Lightweight Aspect-Oriented Software Product
Lines with Automated Product Derivation

Jakub Perdek[0009—0003—3616—4373] 41] Valentino Vranicl0000—0001—9044—4593]

Institute of Informatics, Information Systems and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava
xperdek@stuba. sk, vranic@stuba.sk

Abstract. Aspect-oriented software product lines are not a new idea,
but their application is facing two obstacles: establishing software prod-
uct lines is challenging and aspect-oriented programming is not that
widely accepted. In this paper, we address exactly these two obstacles
by an approach to establishing lightweight aspect-oriented software prod-
uct lines with automated product derivation. This is particularly relevant
for data preprocessing systems, which are typically custom-built with
respect to the data and its structure. They may involve data cleaning,
reduction, profiling, validation, etc., which may have variant implementa-
tions and may be composed in different settings. The approach is simple
and accessible because developers decide about variation points directly
in the code without any assumption on development process and ap-
plied management. Also, it allows for variability management by making
the code readable, configurable, and adaptable mainly to scripts and
code fragments in a modular and concise way. The use of annotations
helps preserve feature models in code. We presented the approach on the
battleship game and data preprocessing pipeline product lines, which in-
clude the configuration of features, product derivation mechanism based
on annotations applied by the user on certain classes and methods, imple-
mentation of features according to the feature model, and the possibility
to generate all given software product derivations.

1 Introduction

Software product lines (SPL) are an efficient approach to software reuse. The
secret of their success lies in limiting the effort for reuse to a set of related
software systems within one organization (sometimes denoted as a family). Such
systems have a lot of common features, but they also have some variable features.
These have to be implemented in such a way that would enable them to vary.
Consequently, a design of a software product line starts by mapping the features
it should cover. This requires some kind of feature modeling to be employed,
which is not necessarily the academic FODA-like notation [15,3].

It is obvious that variable features are best implemented in a pluggable fash-
ion, but this is not easy to achieve in traditional object-oriented programming

2 J. Perdek and V. Vranié

because their implementation tends to crosscut many other features [25]. Aspect-
oriented programming addresses exactly the issue of crosscutting concerns. The
best known aspect-oriented programming language is AspectJ, which is an ex-
tension to Java, but many other programming languages exhibit aspect-oriented
features, e.g., Python, JavaScript, etc. [9,10].

Aspect-oriented software product lines are not a new idea, but their poten-
tial application is facing two obstacles: establishing software product lines is
challenging and aspect-oriented programming is not that widely accepted. In
this paper, we address exactly these two obstacles by an approach to establish-
ing lightweight aspect-oriented software product lines with automated product
derivation. This is particularly relevant for data preprocessing systems, which
are typically custom-built with respect to the data and its structure. They may
involve data cleaning, reduction, profiling, validation, etc., which may have vari-
ant implementations and may be composed in different settings.

The rest of the paper is organized as follows. Section 2 explains the position
of aspect-oriented programming in software product lines. Section 3 provides an
overview of establishing a software product line for a battleship game. Section 4
introduces annotations and expressions which help to choose content to copy into
the resulting project presented on the game derivation based on actual configu-
ration settings. Section 5 presents evaluation and discussion. Section 6 compares
the approach proposed in this paper to related work. Section 7 concludes the

paper.

2 Software Product Lines and Aspect-Oriented
Modularization

Variability is the main part of software product development and products are
built by resolving it in a way that can build customer specific products [8]. Soft-
ware products often emerge from the success of the market with different needs
that can be provided by actual knowledge determined by features, relationships
among them and between them, and software artifacts that provide the imple-
mentation of these features. These known actual knowledge sources are used for
systematic reuse introduced by software product line engineering [22]. Evolving
products then depend on their real-world applications which should provide a
flexible way how to apply constantly changing needs. Given features may affect
several places in models and code which can cause problems during its adapta-
tions with other already included features. These places where changes occur [14]
are called variation points and represent possible ways how to model variability.
Interaction of features can cause a need to generate tailored software artifacts
or software artifacts for their next modification for the final application. It is
easier to configure the process by applying a change to code at the places where
components are generated [25].

