
INCORPORATING VARIABILITY DEPENDENCY GRAPHS INTO

MULTI-PARADIGM DESIGN WITH FEATURE MODELING

Valentino Vrani¢

Department of Computer S
ien
e and Engineering

Fa
ulty of Ele
tri
al Engineering and Information Te
hnology

Slovak University of Te
hnology in Bratislava

vrani
�elf.stuba.sk, http://www.d
s.elf.stuba.sk/~vrani


Abstra
t

Multi-paradigm design enables to map the stru
tures

of an appli
ation (problem) domain to the appropri-

ate stru
tures (paradigms) supported by a solution do-

main (programming language). Both appli
ation and

solution domain, partitioned into subdomains, 
an be

represented as feature models, whi
h is better than

the table representation used in the original multi-

paradigm design. Feature modeling is not 
apable

of expressing all the important dependen
ies between

the subdomains. Therefore the appli
ation of vari-

ability dependen
y graphs, used in the original multi-

paradigm design, in addition to feature modeling is

proposed here. Sin
e diagrams similar to variability

dependen
y graphs are used in generative program-

ming, as well as feature modeling, multi-paradigm

design and generative programming are brie�y 
om-

pared.

1 INTRODUCTION

Re
ent moves in the �eld of software development

point to the need for multi-paradigm software devel-

opment in the sense of �nding the best way to use

the means that are at disposal [5℄. The 
on
ept of

paradigm in software development appears to be im-

portant regarding this issue.

The 
on
ept of paradigm in the 
ontext of soft-

ware development 
an be �gured at two levels of gran-

ularity: large-s
ale and small-s
ale [5℄. Large-s
ale

paradigms are what is usually 
onsidered under the

term paradigm, e.g. obje
t-oriented programming.

Although seemingly well-de�ned, after a 
areful ex-

amination, they show up as elusive [3, 5℄.

The small-s
ale paradigms appear as more appro-

priate for the purpose of multi-paradigm software de-

velopment. They are 
on�gurations of 
ommonality

and variability [1℄. As su
h, they are akin to the fea-

tures of programming languages. For example, inheri-

tan
e is 
hara
terized by 
ommon behavior and stru
-

ture, and variability in stru
ture. With respe
t to the

small-s
ale paradigms, multi-paradigm software devel-

opment is a metaparadigm; it is a way of de
iding

whi
h paradigm to use for a given feature of a system

or family of systems to be implemented.

Multi-paradigm design for C++ [1℄ is su
h a meta-

paradigm for the paradigms supported by C++.

Multi-paradigm design (MPD) 
an be applied to other

solution domains as well; e.g., MPD for Aspe
tJ [4℄.

MPD for Aspe
tJ is not only an appli
ation of MPD

to the solution domain of Aspe
tJ; it brings the 
a-

pabilities of feature modeling into MPD 
hanging it

into MPD with feature modeling: MPD

FM

. Se
tion 2

presents MPD

FM

in a brief detail. Se
tion 3 explains

variability dependen
y graphs and how they 
an be

in
orporated into MPD

FM

. Se
tion 4 re
apitulates

the arti
le and gives some insight into the relationship

between MPD and generative programming.

2 MULTI-PARADIGM DESIGN

WITH FEATURE MODELING

A 
on
eptual modeling te
hnique used in domain

engineering�known as feature modeling [2℄�is akin

to 
ommonality and variability analysis used in MPD

for C++ [1℄. Feature models appear to be more appro-

priate to 
apture 
ommonalities and variabilities than

the tables that have been originally used in MPD [4℄.

2.1 Feature Diagrams

Feature diagrams are the key part of a feature model.

Besides them, some additional information is provided

with ea
h feature [2℄. The relevant information for

MPD

FM

that ea
h feature should be a

ompanied

with is: semanti
 des
ription, rationale, 
onstraints,

default dependen
y rules, binding mode, and instan-

tiation (in this arti
le su
h information will not be

provided expli
itly).

A feature diagram, like the one presented in Fig-

ure 1, is a dire
ted tree with edge de
orations. The

root represents a 
on
ept, and the rest of the nodes

represent features. Edges 
onne
t the 
on
ept with

its features (a feature 
an be understood as a 
on
ept

also). There are two types of edges used to distin-

guish between mandatory features, ended by a �lled


ir
le, and optional features, ended by an empty 
ir-


le. A 
on
ept instan
e must have all the mandatory

features and 
an have the optional features.



The edge de
orations are drawn as ar
s 
onne
ting

the subsets of the edges originating in the same node.

They are used to de�ne a partitioning of the subnodes

of the node the edges originate from into alternative

and or-features. A 
on
ept instan
e has exa
tly one

feature from the set of alternative features. It 
an

have any subset or all of the features from the set of

or-features.

The nodes 
onne
ted dire
tly to the 
on
ept node

are being denoted as its dire
t features; all other fea-

tures are its indire
t features, i.e. subfeatures. The in-

dire
t features 
an be in
luded in the 
on
ept instan
e

only if their parent node is in
luded.

2.2 Transformational Analysis in MPD

FM

In MPD

FM

both domains�appli
ation domain, i.e.

the domain to whi
h solution te
hniques is applied

(often denoted as problem domain), and solution do-

main, in whi
h the solution is performed (a program-

ming language)�are represented as feature models.

Subsequently, a mapping from appli
ation to solution

domain, 
alled transformational analysis, 
an be per-

formed in order to �nd the appropriate paradigms for

appli
ation domain features. The results of transfor-

mational analysis are then translated into a 
ode skele-

ton.

