INCORPORATING VARIABILITY DEPENDENCY GRAPHS INTO
MULTI-PARADIGM DESIGN WITH FEATURE MODELING

Valentino Vranié¢
Department of Computer Science and Engineering
Faculty of Electrical Engineering and Information Technology
Slovak University of Technology in Bratislava

vranic@elf.stuba.sk, http://www.dcs.elf.stuba.sk/ vranic

Abstract

Multi-paradigm design enables to map the structures
of an application (problem) domain to the appropri-
ate structures (paradigms) supported by a solution do-
main (programming language). Both application and
solution domain, partitioned into subdomains, can be
represented as feature models, which is better than
the table representation used in the original multi-
paradigm design. Feature modeling is not capable
of expressing all the important dependencies between
the subdomains. Therefore the application of vari-
ability dependency graphs, used in the original multi-
paradigm design, in addition to feature modeling is
proposed here. Since diagrams similar to variability
dependency graphs are used in generative program-
ming, as well as feature modeling, multi-paradigm
design and generative programming are briefly com-
pared.

1 INTRODUCTION

Recent moves in the field of software development
point to the need for multi-paradigm software devel-
opment in the sense of finding the best way to use
the means that are at disposal [5]. The concept of
paradigm in software development appears to be im-
portant regarding this issue.

The concept of paradigm in the context of soft-
ware development can be figured at two levels of gran-
ularity: large-scale and small-scale [5]. Large-scale
paradigms are what is usually considered under the
term paradigm, e.g. object-oriented programming.
Although seemingly well-defined, after a careful ex-
amination, they show up as elusive [3, 5].

The small-scale paradigms appear as more appro-
priate for the purpose of multi-paradigm software de-
velopment. They are configurations of commonality
and variability [1]. As such, they are akin to the fea-
tures of programming languages. For example, inheri-
tance is characterized by common behavior and struc-
ture, and variability in structure. With respect to the
small-scale paradigms, multi-paradigm software devel-
opment is a metaparadigm; it is a way of deciding
which paradigm to use for a given feature of a system

or family of systems to be implemented.

Multi-paradigm design for C++ [1] is such a meta-
paradigm for the paradigms supported by C++.
Multi-paradigm design (MPD) can be applied to other
solution domains as well; e.g., MPD for AspectJ [4].

MPD for AspectdJ is not only an application of MPD
to the solution domain of AspectJ; it brings the ca-
pabilities of feature modeling into MPD changing it
into MPD with feature modeling: MPD gjps. Section 2
presents MPD g, in a brief detail. Section 3 explains
variability dependency graphs and how they can be
incorporated into MPDgp,. Section 4 recapitulates
the article and gives some insight into the relationship
between MPD and generative programming.

2 MULTI-PARADIGM DESIGN
WITH FEATURE MODELING

A conceptual modeling technique used in domain
engineering—known as feature modeling [2]—is akin
to commonality and variability analysis used in MPD
for C++ [1]. Feature models appear to be more appro-
priate to capture commonalities and variabilities than
the tables that have been originally used in MPD [4].

2.1 Feature Diagrams

Feature diagrams are the key part of a feature model.
Besides them, some additional information is provided
with each feature [2]. The relevant information for
MPDpgjs that each feature should be accompanied
with is: semantic description, rationale, constraints,
default dependency rules, binding mode, and instan-
tiation (in this article such information will not be
provided explicitly).

A feature diagram, like the one presented in Fig-
ure 1, is a directed tree with edge decorations. The
root represents a concept, and the rest of the nodes
represent features. Edges connect the concept with
its features (a feature can be understood as a concept
also). There are two types of edges used to distin-
guish between mandatory features, ended by a filled
circle, and optional features, ended by an empty cir-
cle. A concept instance must have all the mandatory
features and can have the optional features.

The edge decorations are drawn as arcs connecting
the subsets of the edges originating in the same node.
They are used to define a partitioning of the subnodes
of the node the edges originate from into alternative
and or-features. A concept instance has exactly one
feature from the set of alternative features. It can
have any subset or all of the features from the set of
or-features.

The nodes connected directly to the concept node
are being denoted as its direct features; all other fea-
tures are its indirect features, i.e. subfeatures. The in-
direct features can be included in the concept instance
only if their parent node is included.

2.2 Transformational Analysis in MPDpys

In MPDpgjs both domains—application domain, i.e.
the domain to which solution techniques is applied
(often denoted as problem domain), and solution do-
main, in which the solution is performed (a program-
ming language)—are represented as feature models.
Subsequently, a mapping from application to solution
domain, called transformational analysis, can be per-
formed in order to find the appropriate paradigms for
application domain features. The results of transfor-
mational analysis are then translated into a code skele-
ton.

Figure 1 depicts an example of transformational
analysis of text editing buffer domain (based on an ex-
ample from [1]). Text editing buffer represent a state
of the file being edited in a text editor. It caches the
changes until the user saves the text editing buffer
into the file. Different text editing buffers employ dif-
ferent working set management schemes and use dif-
ferent character sets. All text editing buffers load and
save their contents into files, maintain a record of the
number of lines and characters, the cursor position,
etc.

The inheritance paradigm of AspectJ is presented in
the right-bottom corner of Figure 1. The figure depicts
a part of the results achieved in the transformational
analysis of the File subdomain of text editing buffers.
We assume that File and its alternative subfeatures
that represent the file types, like database, Uniz file,
etc., have already been mapped to the class paradigm.
While File matches with base type’s subfeature Class,
its subfeatures that represent the file types match with
subtype’s Class subfeature. According to this, the rela-
tionship between File and the file types matches with
inheritance.

