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Abstract

Based on the analysis of multi-paradigm software development and the con-
cept of paradigm, a new method of multi-paradigm design with feature mod-
eling is proposed in this thesis. The method enables an explicit reasoning
about paradigms, viewed as solution domain concepts, and their appropri-
ateness for given application domain concepts. Both application and so-
lution domain are modeled using a conceptual modeling technique known
as feature modeling adapted to the needs of multi-paradigm design. The
process of paradigm selection is defined also in terms of feature modeling
as a bottom-up paradigm instantiation over application domain concepts.
Its output is a set of paradigm instances annotated with the information
about corresponding application domain concepts and features. Accord-
ing to these paradigm instances, the code skeleton is being designed. The
method is demonstrated and evaluated on the solution domain of AspectJ
programming language and the application domain of feature modeling.
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Chapter 1

Introduction

A quarter of a century since the Robert W. Floyd’s Turing Award Lecture
on paradigms of programming [Flo79], there is no common agreement on
the precise meaning of the term paradigm in the field of software develop-
ment. In spite of that, it has been widely used to denote any distinctive
enough approach to programming or software development in general. As
such, it has spread to the whole software development process. However, as
software has finally to be expressed in the form of a program written in one
of the programming languages, it is not surprising that the term paradigm
is related mostly to programming languages as such.

Programming languages are often categorized according to paradigms
they support. This is being done especially according to some of the more
widely accepted paradigms, namely procedural, functional, logical, and object-
oriented programming.

Having several paradigms, each of which has some advantages over the
other ones, has naturally lead to the idea of integrating or combining several
programming languages, each of which supports some paradigm, into one,
multi-paradigm programming language.

It is important to note that advantages of a paradigm are relative to the
problem being solved. A multi-paradigm programming language itself does
not help in multi-paradigm design, which involves deciding which paradigm
is appropriate for the problem being solved. This issue has not been as
popular research subject as creating multi-paradigm languages. The reasons
may lay in already mentioned insufficient understanding of the paradigm in
software development, in which, in most cases, the term paradigm is taken
for given.

1.1 Thesis Objectives

This thesis is devoted to the improvement of multi-paradigm design by em-
ploying the technique of conceptual modeling known as feature modeling.



2 Introduction

As already stated, to be able to deal with the issue of multi-paradigm de-
sign, the concept of paradigm would be analyzed as such, as well as in the
context of employing multiple paradigms simultaneously in contemporary
approaches to software development.

Based on this analysis, the appropriate paradigm representation would
be proposed. For this, feature modeling would be adapted to the specific
needs of paradigm modeling. Subsequently, the entire method of multi-
paradigm design, which consists of modeling both the application domain
(which is being solved) and the programming language, and the process of
finding the correspondence between the application domain concepts and
paradigms, would be defined in terms of feature modeling.

The newly established method of feature modeling based multi-paradigm
design would be evaluated by applying it to the AspectJ programming lan-
guage, resulting in a paradigm model of this language, and a subsequent
application of this model in transformational analysis of the domain of fea-
ture modeling, which constitutes an application domain of a considerable
size.

1.2 Thesis Structure

Besides this, introductory chapter, the thesis is structured as follows:1

Chapter 2 analyzes the concept of paradigm in software development.

Chapter 3 is a survey of selected post-object-oriented software develop-
ment paradigms which exhibit multi-paradigm features.

Chapter 4 introduces a conceptual modeling technique of feature modeling
adapted to the use in multi-paradigm design.

Chapter 5 introduces a new method of multi-paradigm design with feature
modeling.

Chapter 6 discusses approaches related to multi-paradigm design with fea-
ture modeling.

Chapter 7 concludes the thesis and summarizes its contributions.

Also, there are three appendices to this thesis introduced in conjunction
with the method evaluation:

Appendix A introduces a feature model of the domain of feature modeling.

Appendix B establishes multi-paradigm design with feature modeling for
AspectJ by providing a paradigm model of this programming language.

1This thesis is based on the publications of the author which are available at http:

//www.fiit.stuba.sk/~vranic.

http://www.fiit.stuba.sk/~vranic�
http://www.fiit.stuba.sk/~vranic�
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Appendix C describes an application of multi-paradigm design with fea-
ture modeling for AspectJ to the domain of feature modeling.





