Guidelines for Using Aspects in Product Lines

Jan Kohut and Valentino Vrani¢
Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology
Ilkovicova 3, 84216 Bratislava 4, Slovakia
jan.kohut84 @ gmail.com, vranic @fiit.stuba.sk

Abstract—Software product lines are a successful approach
to software reuse. To a significant extent, the development of
product lines is complicated by crosscutting concerns. This is
especially true for product line configuration. Aspect-oriented
programming can often help to develop product lines more
effectively, but this is not always so. This paper shows it is
possible to sublimate the expert knowledge about using aspect-
oriented programming in product line development in the form
of independently applicable guidelines by proposing an approach
to expressing such guidelines. A complete guideline entitled Im-
plementing Mandatory Features with no Crosscutting Concerns
is presented as an example. The guidelines have been evaluated
in a product line case study that confirmed their applicability.
The results of this study obtained by the application of a number
of metrics are provided and discussed in the paper.

I. INTRODUCTION

Software product lines (most often denoted just as prod-
uct lines) represent a successful approach to software reuse.
Instead of striving for general component reusability, each
product lines targets a specific domain. Reusability is achieved
by separating common features from variable ones and pro-
jecting this along the design and implementation lines. Ideally,
a specific application is developed by configuring the product
line, i.e. by selecting variable features to be included. However,
often some additional code is needed arising from the previ-
ously unforeseen requirements. Nevertheless, the gain from
reuse usually overweighs this inconvenience. Moreover, the
new artifacts may be incorporated into the product line, too.

Development of product lines is a complicated process. As
in any software development, this is in part due to crosscutting
concerns. This is most obvious in the product line configu-
ration in which features that represent crosscutting concerns
cannot be easily incorporated nor taken out once they have
been incorporated.

Aspect-oriented programming enables the modularization of
crosscutting concerns, so it may be very useful in product
lines, especially in feature configuration. However, aspect-
oriented programming cannot be considered as the best so-
lution always. It is probably impossible to formulate strict
rules that will tell when to apply aspect-oriented programming
and when not to due to hard context dependencies that can
never be fully formalized. However, we believe it is possible
to make some recommendations on the use of aspect-oriented
programming in product lines in the form of guidelines that
will sublimate expert knowledge in this field.

The rest of the paper is organized as follows. Section II
presents the form of guidelines and guidelines that have been
identified. Section III describes in detail one of the guidelines.
Section IV describes the evaluation of guidelines. Section V
discusses related work. Section VI closes the paper with
conclusions and further work.

II. GUIDELINES

When product line developers are faced with a decision
to apply aspect-oriented programming or not for a particular
feature or set of features, they could search advice in the expe-
rience of others reported in literature, ranging in presentation
form from peer reviewed scientific work to informal contribu-
tions to discussion forums. This is a highly complicated task
both in finding relevant sources and identifying relevant parts
in these sources once they have been found.

It would be helpful to have this knowledge in a compact
and easily accessible form. To avoid burring the efforts to
help developers by another forced step-by-step application of
a “complete” method of using aspect-oriented programming
in product lines that would never be capable of covering all
possible contexts, it logically follows this expert knowledge
should be partitioned into individually applicable chunks each
of which would provide some kind of recommendation accom-
panied by both advantages and disadvantages following from
its application.

According to what we said so far, the guidlines we are
seeking for would be much like patterns. Indeed, we find
the pattern form of description quite suitable. One of the
popular pattern forms is Coplien’s form consisting of these
six parts [9]:

« Short name

e Name

o Context

o Problem

« Forces

« Solution

« Example

« Discussion

This form contains all the parts relevant to the application
of a guideline.

The short name provides a unique and descriptive name of
the guideline. The name provides a one sentence guideline
description. The context describes the situation in which it

is convenient to consider using the guideline. The problem
defines problems that can occur if the guideline is not been
applied. The forces provides the reasons why the current
state is not satisfactory. The solution describes the process
of resolving this situation. Example contains an example
implementation or its part. In the discussion, the solution
advantages and disadvantages are pointed out.

It is possible to define a guideline at various levels of
abstraction of a particular system. Also, guidelines are not
strict rules, but just recommendations because the problem
of product line feature configuration is very complex. Each
guideline must be consistent with other guidelines. It is not
necessary to avoid difference in recommendations at all costs,
but the guideline should accommodate to them and eventually
provide some possibilities of combining even the differing
guidelines.

