
INCORPORATING VARIABILITY DEPENDENCY GRAPHS INTO

MULTI-PARADIGM DESIGN WITH FEATURE MODELING

Valentino Vrani¢

Department of Computer S
ien
e and Engineering

Fa
ulty of Ele
tri
al Engineering and Information Te
hnology

Slovak University of Te
hnology in Bratislava

vrani
�elf.stuba.sk, http://www.d
s.elf.stuba.sk/~vrani

Abstra
t

Multi-paradigm design enables to map the stru
tures

of an appli
ation (problem) domain to the appropri-

ate stru
tures (paradigms) supported by a solution do-

main (programming language). Both appli
ation and

solution domain, partitioned into subdomains,
an be

represented as feature models, whi
h is better than

the table representation used in the original multi-

paradigm design. Feature modeling is not
apable

of expressing all the important dependen
ies between

the subdomains. Therefore the appli
ation of vari-

ability dependen
y graphs, used in the original multi-

paradigm design, in addition to feature modeling is

proposed here. Sin
e diagrams similar to variability

dependen
y graphs are used in generative program-

ming, as well as feature modeling, multi-paradigm

design and generative programming are brie�y
om-

pared.

1 INTRODUCTION

Re
ent moves in the �eld of software development

point to the need for multi-paradigm software devel-

opment in the sense of �nding the best way to use

the means that are at disposal [5℄. The
on
ept of

paradigm in software development appears to be im-

portant regarding this issue.

The
on
ept of paradigm in the
ontext of soft-

ware development
an be �gured at two levels of gran-

ularity: large-s
ale and small-s
ale [5℄. Large-s
ale

paradigms are what is usually
onsidered under the

term paradigm, e.g. obje
t-oriented programming.

Although seemingly well-de�ned, after a
areful ex-

amination, they show up as elusive [3, 5℄.

The small-s
ale paradigms appear as more appro-

priate for the purpose of multi-paradigm software de-

velopment. They are
on�gurations of
ommonality

and variability [1℄. As su
h, they are akin to the fea-

tures of programming languages. For example, inheri-

tan
e is
hara
terized by
ommon behavior and stru
-

ture, and variability in stru
ture. With respe
t to the

small-s
ale paradigms, multi-paradigm software devel-

opment is a metaparadigm; it is a way of de
iding

whi
h paradigm to use for a given feature of a system

or family of systems to be implemented.

Multi-paradigm design for C++ [1℄ is su
h a meta-

paradigm for the paradigms supported by C++.

Multi-paradigm design (MPD)
an be applied to other

solution domains as well; e.g., MPD for Aspe
tJ [4℄.

MPD for Aspe
tJ is not only an appli
ation of MPD

to the solution domain of Aspe
tJ; it brings the
a-

pabilities of feature modeling into MPD
hanging it

into MPD with feature modeling: MPD

FM

. Se
tion 2

presents MPD

FM

in a brief detail. Se
tion 3 explains

variability dependen
y graphs and how they
an be

in
orporated into MPD

FM

. Se
tion 4 re
apitulates

the arti
le and gives some insight into the relationship

between MPD and generative programming.

2 MULTI-PARADIGM DESIGN

WITH FEATURE MODELING

A
on
eptual modeling te
hnique used in domain

engineering�known as feature modeling [2℄�is akin

to
ommonality and variability analysis used in MPD

for C++ [1℄. Feature models appear to be more appro-

priate to
apture
ommonalities and variabilities than

the tables that have been originally used in MPD [4℄.

2.1 Feature Diagrams

Feature diagrams are the key part of a feature model.

Besides them, some additional information is provided

with ea
h feature [2℄. The relevant information for

MPD

FM

that ea
h feature should be a

ompanied

with is: semanti
 des
ription, rationale,
onstraints,

default dependen
y rules, binding mode, and instan-

tiation (in this arti
le su
h information will not be

provided expli
itly).

A feature diagram, like the one presented in Fig-

ure 1, is a dire
ted tree with edge de
orations. The

root represents a
on
ept, and the rest of the nodes

represent features. Edges
onne
t the
on
ept with

its features (a feature
an be understood as a
on
ept

also). There are two types of edges used to distin-

guish between mandatory features, ended by a �lled

ir
le, and optional features, ended by an empty
ir-

le. A
on
ept instan
e must have all the mandatory

features and
an have the optional features.

The edge de
orations are drawn as ar
s
onne
ting

the subsets of the edges originating in the same node.

They are used to de�ne a partitioning of the subnodes

of the node the edges originate from into alternative

and or-features. A
on
ept instan
e has exa
tly one

feature from the set of alternative features. It
an

have any subset or all of the features from the set of

or-features.

