other team
members’ awareness of their activities.

Keep the teams as small as possible or break existing teams into
small subteams. Use the Small Teams pattern [41] of people working
on serialized work rather than striving for false parallelism [41].
Try to keep the number of roles low (consider the Few Roles pat-
tern [12]) by identifying the value of various roles. Have a team
leader and a combination of senior and junior members in sub-
teams (consider the Experience Mix pattern [43]). Make sure the
appropriate expertise and the ability to work together can lead to a
cross-functional team (see the Cross-Functional Team pattern [41]).

Also, get to know that crossing multiple boundaries does not
have to impact the team negatively. At each site, have people who

Establishing a Pattern Language for the Organization of Distributed Software Development EuroPLoP’21, July 7–11, 2021, Graz, Austria

Figure 2: Teams distributed across different locations and time zones.

understand and communicate in at least one common language and
have previous working experience in a distributed team.

Time zones are based on east-west spatial distances as can be
seen in Figure 2. If the teams are dispersed in the east-west di-
rections, the number of work hours the team members have to
communicate synchronously may be limited. For example, the
Northeastern United States and South Asia are nine time zones
apart. Therefore, select sites with few overlapping work hours and
follow the time-shifting-around practice [7] to adjust the working
hours for synchronous communication.

Make sure that means of both synchronous and asynchronous
communications are established and also consider coordination
mechanisms during the team configuration to overcome communi-
cation challenges (see the Communication Bridge pattern, Section 9).

6 COMMUNICATION BRIDGE
. . . the distributed team is established, and members are dispersed
spatially, temporally, or even culturally in different sites. Control,
coordination, and collaboration require strong communication be-
tween sites.

✥✥✥

Proximity in co-located team leads to effective spontaneous
communication, but the spatial, temporal, cultural, and con-
figurational dispersion in a distributed teammakes commu-
nication difficult.

The co-located team can have Daily Stand-up Meetings or other
spontaneous communications, but this could not be possible in a
distributed team due to physical distances between team members.
The geographic distances among team members reduce sponta-
neous communication and therefore affect the frequency and ease

of face-to-face meetings. On-site members share the same time
zone, but off-sites may be located in different time zones, which
may become burdensome the synchronous communication. Sites
with a minority of the team members may feel out of the loop and
produces more significant communication challenges.

Therefore:

Sort out technology mediums for synchronous and asyn-
chronous interactions andpractice coordinationmechanisms
to counteract the communication challenges raised due to
team dispersion.

Make use of conferencing and instant messenger software for
synchronous and e-mails for asynchronous communication.

Tools such as Microsoft Teams, Gather, Discord, Muraly, Miro,
Slack, Jitsi, Google Meet, Zoom, Skype, WhatsApp, etc., are con-
sidered valuable to work together remotely. Regular use of these
means reduces the communication overhead (see the Technology
Mediated Communication pattern for more details, Section 9).

A product-centric approach; i.e. organize the team around a prod-
uct and tend to be geographically local [4] to reduce communication
between team members at distance (see the Architecture as Team
Coordination Tool, Section 7, and Reduce Dependencies, Section 8,
patterns). Mechanisms such as direct supervision, standardization
(see Standards Linking Locations pattern [12]), and software archi-
tecture (see the Conway’s Law pattern [12, 41]) can be used which
requires minimal communication between teams [4].

Management by Time Shifting Around; stay in place, but time-
shift to different locations by adjusting or scattering their workday,

EuroPLoP’21, July 7–11, 2021, Graz, Austria S. Waseeb, W. Sulaiman Khail, and V. Vranić

Figure 3: Configuration and dispersion of teams.

i.e., adjusting one’s work hours to accommodate another’s sched-
ule. This will increase the chances of synchronous communication
between sites in different time zones.

If feasible, begin with a face-to-face meeting to know those who
work together and establish project unity (see the Face-to-Face
Before Working Remotely pattern [12]).