Aspect-oriented model driven software product line development models vari-
ability on model level and aspects to implement these models, primarily their
crosscutting features [23]. Models provide more abstract views of features to be

Lightweight Aspect-Oriented SPLs with Automated Product Derivation 3

separated and be more effectively managed such as traced according to customer
requirements, in comparison to their configuration on code level [23].

The main problems of AspectJ are the necessity to maintain certain conven-
tions about names of methods and classes [17], as well as to divide the application
into appropriate parts for changing their behavior and introduce hook methods
only to hang up aspect on them [16]. Other issues can arise with certain types of
applications. For example, during the refactoring of the database system, there
was necessary to use privileged aspects to access non-public variables, but this
violates encapsulation [16]. Aspect behavior can modify and use these variables.
Aspects often require mentioned supervision on the design of the final solution
otherwise the solution will be less maintainable.

3 Establishing a Software Product Line

Our approach assumes that an initial software product exists and that it ex-
hibits good object-oriented modularization. We rely on this, so that we can
introduce variable features using aspect-oriented programming. After this step
aspects implemented by Aspect] are inseparable parts of the resulting products
and product line code. We map both common and variable features by a feature
model, an example of which can be found in the next section.

We will explain our approach on an implementation of the battleship game
product line. We adopted and adapted the basic game from a publicly available
resource.! We refactored it significantly to improve its object-oriented modular-
ization.

After changing the visibility of variables, adding a configuration file for the
base state of an application, and moving appropriate content to newly created
classes, we needed to design configurable features, for which we relied on known
aspect-oriented practices [16,8]. We did this using AspectJ, a relatively stable
aspect-oriented extension of Java.2.

We based variable features on AspectJ because this way we can additively
integrate concerns where each is implemented as a separate aspect. Thanks to
presented modularity the solution is more extendable. For example, the feature
for setting player names requires adding another method before creating the
functionality to set names to players. Without aspects, only condition statements
will be used instead. There is also no possibility to add a player name variable
to the Player class only for this case. But, all required functionality such as new
variables and methods can be added into segregated aspects. It is also possible
to configure or exclude them according to the configuration which can be loaded
when the application starts or changing values at runtime. By using aspects, we
only need to specify a pointcut that provides the mapping of the certain location
where players are created to the executed method. In this aspect method, the
program loads names which are typed by players from the input. The whole
functionality is in one aspect.

! https://github.com/juletx/BattleshipFeatureIDE
2 https://www.eclipse.org/aspectj/

https://github.com/juletx/BattleshipFeatureIDE
https://www.eclipse.org/aspectj/

4 J. Perdek and V. Vranié

We found that aspects well suited the configuration of settings in the solution
by directly putting conditions from the configuration to manage the optional
inclusion of given concerns. Different implementations of the same aspect can
be used to apply specific configurations reflecting the customer’s needs. The
configuration is applied only by replacing the parameters of overloaded methods
with the loaded values from the configuration file before calling these methods.

4 Product Derivation

Since aspects in AspectJ become active simply if they are included in the compi-
lation, the product derivation in our approach is realized by simply copying the
corresponding aspects to the project folder. For non-aspect features, the classes
that implement them are copied, of course. This process is managed by anno-
tating certain code parts and specifying the condition inside expressions that
are inserted into them. Feature inclusion must follow the constraints set by the
feature model in terms of variability if the modeling of the variability is based
on feature models. Furthermore, a feature can be included only if its parent is
included, even if it is mandatory. Other models can be incorporated accordingly
by changing annotations or variables to meet given restrictions.

4.1 Annotating Variation Points

The comprehensive and readable rules which will contain the mapping for the
features are needed. We come up with the idea of creating annotations with
expressions that allow specifying a condition when a feature should be copied and
when not. Each annotation starts with the comment characters (//) followed by
an identifier for the given annotation type. The last part consists of an expression
in JSON format. It contains variables with assigned values, especially operators
as reserved ones (AND or OR) to evaluate the truthfulness of grouped variables
in a certain way.