When applying a guideline, it is necessary to consider
how the product line is being developed (from scratch or
incrementally, and evolutionary or revolutionary [6]), what
experience software company has with aspect-oriented pro-
gramming development, and to what extent it is ready to go
into the risk of developing software with a new approach.

Here are the guidelines that we identified:

o Implementing Features of Refactored Legacy Ap-
plications: The aspects are unsuitable for implement-
ing features of refactored legacy applications. Feature
refactoring of legacy applications is a difficult problem
because such applications do not imply that their design
was amenable to feature extensibility [12].

o Implementing Mandatory Features with no Cross-
cutting Concerns: Do not use aspects in mandatory
features if there are no crosscutting concerns. Aspects
flatten inherent object-oriented structure of collaboration,
obscure the intent of the programmer, and the result is a
program that is difficult to read [1].

¢ Code Reduction in Homogenous Crosscutting Con-
cerns: The aspects are suitable for reduction of replicated
code in homogenous crosscutting concerns. Aspects re-
duce replicated code in code with homogenous crosscut-
ting concerns.

o Transforming a Mandatory Feature into Alternative
Features: Do not use aspects in transforming a manda-
tory feature into alternative features. By transforming a
mandatory feature into two or more alternative features
Aspect] adds and changes more components and lines
of code compared to non-aspect-oriented approaches be-
cause all aspects rely on the join points provided by the
core [11].

o Implementing Features which Share no Code: Use
aspects in implementing features which share no code
and which have crosscutting concerns. Aspect-oriented
solution provides low cost and superior stability in terms
of tangling and scattering over components [11].

III. AN EXAMPLE: REDUCTION OF REPLICATED CODE

This section presents the guideline Implementing Mandatory
Features with no Crosscutting Concerns as an example. This
guideline is about suitability of using aspects for reduction of
replicated code with homogenous crosscutting concerns. Ho-
mogenous crosscutting concerns address multiple join points
with a single piece of advice. Heterogeneous crosscutting
concerns, in contrast, address multiple join points each with a
different piece of advice [1]. Homogeneity lies in a consistent
application of the same or very similar policy in multiple
places [14]. It has been reported that aspects reduced replicated
code in homogenous crosscutting concern implementation [1].

Further sections follow the guideline form structure as
proposed in Section II (apart of the guideline short name and
name).

A. Context

Often, the same concern—i.e. its code—is repeated across
different modules in a product line.

B. Problem

It is hard to maintain and keep consistent the code scattered
accross the application.

C. Forces

We would like to modularize the crosscutting concerns and
represent each one by a single feature for ease of maintenance
and configurabilty, but the conventional approach does not
provide mechanisms for this.

D. Solution

Using aspects in homogenous crosscutting concerns will
enable to factor them out into separate and easily configurable
modules. Each such concern would be implemented by its own
advice.

E. Example

Examples of homogenous crosscutting concerns include
logging, tracing, and exception handling. The following code
shows an example of a crosscutting concern:

public aspect Homogenous {
pointcut accessAuthorization(): call(...);
pointcut accessDemilitarizedZone(): call(...);
pointcut accessCommunicationInterfaces(): call(...);
pointcut accessApplication(): call(...);

before(): accessAuthorization() ||
accessDemilitariziedZone() ||
accessCommunicationInterfaces() ||
accessApplication() {
System.out.println(”Accessing ” + thisJoinPoint);
}
}

The presented aspect affects a set of otherwise unrelated
methods using one coherent advice.

F. Discussion

Homogenous crosscutting concerns address multiple join
points by a single advice. The conventional approach require
repeating almost identical pieces of code in every affected
method which results in code replication and problems con-
nected with it [2].

On the other hand, spects influence classes by the code that
is inside of their inter-type declarations and advices and no
longer a physical part of the affected class. This can lead to
misunderstanding object-oriented architecture and structure of
classes. Subsequently, the program may become more difficult
to read and understand.

IV. EVALUATION

Evaluation of the approach has been performed on the
Java Email Server application.! Java Email Server is a Java
implementation of the SMTP and POP3 e-mail server. The
original application has 4500 line of code, 22 classes, and
several configuration files. To evaluate the approach proposed
in this paper, a product line has been created out of this
application.