Figure 1 depi
ts an example of transformational

analysis of text editing bu�er domain (based on an ex-

ample from [1℄). Text editing bu�er represent a state

of the �le being edited in a text editor. It 
a
hes the


hanges until the user saves the text editing bu�er

into the �le. Di�erent text editing bu�ers employ dif-

ferent working set management s
hemes and use dif-

ferent 
hara
ter sets. All text editing bu�ers load and

save their 
ontents into �les, maintain a re
ord of the

number of lines and 
hara
ters, the 
ursor position,

et
.

The inheritan
e paradigm of Aspe
tJ is presented in

the right-bottom 
orner of Figure 1. The �gure depi
ts

a part of the results a
hieved in the transformational

analysis of the File subdomain of text editing bu�ers.

We assume that File and its alternative subfeatures

that represent the �le types, like database, Unix �le,

et
., have already been mapped to the 
lass paradigm.

While File mat
hes with base type's subfeature Class,

its subfeatures that represent the �le types mat
h with

subtype's Class subfeature. A

ording to this, the rela-

tionship between File and the �le types mat
hes with

inheritan
e.

3 VARIABILITY DEPENDENCY

GRAPHS

In MPD, variability dependen
y graphs are used to

show the relationship between domains and their pa-

rameters of variation [1℄. Despite a very simple nota-

tion, they enable the identi�
ation of 
ir
ular depen-

den
ies between domains (so-
alled 
odependent do-

mains), and the identi�
ation of shared domains and

their uni�
ation (i.e., redu
tion of variability depen-

den
y graphs).

Feature diagrams themselves are not 
apable of ful-

�lling these tasks be
ause they are trees and therefore,

unlike variability dependen
y graphs, 
annot 
ontain


y
les. The edges in feature diagrams do not 
arry any

prede�ned semanti
s [2℄, while the edges of variability

dependen
y graphs have the meaning of �depends on�.

If variability dependen
y graphs are to be derived

from feature models, the question is what kind of fea-

tures 
orresponds to parameters of variation. Param-

eters of variation represent the pla
es where the varia-

tion in a system family appears: a parameter of varia-

tion is an abstra
tion of the whole range of possibilities

among whi
h one 
an be sele
ted during the 
reation

of a family member.

A 
ategory of features that �ts into this role is the

singular variation point. A variation point is a feature

to whi
h variable features, i.e. optional, alternative,

optional alternative, or or-features, are atta
hed. A

singular variation point is su
h a variation point that

allows to in
lude at most one of its dire
t subfeatures.

The 
omponent 
ategories dependen
y graphs,

whi
h are used in generative programming to sort 
om-

ponent 
ategories into a GenVo
a layered ar
hite
ture,

are similar to variability dependen
y graphs. These

diagrams are also being drawn a

ording to feature

models. A node in 
omponent 
ategories dependen
y

graphs represents either a 
omponent 
ategory or 
on-

�guration repository (a 
omposite node 
ontaining all

the 
omponent 
ategories that all other 
omponent


ategories depend on, but that do not depend on ea
h

other), and edges represent �uses� dependen
y (in the

dire
tion of an arrow). A 
on�guration repository 
an

be easily de
omposed into a 
omponent 
ategories de-

penden
y subgraph.

A 
omponent 
ategory is an abstra
tion of the 
om-

ponent. When generating family members, a 
on
rete


omponent will take pla
e of the 
omponent 
ategory.

A

ording to this, a 
omponent 
ategory represents a

parameter of variation in the sense of MPD, or a sin-

gular variation point in the sense of feature modeling.

The �uses� dependen
y has the same meaning as �de-

pends on� relationship in MPD. A

ording to [2℄, A

uses B means that B is a support domain of A (e.g.,

�the domain of 
ontainer pa
kages is a support domain

of the domain of matrix pa
kages�), and this means

that A uses B (i.e., the domain of matrix pa
kages

uses the domain of 
ontainer pa
kages).

4 CONCLUSIONS

This arti
le brie�y presented multi-paradigm design

with feature modeling (MPD

FM

). A 
onne
tion has
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Figure 1: The appli
ation domain feature model (FM) is mapped to solution domain in a pro
ess of transfor-

mational analysis (TA). Variability dependen
y graphs (VDG) 
an be obtained from the feature model.

been found between feature models and variability de-

penden
y graphs that enables them to be derived di-

re
tly from the feature diagrams.

Figure 2 shows the main phases of both generative

programming and MPD

FM

. The 
ommon phases are

de
orated with gray stripes, the phases appearing only

in MPD

FM

are depi
ted gray, while the phases ap-

pearing only in generative programming are depi
ted

white. The arrows between phases indi
ate the �ow of

results. As 
an be seen from the �gure, one 
ould do

the domain s
oping, feature modeling, and even 
reate

dependen
y graphs without having to de
ide for either

of the two approa
hes in these early phases.
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Figure 2: Multi-paradigm design and generative pro-

gramming.

The real di�eren
e between the two approa
hes be-


omes more apparent now: while multi-paradigm de-

sign helps designer sele
t the appropriate paradigms

a

ording to the appli
ation domain needs, in genera-

tive programming, this sele
tion of paradigms is dele-

gated to the generator.

What has been des
ribed in this arti
le is a part

of the work on establishing MPD

FM

as su
h and

MPD

FM

for Aspe
tJ in parti
ular. Among other is-

sues, the further work on MPD

FM

embra
es in
orpo-

rating variability dependen
y graphs into transforma-

tional analysis of MPD

FM

and �nding a better way to

note the results of transformational analysis.
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