Mapping of some variables with given values to the feature model can be seen
in Figure 1. Each rule is prescribed and handled by a given annotation type and
thus changing its purpose needs to be applied in the derivator. Derivation hap-
pens in design time by evaluating all these expressions inside the project folder.
The result of this operation has an impact on whether this prescribed function-
ality will be applied or not. For example, if the variable named playerNames
mapped to the feature with the same name is set to true and all expressions
where its included are evaluated positively, then all necessary (annotated) code
parts for this feature will be copied in the final solution. If an expression in the
rule is empty, then it is evaluated as true. If a file contains no annotations or all
rules have their annotations evaluated as false, then the file will not be copied
into the final solution.

In order to copy only modular code fragments and marginally their crosscut-
ting functionality, these annotations are used:

Lightweight Aspect-Oriented SPLs with Automated Product Derivation 5

{“computer”: “true”}

{«difficulty”: “beginner”} {“statistics”: “true”}

{“challenge”: “true”}

Legend:
¥ Mandatory

< Optional
A Altemative Group
1 T {“computer”: “true”, Abstract Feature

: . Concrete Feat
Beginner | | Intermediate | | Expert Strategy “strategy”: “true”} onerete Feature

{“playerNames”: “true”}

Battleship

About | | Difficulty | PlayerNames | Computer | Statistics | | Challenge

*— e
Row Column

Topaown Bondep Rand;mRow Leftliight RigHtLeﬂ Randoﬁ'\Cqumn

Fig. 1. The battleship game feature model with derivation rules.

//@{} This annotation type is used to annotate classes, interfaces, or aspects
to copy them along with their source file. An additional check can be added
to the program that one of the keywords related to the used programming
language is located after annotation.

//#{} This annotation type is suitable to include or exclude given methods.
If the file should be copied, then at least one condition in the annotation
should evaluate to true. This annotation type should not be mixed with the
first one because nested annotations are not supported.

//%{} By using this annotation type, some import statements (each repre-
sented as one line of code) are included or excluded according to including
or excluding a given method from the file. Consequently, it should be used
restrictively with the second annotation.

Making a product ready is only a matter of splitting features into modular
parts and making clones of selected code parts according to the product spec-
ification. Effective decomposition into separate files allows copying whole files
rather than code fragments. The aspects woven into the code are essential here.
If fragmentation would cause these modular parts to lose their main responsi-
bilities, then the latter two annotations are used. The inner content then can be
managed effectively. Annotated methods can make other dependencies by im-
porting classes that will not be part of the final product. Their import statements
are, thus, managed similarly. The third annotation type solves these problems
by including or excluding only one line of code.

A typical example is the functionality for setting names (the PlayerNames
feature) which is affecting the Computer and Player classes displayed in the fea-
ture model in Figure 1. Methods that are setting names are implemented in a
separate aspect and are annotated with the second annotation. Both of them
contain the playerNames variable in their expressions. Except for the first anno-
tation, the second one contains also the computerPlayer variable which prevents

6 J. Perdek and V. Vranié

problems if the functionality which simulates an opponent (the Computer fea-
ture) will be unavailable (not copied) for a given variant. In this case, the import
statements of this functionality are omitted by using the third annotation type.

For making more complex conditions, logical and and or can be inserted into
each other to represent hierarchical dependencies between related features in the
feature model. Figure 2 shows an example of this.

iAND": {
HOR": {
"variablel": "false",
"TAND": {
"variable2": "true",
"variable3": "true"
}
b

"variable4": "true"

Fig. 2. A complex derivation rule.

4.2 Product Derivation

The product derivation can start by launching the derivator after variable code
parts are annotated according to the proposed mapping of the variability model,
especially the feature model. This happens in design time by configuring these
mapped values. Each one is set to the one that fits the resulting product in this
step. No other action is needed from developers, except evaluating errors caused
by improperly chosen or configured expressions in place of variation points.

Figure 3 shows the classes involved in product derivation. The DerivationManager
class manages product derivation. The ProjectCopier class is used to copy an
empty project and the FileCopy class manages the reading and writing of a
given file as a stream. During copying, it is necessary to determine whether a
file should be copied or not. For this purpose, the program needs to find anno-
tations and evaluate the expression they contain, which is performed by the
DerivationAnnotationManager and corresponding annotation specific classes.
This search is repeated after any annotation is found until the end of the file.
The DerivationVariableProcessor class helps the DerivationAnnotationManager
class to recursively evaluate expressions associated with the annotation.