Spatial dispersion (miles separating members) poses the chal-
lenge of frequent face-to-face communication and has the highest
impact on spontaneous communication.

Communication issues because of different time zones (e.g., inter-
action of teams from the US with teams from Asia with a 12.5 hour
time difference). On the other hand, cultural differences result in
miscommunication. Software architecture also poses challenges in
the case of distributed software development teams. Teams configu-
ration in terms of the number of sites, members, members separated
from their leader and isolated from each other. Developing trust
between remote team members also challenges communication.
Communication has always turned up as the most important and
most challenging in distributed software development.

7 ARCHITECTURE AS TEAM
COORDINATION TOOL

. . . the software architecture mirrors the structure of the organiza-
tion; while the team is distributed, the architecture can be used as
a means of coordination between sites.

✥✥✥

Adistributed software development teamneeds to coordi-
nate its activities very closely, but the distance between its
members prevents achieving sufficiently intense communi-
cation necessary for this.

Coordination in software development means coordinating the
development activities [6, 8, 27], but in a multi-site context, this is
not enough. More efforts should be put into coordinating interde-
pendencies between the activities to achieve a common goal [21].
Communication is a prominent part of coordination. However, team
dispersion affects communication frequency and subsequently af-
fects coordination.

Therefore:

Use software architecture as a coordination mechanism
that describes the coordination of the activities and their in-
terdependencies in terms of components and their relation-
ships.

Spatially dispersed teams can develop software when the soft-
ware architecture is defined such that its components are indepen-
dent of each other [34].

Consider coordination as the coordination of dependencies be-
tween activities (management of inter-dependencies between ac-
tivities) toward a common goal [35].

The primary mechanism for coordination is the software archi-
tecture, which describes the activities and interdependencies in
terms of components and their relationships [17]. From activities

Establishing a Pattern Language for the Organization of Distributed Software Development EuroPLoP’21, July 7–11, 2021, Graz, Austria

(and subsystem) toward system-level dependencies requires soft-
ware architects and developers to have a common understanding
of the software architecture [35]. Minimize the communication
barriers between the teams by an architect who acts as boundary
spanner between teams [13] (see Architect Controls Product pat-
tern [12]), translating customer needs into terms understood by
software developers. In their pattern named Architecture, Plan, and
Processes, Herbsleb and Grinter observed as a vital coordination
mechanisms in distributed software projects [21]. Use software
design approaches such as Design by Contracts [2], Domain Driven
Design [16], Layered Architecture [15], and others which streamline
the communication and coordination between the team members
working at different sites in a standard way.

The relationship between coordination and software architec-
ture was first coined by Melvin Conway [11]. The software ar-
chitecture influences the communication requirements between
project members. Companies are driven to distribute development
resources around the globe for marketing purposes. Because of
acquisitions, cost considerations, and the availability of needed
expertise, geographic distribution challenges coordination mech-
anisms and informal communication by requiring robust across
distances.

8 REDUCE DEPENDENCIES
. . . the passing of knowledge, work, and resources between people,
or between sites needs to be coordinated and their dependencies
should be managed appropriately.

✥✥✥

Dependencies are inevitable for the division of labor, but
they come with a huge overhead in distributed settings.

Dependencies can disrupt the progress of a software project if
they constrain the flow of work or an increment of value. For ex-
ample a person or site cannot make progress until another person
or site finishes its work or otherwise solves a problem. Sometimes
dependencies result from poor or highly complex organizational
structure, but sometimes they are essential for collaboration, risk
management, or even technical reasons. Distributed collaboration
demands that there be some dependencies even in some cases col-
laboration will have highly dependent tasks.

The technical or task information (expertise) is known only by a
particular person or group but not immediately available in a given
time and space.

Likewise, there is a situation where who is doing what and when
is not known. These all lead to knowledge dependencies between
sites where some information is required to progress in a project.

There is a situation when an activity cannot proceed until an-
other activity is completed or an existing business process causes
activities to be carried out in a certain order.