The nodes
onne
ted dire
tly to the
on
ept node

are being denoted as its dire
t features; all other fea-

tures are its indire
t features, i.e. subfeatures. The in-

dire
t features
an be in
luded in the
on
ept instan
e

only if their parent node is in
luded.

2.2 Transformational Analysis in MPD

FM

In MPD

FM

both domains�appli
ation domain, i.e.

the domain to whi
h solution te
hniques is applied

(often denoted as problem domain), and solution do-

main, in whi
h the solution is performed (a program-

ming language)�are represented as feature models.

Subsequently, a mapping from appli
ation to solution

domain,
alled transformational analysis,
an be per-

formed in order to �nd the appropriate paradigms for

appli
ation domain features. The results of transfor-

mational analysis are then translated into a
ode skele-

ton.

Figure 1 depi
ts an example of transformational

analysis of text editing bu�er domain (based on an ex-

ample from [1℄). Text editing bu�er represent a state

of the �le being edited in a text editor. It
a
hes the

hanges until the user saves the text editing bu�er

into the �le. Di�erent text editing bu�ers employ dif-

ferent working set management s
hemes and use dif-

ferent
hara
ter sets. All text editing bu�ers load and

save their
ontents into �les, maintain a re
ord of the

number of lines and
hara
ters, the
ursor position,

et
.

The inheritan
e paradigm of Aspe
tJ is presented in

the right-bottom
orner of Figure 1. The �gure depi
ts

a part of the results a
hieved in the transformational

analysis of the File subdomain of text editing bu�ers.

We assume that File and its alternative subfeatures

that represent the �le types, like database, Unix �le,

et
., have already been mapped to the
lass paradigm.

While File mat
hes with base type's subfeature Class,

its subfeatures that represent the �le types mat
h with

subtype's Class subfeature. A

ording to this, the rela-

tionship between File and the �le types mat
hes with

inheritan
e.

3 VARIABILITY DEPENDENCY

GRAPHS

In MPD, variability dependen
y graphs are used to

show the relationship between domains and their pa-

rameters of variation [1℄. Despite a very simple nota-

tion, they enable the identi�
ation of
ir
ular depen-

den
ies between domains (so-
alled
odependent do-

mains), and the identi�
ation of shared domains and

their uni�
ation (i.e., redu
tion of variability depen-

den
y graphs).

Feature diagrams themselves are not
apable of ful-

�lling these tasks be
ause they are trees and therefore,

unlike variability dependen
y graphs,
annot
ontain

y
les. The edges in feature diagrams do not
arry any

prede�ned semanti
s [2℄, while the edges of variability

dependen
y graphs have the meaning of �depends on�.

If variability dependen
y graphs are to be derived

from feature models, the question is what kind of fea-

tures
orresponds to parameters of variation. Param-

eters of variation represent the pla
es where the varia-

tion in a system family appears: a parameter of varia-

tion is an abstra
tion of the whole range of possibilities

among whi
h one
an be sele
ted during the
reation

of a family member.

A
ategory of features that �ts into this role is the

singular variation point. A variation point is a feature

to whi
h variable features, i.e. optional, alternative,

optional alternative, or or-features, are atta
hed. A

singular variation point is su
h a variation point that

allows to in
lude at most one of its dire
t subfeatures.

The
omponent
ategories dependen
y graphs,

whi
h are used in generative programming to sort
om-

ponent
ategories into a GenVo
a layered ar
hite
ture,

are similar to variability dependen
y graphs. These

diagrams are also being drawn a

ording to feature

models. A node in
omponent
ategories dependen
y

graphs represents either a
omponent
ategory or
on-

�guration repository (a
omposite node
ontaining all

the
omponent
ategories that all other
omponent

ategories depend on, but that do not depend on ea
h

other), and edges represent �uses� dependen
y (in the

dire
tion of an arrow). A
on�guration repository
an

be easily de
omposed into a
omponent
ategories de-

penden
y subgraph.

A
omponent
ategory is an abstra
tion of the
om-

ponent. When generating family members, a
on
rete

omponent will take pla
e of the
omponent
ategory.

A

ording to this, a
omponent
ategory represents a

parameter of variation in the sense of MPD, or a sin-

gular variation point in the sense of feature modeling.

The �uses� dependen
y has the same meaning as �de-

pends on� relationship in MPD. A

ording to [2℄, A

uses B means that B is a support domain of A (e.g.,

�the domain of
ontainer pa
kages is a support domain

of the domain of matrix pa
kages�), and this means

that A uses B (i.e., the domain of matrix pa
kages

uses the domain of
ontainer pa
kages).