The derivator is available and open for further customization.?

3 nttps://github.com/jperdek/productLineAnalysisGame

https://github.com/jperdek/productLineAnalysisGame

Lightweight Aspect-Oriented SPLs with Automated Product Derivation 7

<<class>>
DerivationManager

+ processDerivation(inputPath, outputPath):
void

+ createSoftwareDerivation(inputPath,
outputPath, newProjectName,
derivationManager): void

Q
<<class>>
ProjectCopier

+ copyExistingProject

<<class>>
ConfigurationVariableManager
- configVariables: Map<String, String>
+ addVariable(variableName, value): void

+ getVariable(variableName): String

+ getAllVariableNames(variableName): String[]

<<class>>

— = = cuserm — | DerivationVariableProcessor

+ andDerivationRecursive(string)lSONObject): boolean
+andDerivationRecursive(JSONObject): boolean

+ orDerivationRecursive(string)SONObject): boolean
+ orDerivationRecursive(JSONObject): boolean

pathToProjectTree "
g <<class>>
<<class>> pathToNewProject)
cass ImportAnnotation

[~ # process(reader, writer, buffer): boolean
process(reader, buffer, contentBuffer): boolean
checkAnnotation(stringToCheck): boolean

DerivationAnnotationManager

+ searchForAnnotation(reader,
writer): boolean
- chooseAnnotationMethod(reader,

| # process(reader, writer, buffer): boolean MethodAnnotation

<

<<use>>

process(reader, buffer, contentBuffer): boolean
checkAnnotation(stringToCheck): boolean
parse(reader, writer, buffer): boolean

I~ # process(reader, writer, buffer): boolean
process(reader, buffer, contentBuffer): boolean

checkAnnotation(stringToCheck): boolean

| # parse(reader, buffer, contentBuffer): boolean

<<class>>
ClassAnnotation

<<class>>
FileCopy

|

|

|

|

|

|

|

| mark, writer, buffer): boolean <<abstract>>
| * DerivationAnnotation
|

u

|

|

|

|

|

— # process(reader, writer, buffer): boolean
process(reader, buffer, contentBuffer): boolean
checkAnnotation(stringToCheck): boolean

+ processFile(inputPath, <<class>>

outputPath): void

IncorrectAnnotationUsageException

Fig. 3. Product derivator

5 Discussion

Aspects help to move the logic of crosscutting concerns into modular units and
enhance functionality without modification of existing code. Well-modularized
crosscutting concerns can be easily reused in the form of modules such as in
HealthWatcher [11]. Typical examples are large parts of interacting code for
logging, exception handling, and third-party functionality which is moved to
aspects. According to these observations, we designed a mechanism to easily copy
certain parts of a given project and let the project be functional and possibly
prepared for the next development phase.

Applying the functionality of AspectJ to given join points can be restricted
by adding conditions to their pointcuts. Whole functionality is thus available in
resulting products. Many of these conditions remain redundant, except in the
case when they need to be selected and changed dynamically at runtime. Our
annotations are language-independent and are removed from all derived prod-
ucts, thus they are selected before compilation in design time. Also, if features
affect each other, then modularity cannot be preserved with aspects without
decomposing this functionality further.

Appropriate domain analysis is required to design common and variable fea-
tures of a given system in order to understand which products are possible to
generate. For this purpose, we used feature models. In reality, many of these
models can exist, but only a few of them support the changing needs of the
customers [4]. We intended to find a mechanism to preserve feature models in
code and make the integration process easier by letting developers manage it

8 J. Perdek and V. Vranié

directly in an easily readable way as a response to the main problems observed
by Bischoff et al. [5].

Sometimes, features can collide and some features can’t be used together.
Often, adding another concern to a separate layer can fix this issue [6]. But in
case of serious restrictions, it’s necessary to think about the derivation of a given
product and develop certain features without those colliding ones.