Shared resources are available (a person, place, or thing) when
two tasks require the same resource for completion. For example, a
software component must interact with other software components,
while its presence or absence affects the progress.

Strode and Huff’s [39] developed a taxonomy of agile software
development dependencies and provided three different categories
of dependencies: task, resources, and knowledge dependencies. This

taxonomy can consider dependencies that could hinder the projects
and to make appropriate and timely mitigating actions.

Therefore:

Use strategies such self-serve capability, systematic swarm-
ing, formal engagementmodels, or dependencymanagement,
to mitigate and reduce dependencies. Manage the flow of
work and realign people and sites around value streams.

Develop self-serve capability within the team to remove the
dependencies. For example, if a site is dependent upon a particular
person’s skills, then invest time and effort into developing those
skills within a given site.

Use a role that handle any information to be shared within the
team and also proactively working on knowledge sharing across
all the sites (see the Remote Connector pattern [26]).

Use systematic swarming by moving people with the right skills
(subject matter expertise) between delivery sites to deliver the
dependent requirements.

Suppose a team is dependent upon an API or component from
another site. In that case, fake objects, stub, or mock enable them
to continue development instead of waiting for them to become
available.

Draft the engagement models with service level agreements
(SLAs) around common request types so that consumers can reason
about the deliverable.

Have proper dependency management to recognize, anticipate,
and manage dependencies between tasks, people, processes, and
systems. This will help in reducing process variability, subsequently
increasing predictability. Use dependency mapping and visualiza-
tion to understand the dependencies better.

Come up with a team structure where tasks are substantially
independent between different sites. In such cases, the interfaces
between the sites are well architected so that the dependencies are
minimized.

Have a team leader and a combination of senior and junior mem-
bers in subteams (see the Experience Mix pattern [43]). Make sure
the appropriate expertise and the ability of working together that
can lead to a cross-functional team (see the Cross-Functional Team
pattern [41]). Reduce dependencies using a number of organiza-
tional designs for distributing tasks across distant sites (see the
Feature Assignment and Loose Interfaces patterns [12]).

Keep work that requires similar functional expertise in one
place [9]. A team could be structured around products (e.g., fol-
lowing the component architecture, where each site works on its
own components) [9]. Inevitably though, reducing dependencies
too much would cause the team size to increase, which might make
the specialist skills dispersed to many sites.

Mechanisms such as direct supervision, standardization (see the
Standards Linking Locations pattern [12]), and software architecture
(see the Conway’s Law pattern [12, 41]) can be used which requires
minimal communication between teams [4].

EuroPLoP’21, July 7–11, 2021, Graz, Austria S. Waseeb, W. Sulaiman Khail, and V. Vranić

9 TECHNOLOGY MEDIATED
COMMUNICATION

. . . sites are dispersed and for some reason rarely meet in person con-
sequently minimizing the chances of face-to-face communication
and coordination.

✥✥✥

Close andnatural communication is necessary to getwork
done, but (physical) face-to-face communication is not pos-
sible in distributed settings.

Co-located teams naturally and informally share knowledge
and information, thereby supporting each other, but geographical
distances between teams obstructs natural communication.

Therefore:

Use technology-supported communication by employing
rich communicationmeans formessaging, conferencing, in-
teraction, and collaboration. Establish technology-mediated com-
munication comprises a series of interaction events. Sequence these
events to frame the regular face-to-face events using various media.

Arrange conferencing, instant messaging, and e-mail software
for synchronous and asynchronous communication. Tools such as
Microsoft Teams, Discord, Slack, Google Meet, Zoom, Skype, What-
sApp, etc., are considered useful to support remote collaboration.
Regular use of these means reduces communication overhead.

Use interactive and collaborative surface based systems, such as
DigiMetaplan [28] and Domino [33], that facilitate simultaneous
co-located and remote collaboration with both synchronous and
asynchronous work.