A. Feature Model

Figure 1 shows the feature model of the product line
developed out of Java Email Server.

We use basic Czarnecki-Eisenecker feature modeling nota-
tion [10]. The main part of the feature model is the feature
diagram. Its root node represents a concept of the application
as one of the possible applications in a given product line.

The rest of the nodes are features each of which represents
some functionality. Features are organized hierarchically and
the inclusion of a subfeature requires the inclusion of its parent
feature.

Some features are common for all product line configura-
tions, i.e. they are mandatory. Mandatory features are denoted
by filled circle ended edge. In Java Email Server product
line, mandatory features represent core modules for processing
passwords, users, e-mails, POP3 and SMTP protocols, and
logging tool Log4l.

The rest of the features are variable. Optional features—that
may, but don’t have to be included—are denoted by an empty
circle ended edge.

Some features are exclusive with respect to some other
features. Such features are alternative, which is graphically
denoted by an arc. The configuration parameters file for-
mat is an example. In our application, there are two such
formats: ConfigFileManager stands for property files, while
ConfigXMLManager stands for XML files.

Note that the mandatory features whose parent is a variable
features are mandatory only if the parent feature is included.

We express constraints between non-adjacent features using
natural language [10]. For this, first-order predicate logic [22]
or OCL could be employed, too, as a widely accepted and

Uhttp://www.ericdaugherty.com/java/mailserver/

powerful notation for such uses (but even of wider applicabil-
ity, e.g. instead of object algebras [18]). If kept consistent, the
notations for expressing additional constraints could be used
interchangebly, for it is not uncommon for a language to have
multiple notations for one language [19].

B. Metrics Applied

Various kinds of metrics have been employed to evaluate
the application of the proposed approach to the Java Email
Server product line. One group of metrics targets the scope of
changes:

¢ Lines of Code (LOC)—expresses the size of modules; it
is important for comparing the size of modules and cost
of implementation

o Number of Affected Classes (NAC)—expresses the num-
ber of classes affected by the implementation of a feature

Another group of metrics that have been applied are var-
ious metrics targeting the quality of code suitable both for
object-oriented and aspect-oriented programming [7], [8], [21]
(module denotes a class or aspect):

o Weighted Operations in Module (WOM)
¢ Depth of Inheritance Tree (DIT)

e Number of Children (NOC)

o Crosscutting Degree of an Aspect (CDA)
o Coupling of Method Call (CMC)

o Coupling of Field Access (CFA)

« Coupling between Modules (CBM)

« Response for a Module (RFM)

o Lack of Cohesion in Operations (LCO)

The last group of metrics that has been applied measures
package dependencies [15], [21]:

o Number of Types (NOT)

e Abstractness (A)

o Afferent Couplings (Ca)

« Efferent Couplings (Ce)

o Modified Efferent Couplings (Ce)
o Instability (I)

C. Performing Evaluation

Two independent product line implementations were created
out of the original Java Email Server application. In the aspect-
oriented implementation, the features were configured using
the Aspect] language. Every feature was implemented in its
own file. Features are weaved into the product line through
compilation.

The object-oriented implementation is configured by a con-
figuration file being loaded on the application start. The fea-
tures are asserted during program execution by an if statement
as shown in the following code fragment:

if(OOConfig.getInstance().isInitializeLog4JEnabled()) {
InitializeLogging.initializeLogging(directory);

}

Further sections explain the evaluation of each guideline we
have identified.

Java Email Server

O
Aspect Logger Configuration

Errors ‘ Services ‘

o e

o %

Password

Password
Mandatory

O
Config File
Watchdog
Constraints:
E-Mail Alarm requires SMS

Figure 1.

Table 1T
NUMBERS OF CALLING LOGGING FUNCTIONS.

Method Number of calls
log.isDebugEnable() 27
log.debug() 47
log.isInfoEnable() 10
log.info 26

D. Implementing Mandatory Features with no Crosscutting
Concerns

Using aspects to implement mandatory features without
crosscutting concerns hides before programmer the object-
oriented structure of program. The number of LOC used to
implement the Password Mandatory feature is similar (11 and
9 LOC). Table I shows some characteristics of the Password
Mandatory feature.