Our approach can be applied for the both revolutionary and evolutionary
development of software product lines [7]. Although we assume an initial prod-
uct to exist, this is not inevitable as the initial product can be developed by
establishing the product line. It suits more in the case of already applied domain
analysis to construct feature models. According to it, we should be able to ex-
plicitly formulate an expression for each feature whether it should be included
or not.

In the revolutionary development of software product lines, it is necessary
to develop modular applications with all their features. All products can be
derived after annotating given code fragments with direct mapping to features
in the form of introduced expressions.

The evolutionary development of software product lines requires construct-
ing modules for solutions incrementally. After their creation, these modules are
annotated, and included expressions are properly configured to manage their
integration. In the end, the derivation mechanism omits not annotated code
fragments.

6 Related Work

The most similar to our approach is the frame technology, which is also capable
of creating easily adaptable components with a language-independent mecha-
nism [18]. However, the code is mixed with tags and it is not possible to compile
it. The tag hierarchy can be complex and the tag endings in it can be difficult to
pair. On the contrary, expressions in our approach can be recursively evaluated.
Unlike the tags in the frame technology, they are in the form of annotations
adaptive preserve feature models directly in the place where they occur in a
much more modular way.

Another similar work [12] introduced mapping between given models based
on a template model as a representation of each available product. Our expres-
sions are not only presence conditions, but rather, as JSON representations,
provide space to include more information for further configuration related to
domain requirements. Not only removing unwanted features from the feature
model but also adding new functionality apart from it, is then possible. This
makes our approach not restricted to negative variability. Another significant
difference is in the hierarchic organization of variables under used operators
which is more comprehensive for the hierarchic structure of feature models. Ad-
ditionally, the mechanism for evaluating expressions can be configured according
to the expected key and value pair.

Lightweight Aspect-Oriented SPLs with Automated Product Derivation 9

Plastic partial components were introduced to manage variability inside com-
ponents [19]. They are just component fragments that are mainly reused by
applying invasive composition techniques [1] when aspects are used to manage
their selection in the final product. In our approach, annotated parts can evolve
together as an already instantiated product or as a derived application on its
own.

The variability on the code level can be also handled by pure::variants [20],
which provides also many tools, especially for tracing. In our approach, expres-
sions have the same role as the configuration rules, but differ with used JSON
format and also are recursively evaluated to directly adapt to the nature of fea-
ture models in code. The used format allows processing them by using distributed
computing. Also, other functionality relevant to other roles associated with an-
notated variation points can be configured there. In pure::variants, endings are
used, similar to tag endings in the frame technology or conditional compilation.
Annotated code is thus less readable. Opposite to this, we want to force devel-
opers to annotate only aspects and classes as the primary types of modules, and
methods, if necessary.

In our approach, developers make all decisions about variability directly in
code, but these are in pure::variants configured and visualized by plugins and
tools. Their configuration through used tools is restricted to programmed func-
tions, which do not allow immediately adding developers’ own variables with
special semantics for changed functionality of the derivator. Such cases can be
optional functionality to pretest variants by creating additional logs, letting vari-
ants generate data for analysis, adding integration with their tool, or adapting
certain business functionality related to the variation point without directly pol-
luting the code.

The key activities for the individual product derivation, such as product
configuration, requirements engineering, additional development, integration, de-
ployment, and, finally, product line evolution [21], in our approach are managed
not much differently than in the most used derivation approaches such as DO-
PLER or Pro-PD. Mostly, developers introduce variation points that are config-
ured mainly according to the feature model which is discussed with the customer
or chosen for the given domain. As in DOPLER and Pro-PD, the customer re-
quirements are fulfilled iteratively also in our approach. The collaboration with
the customer depends then on the project management methodology being ap-
plied, but even more on variability modeling. The focus on product configuration
should minimize product specific development as in Pro-PD. This benefit is not
similar to DOPLER which is more collaborative than our approach and Pro-
PD. This is recognizable in situations when unsatisfied user requirements are
perceived as product specific implementations [21].

In our approach, it is not necessary to create a specific language for product
derivation as it is in FAST [2]|. It involves less planning for the product deriva-
tion. Activities, products, and roles are not described as in PuLSE-I [26]. The
development process is not limited to iterative fulfilling of requirements as in
COVAMOF [13].