Use version control and team collaboration tools such as GitHub,
BitBucket, Team Service Foundation, Jira, etc., to support code
development.

Tools such as Kanban and Trello can be used for visual project
management. These tools support real-time team collaboration by
sharing tasks, information, and comments anywhere and anytime.

10 CONCLUSIONS AND FURTHERWORK
Despite large efforts to address organizational problems of dis-
tributed software development, currently available solutions do not
seem to be sufficient. They are fragmented into individual patterns
either not forming coherent pattern languages to address organiza-
tional distributed software development or being incorporated into
extensive pattern languages for organizing software development
in general. Another problem is their disconnection from the current
technological support for collaboration.

We attempt at overcoming these problems by providing a set of
six organizational patterns for distributed software development.
We relate them to each other and to other known patterns and
practices practically establishing a pattern language for the orga-
nization of distributed software development. The overall idea of
how this pattern language can be used is presented using a pattern
story of a real company.

Further research is required in real distributed software develop-
ment settings to uncover further patterns and connections between
them.

ACKNOWLEDGMENTS
We would like to thank Veli-Pekka Eloranta for being our shepherd
and for his constructive remarks. Our sincere thanks also go to our
writer’s workshop group members: Michael Weiss, Christian Kohls,
Eduardo Guerra, Stefan Holtel, Niels Seidel, Luciana A.M. Zaina,
and Sabine Varetza-Pekarz.

The work reported here was supported by the Scientific Grant
Agency of Slovak Republic (VEGA) under grant No. VG 1/0759/19
and by the Operational Programme Integrated Infrastructure for
the project Research of Effective Methods for the Development
of Adaptive Software Ecosystems (EMEVYS, ITMS: 313012S803),
co-funded by the European Regional Development Fund (ERDF).

REFERENCES
[1] Par J. Agerfalk, Brian Fitzgerald, Helena Holmstrom Olsson, Brian Lings, Bjorn

Lundell, and Eoin Ó Conchúir. 2005. A Framework for Considering Opportu-
nities and Threats in Distributed Software Development. In Proceedings of the
International Workshop on Distributed Software Development, DiSD 2005. Austrian
Computer Society.

[2] Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, Werner
Damm, Thomas Henzinger, and Kim G. Larsen. 2018. Contracts for System Design
(Foundations and Trends(r) in Electronic Design Automation). Now Publishers.

[3] Stephen P Berczuk. 1996. Organizational Multiplexing: Patterns for Processing
Satellite Telemetry with Distributed Teams. Pattern Languages of Program Design
2 (1996), 193–206.

[4] Jan Bosch and Petra Bosch-Sijtsema. 2010. Coordination Between Global Agile
Teams: From Process to Architecture. In Agility Across Time and Space. Springer,
217–233.

[5] Frank Buschmann, Kelvin Henney, and Douglas Schimdt. 2007. Pattern-Oriented
Software Architecture: On Patterns and Pattern Language. Vol. 5. Wiley.

[6] Erran Carmel. 1999. Global Software Teams: Collaborating Across Borders and
Time Zones. Prentice Hall.

[7] Erran Carmel. 2010. MBTA: Management By Timeshifting Around. In Agility
Across Time and Space. Springer, 167–170.

[8] Erran Carmel and Ritu Agarwal. 2001. Tactical approaches for alleviating distance
in global software development. IEEE software 18, 2 (2001), 22–29.

[9] Erran Carmel and Paul Tjia. 2005. Offshoring Information Technology: Sourcing
and Outsourcing to a Global Workforce. Cambridge University Press.

[10] Igor Čavrak, Marin Orlić, and Ivica Crnković. 2012. Collaboration Patterns in
Distributed Software Development Projects. In 34th International Conference on
Software Engineering, ICSE 2012. IEEE, 1235–1244.

[11] Melvin E Conway. 1968. How do Committees Invent. Datamation 14, 4 (1968),
28–31.