Using aspects to implement mandatory features without
crosscutting concerns hides before programmer the object-
oriented structure of program. The number of LOC used to
implement the PasswordMandatoryFeature application feature
is similar (11 and 9 LOC). In Table I are shown some
characteristics of PasswordMandatoryFeature.

E. Code Reduction in Homogenous Crosscutting Concerns

Homogenous crosscutting concerns are one of the most
appropriate areas for the using aspects. Example of these
homogenous crosscutting concerns in Java Email Server are
calls to the Log4]J logging framework. In Java Email Server,
the same or similar pieces of code appear frequently. Table II
shows the number of calls to logging methods.

This code snippet repeated throuhout the product line shows
how homogenous crosscutting concerns are being solved with-
out aspects:

if (log.isDebugEnabled()) {
log.debug(”Loading SMTP Message ” + messageFile.getName());

}

This is the same code if we apply aspects to modularize
this corsscutting concern:

‘Conﬁg Manager ‘ DefaSLJeI:vSel:ATP ‘ ‘ E-Mail Address ‘ Message ‘ ‘ User ‘ ‘ General ‘ ‘ SMs ‘ Initialize Log4J ‘ ‘ Log4J Level ‘
POP: MTP
e][| I
‘SpamAssassing ‘ Encrypt E-Mails ‘ E-Mail Alarm ‘ ‘ Error Handler ‘ SMS Trigger

Java Email Server product line feature model.

Table III
SIZE OF CHANGES FOR ADDING ALTERNATIVE FEATURE
CONFIGXMLMANAGER INTO EXISTING PROGRAM INFRASTRUCTURE.

| AO change 0O change
Class/Aspects | Creating new aspect ~ Change class code
LOC 11 3

log.debug(”Loading SMTP Message ~ + messageFile.getName());

The Logginglevel aspect reduced LOC saving 27 (po-
tentially 47 times) calls of the isDebugEnabled() method.
Similarly, moving the isInfoEnable() method into the aspect
reduced calls to this method for 10 times (potentially 26
times).

F. Transforming a Mandatory Feature into Alternative Fea-
tures

We implemented a change of a mandatory feature into
two or more alternative features in both versions of the Java
Email Server product line. The change was realized by object-
oriented refactoring. Refactoring was required to enable later
use of the features. After this change, it became simple to
create and configure alternative features with aspects. Both
aspect-oriented and object-oriented approach add comparable
number of LOC when used for adding new alternative feature
(see Table III).

G. Implementing Features of Refactored Legacy Applications

Adding new features by object-oriented approach intorduced
new crosscutting concerns. On the other hand, as expected,
aspects did not cause the code tangling and crosscutting,
because aspects do not add any code into original code in
the first place. Aspect-oriented approach enabled to add new
features easily.

The size of code has been growing, but the code showed
similar level of coupling (see Tables IV and V). The met-
rics have been evaluated on the code without implemented
homogenous crosscutting concerns (LoggingLevel and Erro-
rAlarm features) for the reason of showing other characteristics

Table T
METRICS USED ON PASSWORDMANDATORY FEATURE.

| LOC WOM DIT NOC CFA

CMC CBM CDA CAE RFM LCO

00
AO

45 3 0 0 0
35 2 0 0 0

1 1 0 0 5 0
0 0 0 0 2 0

Table IV
METRICS EVALUATION FOR THE ORIGINAL JAVA EMAIL SERVER VERSION (ORIG.), OBJECT-ORIENTED PRODUCT LINE (OO) AND ASPECT-ORIENTED
PRODUCT LINE (AO).

‘ LOC WOM DIT NOC CFA CMC CBM CDA CAE RFM LCO

Orig. | 124.73 8.55 0.36 0.05 0.14 3.55 3.68 0.00 0.00 1577 5427

00 96.21 6.68 0.32 0.06 0.09 3.15 3.24 0.00 0.00 12.68 37.26

AO 88.17 6.00 0.28 0.06 0.08 2.64 2.72 1.00 1.00 1192 3322

Table V
PACKAGE METRICS EVALUATION.