4 CONCLUSIONS

This arti
le brie�y presented multi-paradigm design

with feature modeling (MPD

FM

). A
onne
tion has

Text Editing Buffer

cursor position

number of characters

number of lines

yield data

replace data

load file

save file

Unix File

read

write

yield data

replace data

yield data replace data

yield data

replace data
whole page

whole file LRU fixed

…

Working Set Management

File

ASCII

UNICODE

…

Character Set

Working Set

Management DC

File DC

Character Set DC

debug

production

Debugging Code

…

read

write
status

database

read

write
name

contents

FileDebugging

Code

Character

Set

Text Editing

Buffer

Working Set

Management

VDG

FM

Inheritance

base type implements

subtype

extends

Class Interface Aspect

Class Interface Aspect

TA

Figure 1: The appli
ation domain feature model (FM) is mapped to solution domain in a pro
ess of transfor-

mational analysis (TA). Variability dependen
y graphs (VDG)
an be obtained from the feature model.

been found between feature models and variability de-

penden
y graphs that enables them to be derived di-

re
tly from the feature diagrams.

Figure 2 shows the main phases of both generative

programming and MPD

FM

. The
ommon phases are

de
orated with gray stripes, the phases appearing only

in MPD

FM

are depi
ted gray, while the phases ap-

pearing only in generative programming are depi
ted

white. The arrows between phases indi
ate the �ow of

results. As
an be seen from the �gure, one
ould do

the domain s
oping, feature modeling, and even
reate

dependen
y graphs without having to de
ide for either

of the two approa
hes in these early phases.

�

�
'RPDLQ�6FRSLQJ�

*HQHUDWRUV�

'HVLJQ�

7UDQVIRUPDWLRQDO�

$QDO\VLV�

6SHFLILFDWLRQ�

,PSOHPHQWDWLRQ�

9DULDELOLW\�

'HSHQGHQF\�

*UDSKV�

&RPSRQHQW�

&DWHJRULHV�

'HSHQGHQF\�

*UDSKV�

'HSHQGHQF\�*UDSKV�

*(1(5$7,9(�

352*5$00,1*�

08/7,�3$5$',*0�

'(6,*1�:,7+�

)($785(�02'(/,1*�

6ROXWLRQ�'RPDLQ�

)HDWXUH�0RGHOLQJ�

$SSOLFDWLRQ�'RPDLQ�

)HDWXUH�0RGHOLQJ�

Figure 2: Multi-paradigm design and generative pro-

gramming.

The real di�eren
e between the two approa
hes be-

omes more apparent now: while multi-paradigm de-

sign helps designer sele
t the appropriate paradigms

a

ording to the appli
ation domain needs, in genera-

tive programming, this sele
tion of paradigms is dele-

gated to the generator.

What has been des
ribed in this arti
le is a part

of the work on establishing MPD

FM

as su
h and

MPD

FM

for Aspe
tJ in parti
ular. Among other is-

sues, the further work on MPD

FM

embra
es in
orpo-

rating variability dependen
y graphs into transforma-

tional analysis of MPD

FM

and �nding a better way to

note the results of transformational analysis.

A
knowledgment. This work was partially sup-

ported by Slovak S
ien
e Grant Agen
y, grant

No. G1/7611/20.

REFERENCES

[1℄ J. O. Coplien. Multi-Paradigm Design for C++.

Addison-Wesley, 1999.

[2℄ K. Czarne
ki and U. Eisene
ker. Generative Pro-

graming: Prin
iples, Te
hniques, and Tools. Addison-

Wesley, 2000.

[3℄ V. Vrani¢. A
on
ept of paradigm in the multi-

pradigm software development. In Pro
. of 3rd S
i-

enti�
 Conferen
e on Ele
tri
al Engineering and In-

formation Te
hnology for Ph.D. Students (ElITe
h

2000), Bratislava, Slovakia, Sept. 2000.

[4℄ V. Vrani¢. Aspe
tJ paradigm model: A basis for multi-

paradigm design for Aspe
tJ. In J. Bos
h, editor, Pro
.

of 3rd International Conferen
e on Generative and

Component-Based Software Engineering (GCSE 2001),

LNCS 2186, pages 48�57, Erfurt, Germany, Sept. 2001.

Springer.

[5℄ V. Vrani¢. Towards multi-pradigm software develop-

ment. To appear in Journal of Computing and Infor-

mation Te
hnology (CIT), 2001.