[12] James O. Coplien and Neil B. Harrison. 2004. Organizational Patterns of Agile
Software Development. Prentice-Hall.

[13] Bill Curtis, Herb Krasner, and Neil Iscoe. 1988. A Field Study of the Software
Design Process for Large Systems. Commun. ACM 31, 11 (1988), 1268–1287.

[14] Daniela Damian, Filippo Lanubile, and Heather L Oppenheimer. 2003. Addressing
the Challenges of Software Industry Globalization: The Workshop on Global
Software Development. In Proceedings of the 25th International Conference on
Software Engineering.

[15] Florian Echtler and Gudrun Klinker. 2008. AMultitouch Software Architecture. In
Proceedings of the 5th Nordic Conference on Human-Computer Interaction: Building
Bridges.

[16] Eric Evans and Eric J Evans. 2004. Domain-Driven Design: Tackling Complexity in
the Heart of Software. Addison-Wesley.

[17] David Garlan and Dewayne E. Perry. 1995. Introduction to the Special Issue on
Software Architecture. IEEE Transactions on Software Engineering 21, 4 (1995),
269–274.

[18] Neil B Harrison. 1999. The Language of Shepherding. Pattern Languages of
Program Design 5 (1999), 507–530.

[19] Neil B. Harrison. 2006. Advanced Pattern Writing Patterns for Experienced
Pattern Authors. Avaya inc..

[20] James D Herbsleb. 2007. Global Software Engineering: The Future of Socio-
Technical Coordination. In Proceedings of the IEEE Conference on Future of Software
Engineering, FOSE’07. IEEE.

[21] James D Herbsleb and Rebecca E Grinter. 1999. Architectures, Coordination, and
Distance: Conway’s Law and Beyond. IEEE software 16, 5 (1999), 63–70.

[22] James D. Herbsleb and Audris Mockus. 2003. An Empirical Study of Speed and
Communication inGlobally Distributed SoftwareDevelopment. IEEE Transactions
on Software Engineering 29, 6 (2003), 481–494.

Establishing a Pattern Language for the Organization of Distributed Software Development EuroPLoP’21, July 7–11, 2021, Graz, Austria

[23] James D Herbsleb and Deependra Moitra. 2001. Global Software Development.
IEEE software 18, 2 (2001), 16–20.

[24] Helena Holmstrom, Eoin Ó Conchúir, J Agerfalk, and Brian Fitzgerald. 2006.
Global Software Development Challenges: A Case Study on Temporal, Geograph-
ical and Socio-Cultural Distance. In Proceedings of the 2006 IEEE International
Conference on Global Software Engineering (ICGSE’06). IEEE, 3–11.

[25] Helena Holmström, Brian Fitzgerald, Pär J Ågerfalk, Eoin Ó Conchúir, et al. 2006.
Agile Practices Reduce distance in Global Software Development. Information
Systems Management 23, 3 (2006), 7–18.

[26] Lise B. Hvatum. 2020. Patterns for Distributed Teams. In Proceedings of the 25th
Conference on Pattern Languages of Programs, PLoP 2020.

[27] Robert E Kraut and Lynn A Streeter. 1995. Coordination in Software Development.
Commun. ACM 38, 3 (1995), 69–82.

[28] Khanh-Duy Le, Paweł W Woźniak, Ali Alavi, Morten Fjeld, and Andreas Kunz.
2019. DigiMetaplan: Supporting Facilitated Brainstorming for Distributed Busi-
ness Teams. In Proceedings of the 18th International Conference on Mobile and
Ubiquitous Multimedia.

[29] Ian Marriott. 2010. Gartner’s 30 Leading Locations for Offshore Services, 2010–
2011. Stamford, CT: Gartner (2010).

[30] Likoebe M Maruping. 2010. Implementing Extreme Programming in Distributed
Software Project Teams: Strategies and Challenges. In Agility Across Time and
Space. Springer, 11–30.