‘ NOT A RMartin Ce RMartin Ca RMartin I~ RMartin D Ce Ca 1 Dn
Orig. | 3.14 0.06 2.14 4.14 0.45 0.48 7.14 414 0.61 033
00 378 0.04 244 4.67 0.40 0.56 6.78 4.67 0.53 043
AO 4.00 0.05 3.00 4.22 043 0.53 733 422 056 040

as benefits of using aspects on homogenous crosscutting

concerns.

H. Implementing Features which Share no Code

Figure 2 shows a comparison of method call coupling in
the object-oriented and aspect-oriented version of the product
line per class (class names not shown). The aspect-oriented
version shows lower value coupling of method call for most
classes which brings us to the conclusion that this approach
supports better modularity and reusability of classes.

V. RELATED WORK

There is a significant body of work with respect to applying
aspect-oriented programming in product lines. The target of
this paper is not to find the best approach for the configuration
of product lines, but create and evaluate guidelines for using
aspects in product lines.

It is suitable to implement homogenous crosscutting con-
cern using aspects, but using aspects to solve heterogeneous
crosscutting concerns does not bring such positive results. This
is confirmed by several studies [1], [14].

Figueiredo et al. [11] represent results of a quantitative
study that evolves two product lines to assess various facets
of design stability of aspect-oriented implementations. Various
metrics have been applied in the study, but the authors find the
application of the metrics not specifically created for aspect-
oriented programming to be disputable.

Kistner et al. represent a case study on refactoring of the
Berkley DB system into a product line [13]. They documented
the cases in which Aspect] is unsuitable for implementing fea-
tures of refactored legacy applications. The results presented
here are broader in their context as our study covered not
only legacy application refactoring, but also an incremental
development of a product line.

An approach to software evolution based on aspect-oriented
change realization can also lead to establishing product-
lines [3], [17]. Changes can be implemented using aspect-

oriented programming even if the source code of the code to
be changed is not available [4], [5].

VI. CONCLUSIONS AND FURTHER WORK

An approach to expressing independently applicable guide-
lines that sublimate the expert knowledge about using aspect-
oriented programming in product line development has been
proposed in this paper. An example of a complete guideline
has been presented.

To evaluate applicability of the guidelines that have been
identified, a case study has been performed. An aspect-oriented
version of the product line has been developed using the
guidelines. An object-oriented version of the product line has
been developed, too, in order to enable the evaluation of the
guideline applicability. For this, several metrics suitable both
for aspect-oriented and object-oriented programs have been
applied confirming the applicability of guidelines.

One of the obvious directions of further work is the iden-
tification of other guidelines. However, it is also important
to evaluate guidelines with respect to other aspect-oriented
languages. For example, it would be interesting to expand our
study to other domains like service-oriented architecture [16],
for which we have available suitable application developed in
Java [20].

ACKNOWLEDGEMENTS

The work was supported by the Scientific Grant Agency of
Slovak Republic (VEGA) grant No. VG 1/0508/09.

REFERENCES

[1] Sven Apel and Don Batory. When to use features and aspects?: A
case study. In Proc. of 5th International Conference on Generative
Programming and Component Engineering, GPCE 2006, pages 59-68,
Portland, Oregon, USA, 2006. ACM.

Sven Apel, Thomas Leich, and Gunter Saake. Aspectual mixin layers:
aspects and features in concert. In Proc. of 28th International Conference
on Software Engineering, ICSE 2006, pages 122-131, Shanghai, China,
2006. ACM Press.

[2]

[3]

[4

=

[5

=

[6

[}

[7

[8

[9

—

[10]

(11]

[12]

[13

[14]

[15]

[16]

[17]

12

10

D Ll

Q0

mAC

Lol

Figure 2.

Michal Bebjak, Valentino Vrani¢, and Peter Dolog. Evolution of web
applications with aspect-oriented design patterns. In Marco Brambilla
and Emilia Mendes, editors, Proc. of ICWE 2007 Workshops, 2nd
International Workshop on Adaptation and Evolution in Web Systems
Engineering, AEWSE 2007, in conjunction with 7th International Con-
ference on Web Engineering, ICWE 2007, pages 80-86, Como, Italy,
July 2007.

Tlona Bluemke and Konrad Billewicz. Aspect modification of an EAR
application. In Proc. of International Joint Conferences on Computer,
Information, and Systems Sciences, and Engineering, CIS2E 08, Krakow,
Poland, December 2008. Springer. To appear.