3 VARIABILITY DEPENDENCY
GRAPHS

In MPD, variability dependency graphs are used to
show the relationship between domains and their pa-
rameters of variation [1]. Despite a very simple nota-

tion, they enable the identification of circular depen-
dencies between domains (so-called codependent do-
mains), and the identification of shared domains and
their unification (i.e., reduction of variability depen-
dency graphs).

Feature diagrams themselves are not capable of ful-
filling these tasks because they are trees and therefore,
unlike variability dependency graphs, cannot contain
cycles. The edges in feature diagrams do not carry any
predefined semantics [2], while the edges of variability
dependency graphs have the meaning of “depends on”.

If variability dependency graphs are to be derived
from feature models, the question is what kind of fea-
tures corresponds to parameters of variation. Param-
eters of variation represent the places where the varia-
tion in a system family appears: a parameter of varia-
tion is an abstraction of the whole range of possibilities
among which one can be selected during the creation
of a family member.

A category of features that fits into this role is the
singular variation point. A variation point is a feature
to which variable features, i.e. optional, alternative,
optional alternative, or or-features, are attached. A
singular variation point is such a variation point that
allows to include at most one of its direct subfeatures.

The component categories dependency graphs,
which are used in generative programming to sort com-
ponent categories into a GenVoca layered architecture,
are similar to variability dependency graphs. These
diagrams are also being drawn according to feature
models. A node in component categories dependency
graphs represents either a component category or con-
figuration repository (a composite node containing all
the component categories that all other component
categories depend on, but that do not depend on each
other), and edges represent “uses” dependency (in the
direction of an arrow). A configuration repository can
be easily decomposed into a component categories de-
pendency subgraph.

A component category is an abstraction of the com-
ponent. When generating family members, a concrete
component will take place of the component category.
According to this, a component category represents a
parameter of variation in the sense of MPD, or a sin-
gular variation point in the sense of feature modeling.
The “uses” dependency has the same meaning as “de-
pends on” relationship in MPD. According to [2], A
uses B means that B is a support domain of A (e.g.,
“the domain of container packages is a support domain
of the domain of matrix packages”’), and this means
that A uses B (i.e., the domain of matrix packages
uses the domain of container packages).

4 CONCLUSIONS

This article briefly presented multi-paradigm design
with feature modeling (MPDpgjs). A connection has

Working Set
Management

Character
Set

<k

File

Text Editing Buffer

load file

X

write

D, &
Debugging Code
database ASCII £ yield data
S
. -F'l DC
write - number of lines
|W0rking Set Managementl Character Set DC number of characters
IR Working Set
Management DC

Class || Interface || Aspect

yield data |[replace data

Figure 1: The application domain feature model (FM) is mapped to solution domain in a process of transfor-
mational analysis (TA). Variability dependency graphs (VDG) can be obtained from the feature model.

been found between feature models and variability de-
pendency graphs that enables them to be derived di-
rectly from the feature diagrams.

Figure 2 shows the main phases of both generative
programming and MPDgjs. The common phases are
decorated with gray stripes, the phases appearing only
in MPDpgj,s are depicted gray, while the phases ap-
pearing only in generative programming are depicted
white. The arrows between phases indicate the flow of
results. As can be seen from the figure, one could do
the domain scoping, feature modeling, and even create
dependency graphs without having to decide for either
of the two approaches in these early phases.

GENERATIVE Domain Scoping MULTI-PARADIGM
PROGRAMMING DESIGN WITH
FEATURE MODELING

Application Domain

Feature Modeling Solution Domain

Feature Modeling

Specification

Dependency Graphs

| omponent || Variability '
\ 4 || Categories - :
Generators 5/: Dependency Graphs ?\ Transformational
Design | i Graphs i Analysis

Implementation

Figure 2: Multi-paradigm design and generative pro-
gramming.

The real difference between the two approaches be-
comes more apparent now: while multi-paradigm de-
sign helps designer select the appropriate paradigms
according to the application domain needs, in genera-
tive programming, this selection of paradigms is dele-

gated to the generator.

What has been described in this article is a part
of the work on establishing MPDgjy, as such and
MPD gy for AspectJ in particular. Among other is-
sues, the further work on MPDgjps embraces incorpo-
rating variability dependency graphs into transforma-
tional analysis of MPD gy, and finding a better way to
note the results of transformational analysis.

Acknowledgment. This work was partially sup-
ported by Slovak Science Grant Agency, grant
No. G1/7611/20.

REFERENCES

[1] J. O. Coplien. Multi-Paradigm Design for C++.
Addison-Wesley, 1999.

[2] K. Czarnecki and U. Eisenecker. Generative Pro-
graming: Principles, Techniques, and Tools. Addison-
Wesley, 2000.

[3] V. Vranic. A concept of paradigm in the multi-
pradigm software development. In Proc. of 3rd Sci-
entific Conference on FElectrical Engineering and In-
formation Technology for Ph.D. Students (ELITECH
2000), Bratislava, Slovakia, Sept. 2000.

[4] V. Vrani¢. Aspect] paradigm model: A basis for multi-
paradigm design for AspectJ. In J. Bosch, editor, Proc.
of 3rd International Conference on Generative and
Component-Based Software Engineering (GCSE 2001),
LNCS 2186, pages 48-57, Erfurt, Germany, Sept. 2001.
Springer.

[5] V. Vrani¢. Towards multi-pradigm software develop-
ment. To appear in Journal of Computing and Infor-
mation Technology (CIT), 2001.