10 J. Perdek and V. Vranié
7 Conclusions and Future Work

In this paper, we introduced an approach to establishing lightweight aspect-
oriented software product lines with automated product derivation which is sim-
ple and accessible because developers decide about variation points directly in
the code without any assumption on the development process and applied man-
agement. Also, it allows for variability management by making the code readable,
configurable, and adaptable mainly to scripts and code fragments in a modular
and concise way. The use of annotations helps preserve feature models in code
through their ability to store information about the hierarchy of features.

The information extracted from variation points in the form of JSON format
can be processed by known big data systems, such as Hadoop, Pig, or Hive to
analyze dependencies and relations between used variables.

We presented the approach on the battleship game and data preprocess-
ing product lines. These examples include the configuration of features, product
derivation mechanism based on annotations applied by the user on certain classes
and methods, implementation of features according to the feature model, and
the possibility to generate all given software product derivations. We need only
three types of basic annotations to mark the variety of code fragments for the
next separation. We generated all 48 possible derivations and tested their func-
tionality. It’s also possible to run one of the supported product instances directly
using the base project by setting configuration values in the configuration file.
Developers are also allowed to change provided simple derivator functionality to
promptly handle demands on data processing.

The approach proposed in this paper can be applied to efficiently handle the
variability associated with the customization of data preprocessing mechanisms,
derivation of adjusted products which are ready for their next validation, or
processing expressions that contain knowledge about variation points by using
big data analysis techniques.

We intend to explore this more thoroughly in our future work mainly focused
on the ways how to create, process, and evaluate data that contains a lot of
variability. Fractals are a good source of it. We will effectively derive and validate
a variety of them according to metrics that support the aesthetic perception of
users or use other assumptions. The knowledge from variation points will be used
during the prediction phase. A small modification of the derivation mechanism
is necessary to adapt it to web languages, mainly those where the conditional
compilation is unavailable, such as JavaScript or TypeScript.

Derived products from the introduced product line can serve as the basis for
another one to implement contradictory features efficiently. They can be quickly
improved to support the extraction of such features by introducing or changing
the annotations.

We are also exploring how our approach could be applied to manage the
diversity of services featured in a research setting of developing rurAllure,* an
innovative pilgrimage support system [24].

4 https://rurallure.eu/

https://rurallure.eu/

Acknowledgements The work reported here was supported by from the Euro-
pean Union’s Horizon 2020 research and innovation program under grant agree-
ment No. 101004887 (rurAllure), the Operational Program Integrated Infrastruc-
ture for the project: Support of Research Activities of Excellence Laboratories
STU in Bratislava, project no. 313021BXZ1, co-financed by the European Re-
gional Development Fund (ERDF), and the Operational Programme Integrated
Infrastructure for the project: Research in the SANET network and possibilities
of its further use and development (ITMS code: 313011W988), co-funded by the
ERDF, and by the Slovak Research and Development Agency under the contract
No. APVV-15-0508.

[1]
2]

3]

4]

[5]

(6]
7]

8]

19]

[10]

[11]

References

Afimann, U.: Invasive Software Composition. Springer-Verlag, Berlin, Hei-
delberg (2003)

Bayer, J., Gacek, C., Muthig, D., Widen, T.: PuLSE-I: Deriving instances
from a product line infrastructure. In: Proceedings of 7th IEEE Interna-
tional Conference and Workshop on the Engineering of Computer-Based
Systems, ECBS 2000 (2000)

Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K.,
Wasowski, A.: A survey of variability modeling in industrial practice. In:
Proceedings of 7th International Workshop on Variability Modelling of
Software-Intensive Systems, VaMoS ’13. ACM, Pisa, Italy (2013)

Beuche, D., Dalgarno, M.: Software product line engineering with
feature models. https://www.pure-systems.com/fileadmin/downloads/
pure-variants/tutorials/SPLWithFeatureModelling.pdf (2006)
Bischoff, V., Farias, K., Gongales, L.J., Victoria Barbosa, J.L.: Integration
of feature models: A systematic mapping study. Information and Software
Technology 105, 209-225 (2019)