Tlona Bluemke and Konrad Billewicz. Aspects in the maintenance
of complied program. In Proc. of 5th International Conference on
Dependability of Computer Systems, DepCoS-RELCOMEX 2008, pages
253-260, Szklarska Porgba, Poland, June 2008. IEEE.

Jan Bosch. Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach. Addison-Wesley, 2000.

Mariano Ceccato and Paolo Tonella. Measuring the effects of software
aspectization. In Proc. of 1st Workshop on Aspect Reverse Engineering,
WARE 2004, Delft, The Netherlands, 2004.

Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for
object oriented design. IEEE Transactions on Software Engineering,
20(6):476-493, June 1996.

James O. Coplien. Software patterns.
definition.html.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programing:
Methods, Tools, and Applications. Addison-Wesley, 2000.

Eduardo Figueiredo, Nelio Cacho, Claudio Sant’Anna, Mario Mon-
teiro, Uira Kulesza, Alessandro Garcia, Sergio Soares, Fabiano Ferrari,
Safoora Khan, Fernando Castor Filho, and Francisco Dantas. Evolving
software product lines with aspects: an empirical study on design stabil-
ity. In Proc. of 30th international Conference on Software Engineering,
ICSE 2008, pages 261-270, Leipzig, Germany, 2008. ACM.

Martin Fowler. Writing software patterns. http://martinfowler.com/
articles/writingPatterns.html.

Christian Kistner, Sven Apel, and Don Batory. A case study imple-
menting features using aspectj. In Proc. of 11th International Software
Product Line Conference, SPLC 2007, pages 223-232, Kyoto, Japan,
2007. IEEE Computer Society.

Axel Anders Kvale, Jingyue Li, and Reidar Conradi. A case study on
building COTS-based system using aspect-oriented programming. In
2005 ACM Symposium on Applied Computing, pages 1491-1497, Santa
Fe, New Mexico, USA, 2005. ACM.

Robert Martin. Object oriented design quality metrics: An analysis of
dependencies. ROAD, 2(3), September—October 1995.

Pavol Mederly, Maridn Lekavy, Marek Zdvodsky, and Pavol Ndvrat.
Messaging-based enterprise integration solutions using ai planning. In
Proc. of 4th IFIP TC2 Central and East European Conference on
Software Engineering Techniques, CEE-SET 2009, Krakow, Poland,
October 2009. To appear.

Radoslav Menkyna and Valentino Vrani¢. Aspect-oriented change
realization based on multi-paradigm design with feature modeling. In
Proc. of 4th IFIP TC2 Central and East European Conference on

http://hillside.net/patterns/

Method call coupling in the object-oriented (OO)

(18]

[19]

[20]

[21]

[22]

and aspect-oriented (AO) product line implementation.

Software Engineering Techniques, CEE-SET 2009, Krakow, Poland,
October 2009. To appear.

Matd$ Navarcik and Ivan Polasek. Object model notation. In Proc.
of 8th International Conference on Information Systems Implementation
and Modelling, ISIM 2005, Roznov pod Radhostém, Czech Republic,
2005.

Jaroslav Porubdn and Peter Véclavik. Generating software language
parser from domain classes. In Proc. of International Scientific Confer-
ence on Computer Science and Engineering, CSE 2008, pages 133-140,
Stard Lesnd, Slovakia, September 2008.

Viera Rozinajovd, Marek Braun, Pavol Navrat, and Maria Bielikova.
Bridging the gap between service-oriented and object-oriented approach
in information systems development. In D. Avison, G. M. Kasper,
B. Pernici, I. Ramos, and D. Roode, editors, Proc. of IFIP 20th
World Computer Congress, TC 8, Information Systems, Milano, Italy,
September 2008. Springer Boston.

Michal Stochmialek. aopmetrics project home. http://aopmetrics.tigris.
org/.

Valentino Vrani¢. Reconciling feature modeling: A feature modeling
metamodel. In Matias Weske and Peter Liggsmeyer, editors, Proc. of
Sth Annual International Conference on Object-Oriented and Internet-
Based Technologies, Concepts, and Applications for a Networked World
(Net.ObjectDays 2004), LNCS 3263, pages 122—137, Erfurt, Germany,
September 2004. Springer.