[31] Gerard Meszaros and Jim Doble. 1997. A Pattern Language for Pattern Writing.
Addison-Wesley, 529–574.

[32] BertrandMeyer. 1997. Object-Oriented Software Construction (second ed.). Prentice
Hall.

[33] Thomas Neumayr, Hans-Christian Jetter, Mirjam Augstein, Judith Friedl, and
Thomas Luger. 2018. Domino: A Descriptive Framework for Hybrid Collaboration
and Coupling Styles in Partially Distributed Teams. In Proceedings of the ACM on
Human-Computer Interaction, Vol. 2. ACM, 1–24.

[34] Judith S Olson and Stephanie Teasley. 1996. Groupware in the Wild: Lessons
Learned from a Year of Virtual Collocation. In Proceedings of the 1996 ACM
Conference on Computer Supported Cooperative Work.

[35] Päivi Ovaska, Matti Rossi, and Pentti Marttiin. 2003. Architecture as a Coordina-
tion Tool in Multi-Site Software Development. Software Process: Improvement
and Practice 8, 4 (2003), 233–247.

[36] Rafael Prikladnicki, Jorge Luis Nicolas Audy, and Forrest Shull. 2010. Patterns in
Effective Distributed Software Development. IEEE Software 27, 2 (2010), 12–15.

[37] Rafael Prikladnicki, Jorge Luis Nicolas Audy, and Roberto Evaristo. 2003. Global
Software Development in Practice Lessons Learned. Software Process: Improve-
ment and Practice 8, 4 (2003), 267–281.

[38] Darja Šmite, Nils Brede Moe, and Pär J Ågerfalk. 2010. Agility Across Time and
Space: Implementing Agile Methods in Global Software Projects. Springer Science
& Business Media.

[39] Diane E. Strode and Sid L. Huff. 2012. A Taxonomy of Dependencies in Agile
Software Development. Information Systems Frontiers (2012), 23–46.

[40] Waheedullah Sulaiman Khail and Valentino Vranić. 2017. Treating Pattern Sublan-
guages As Patterns with an Application to Organizational Patterns. In Proceedings
of the 22nd European Conference on Pattern Languages of Programs, EuroPLoP ’17.
ACM, Irsee, Germany.

[41] Jeff Sutherland and James O. Coplien. 2019. A Scrum Book: The Spirit of the Game.
Pragmatic Bookshelf.

[42] Jeff Sutherland, Anton Viktorov, Jack Blount, and Nikolai Puntikov. 2007. Dis-
tributed Scrum: Agile Project Management with Outsourced Development Teams.
In Proceedings of the 40th Annual Hawaii International Conference on System Sci-
ences, HICSS’07. IEEE.

[43] Uwe van Heesch. 2015. Collaboration Patterns for Offshore Software Develop-
ment. In Proceedings of the 20th European Conference on Pattern Languages of
Programs, EuroPLoP 2015. Irsee, Germany.

[44] Valentino Vranić and Aleksandra Vranić. 2019. Drama Patterns: Extracting and
Reusing the Essence of Drama. In Proceedings of the 24th European Conference on
Pattern Languages of Programs, EuroPLoP 2019. ACM, Irsee, Germany.

[45] Tim Wellhausen and Andreas Fießer. 2011. How to Write a Pattern? A Rough
Guide for First-Time Pattern Authors. In Proceedings of the 16th European Confer-
ence on Pattern Languages of Programs, EuroPLoP 2011. Irsee, Germany.

	Abstract
	1 Introduction
	2 Distributed Software Development: Problems and Solutions
	3 The Patterns
	3.1 The Story Behind the Patterns
	3.2 Pattern Format

	4 Distributed Development Team
	5 Distributed Team Configuration
	6 Communication Bridge
	7 Architecture as Team Coordination Tool
	8 Reduce Dependencies
	9 Technology Mediated Communication
	10 Conclusions and Further Work
	Acknowledgments
	References