Blair, L., Pang, J.: Aspect-oriented solutions to feature interaction concerns
using AspectJ (2003)

Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving
a Product-Line Approach. Addison-Wesley (2000)

Botterweck, G., Lee, K., Thiel, S.: Automating product derivation in soft-
ware product line engineering. In: Proceedings of Software Engineering 2009.
LNI P-143, Gesellschaft fiir Informatik e.V. (2009)

Bystricky, M., Vranié¢, V.: Preserving use case flows in source code. In: Pro-
ceedings of 4th Eastern European Regional Conference on the Engineering
of Computer Based Systems, ECBS-EERC 2015. IEEE, Brno, Czech Re-
public (2015)

Balik, J., Vrani¢, V.: Symmetric aspect-orientation: Some practical conse-
quences. In: Proceedings of Proceedings of International Workshop on Next
Generation Modularity Approaches for Requirements and Architecture, NE-
MARA 2012, at AOSD 2012. ACM, Potsdam, Germany (2012)

Cherait, H., Bounour, N.: History-based approach for detecting modularity
defects in aspect oriented software. Informatica 39(2), 187-194 (2015)

https://www.pure-systems.com/fileadmin/downloads/pure-variants/tutorials/SPLWithFeatureModelling.pdf
https://www.pure-systems.com/fileadmin/downloads/pure-variants/tutorials/SPLWithFeatureModelling.pdf

12

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. Perdek and V. Vranié

Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template
approach based on superimposed variants. In: Generative Programming and
Component Engineering. pp. 422-437. Springer, Berlin, Heidelberg (2005)
Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in software product
families: A case study. Journal of Systems and Software 74(2), 173-194
(2005)

Jacobson, 1., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process
and Organization for Business Success. Addison-Wesley (1997)

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.:
Feature-oriented domain analysis (FODA): A feasibility study. Tech. Rep.
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, USA (1990)

Kastner, C., Apel, S., Batory, D.: A case study implementing features us-
ing AspectJ. In: Proceedings of 11th International Software Product Line
Conference, SPLC 2007. IEEE, Kyoto, Japan (2007)

Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming.
Manning (2003)

Loughran, N.; Rashid, A.: Framed aspects: Supporting variability and con-
figurability for AOP. In: Proceedings of 8th International Conference on
Software Reuse, ICSR 2004. LCNS 3107, Springer, Madrid, Spain (2004)
Perez, J., Diaz, J., Costa-Soria, C., Garbajosa, J.: Plastic partial compo-
nents: A solution to support variability in architectural components. In:
2009 Joint Working IEEE/IFIP Conference on Software Architecture & Eu-
ropean Conference on Software Architecture. IEEE, Cambridge, UK (2009)
pure::systems: PLE & code—managing variability in source code. https:
//youtu.be/R1UYjWhIFKM (2020)

Rabiser, R., O’Leary, P., Richardson, I.: Key activities for product deriva-
tion in software product lines. Journal of Systems and Software 84(2), 285
300 (2011)

Reinhartz-Berger, 1., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.):
Domain Engineering, Product Lines, Languages, and Conceptual Models.
Springer (2013)

Voelter, M., Groher, I.: Product line implementation using aspect-oriented
and model-driven software development. In: 11th International Software
Product Line Conference (SPLC 2007). IEEE, Kyoto, Japan (2007)
Vrani¢, V., Lang, J., Lopez Nores, M., Pazos Arias, J.J., Solano, J., Laseca,
G.: Use case modeling in a research setting of developing an innovative pil-
grimage support system. Universal Access in the Information Society (2023),
accepted.

Vrani¢, V., Taborsky, R.: Features as transformations: A generative ap-
proach to software development. Computer Science and Information Sys-
tems (ComSIS) 13(3), 759-778 (2016)

Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-
Based Software Development Process. Addison-Wesley (1999)

https://youtu.be/RlUYjWhJFkM
https://youtu.be/RlUYjWhJFkM

	Lightweight Aspect-Oriented Software Product Lines with Automated Product Derivation
	References