Chapter 2

The Concept of Paradigm in
Software Development

Paradigm is a very often used—and even more often abused—word in com-
puter science in the context of software development. Its importance arose
significantly with appearance of multi-paradigm approaches. Before dis-
cussing these approaches in Chapter 3, the concept of paradigm in software
development requires a deeper examination.1

First the meaning of the paradigm will be discussed—both its well-
established meaning in science and the actual meaning of the word—in order
to learn when its use in computer science is justified and to gain a better
understanding of the concept of paradigm itself (Section 2.1). The discus-
sion will reveal two related meanings of paradigm in software development
(Sections 2.2 and 2.3).

2.1 The Meaning of Paradigm

The term paradigm in science is strongly related to Thomas Kuhn and his
essay [Kuh70], where it has been used to denote a consistent collection of
methods and techniques accepted by the relevant scientific community as a
prevailing methodology of the specific field.

In computer science, the term paradigm denotes the essence of a software
development process (often referred to as programming, see Section 2.2).
Unfortunately, this is not the only purpose this term is used for. Probably no
science has accepted this term with such an enthusiasm as computer science
has; there are a lot of methods whose authors could not resist the temptation
to raise them to the level of paradigm (just try a keyword “paradigm” in
some citing index or digital library, e.g. [NEC]). The cornerstone of such a
use of the term paradigm in computer science was probably set by the Robert

1This chapter is based on [Vra02b, Vra00b, Vra00a, Vra00c, Vra00d].
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W. Floyd’s Turing Award Lecture on paradigms of programming [Flo79] in
which the meaning of paradigm ranges from methods through algorithms to
programming language idioms. Although not contradictory to the original
meaning of the word paradigm, such an overuse causes confusion.

The basic meaning of paradigm is example, especially a typical one, or
pattern, which is in a direct connection to its etymology (Greek “to show
side by side”) [Mer]. The meaning and etymology pose no restriction to the
extent of the example or pattern it refers to. This is reflected in the common
use of the word paradigm today: on the one hand, it has the meaning of
a whole philosophical and theoretical framework of a scientific school (akin
to Kuhn’s interpretation), while on the other hand, it is simply an example
as in linguistics where it has the meaning of an example of conjugation or
declension showing a word in all its inflectional forms [Mer].

Computer science, being a science whose great part is devoted to a
special kind of languages intended for programming, hosts well both of these
two interpretations of paradigm covered in a more detail in the following
text.

2.2 Large-Scale Paradigms

The large-scale meaning of paradigm, as it has already been mentioned,
denotes the essence of a software development process. Coplien used the
term large-scale paradigm to denote programming paradigms in, as he said,
a “popular” sense [Cop99a].

Besides software development paradigm and software engineering para-
digm, at least two more terms are used to refer to large-scale paradigm of
software development: programming paradigm or, simply, programming. Al-
though in common use (for historical reasons), one must be careful with
these terms because of possible misunderstanding: programming sometimes
stands for implementation only, as other phases of a software development
process can also be referred to explicitly (e.g., object-oriented analysis,
object-oriented design, etc.).

The name of a paradigm reveals its most significant characteristic. Some-
times it is derived from the central abstraction the paradigm deals with, as it
is a function to functional paradigm, an object to object-oriented paradigm
(according to [Mey97] it is not object but class that is the central abstraction
in object-oriented paradigm), etc.

Lack of a general agreement on which name denotes which paradigm is
a potential source of confusion. For example, although the term functional
paradigm is usually used to denote a kind of application paradigm, as op-
posed to procedural paradigm, in [Mey97] it is used to denote exactly the
procedural paradigm. It is hard to blame the author for misuse of the term
knowing that the procedure is often being denoted as function.
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It must be distinguished between the software development paradigm
itself and the means used to support its realization. Unfortunately, this is
another source of confusion. For example, any paradigm can be visualized
by means of a visual environment and thus it makes no sense to speak about
the visual paradigm (as in [Bud95]). Making a complete classification and
comparison of the software development paradigms is beyond the scope of
this text; see [Náv96] for the comparison of selected programming paradigms
regarding the concepts of abstraction and generalization.

A software development paradigm is constantly changing, improving, or
better to say refining. The basic principles it lays on must be preserved;
otherwise it would evolve into another paradigm. Consider, for example,
the simplified view on the evolution of object-oriented paradigm. First,
there were commands (imperative programming). Then named groups of
commands appeared, known as procedures (procedural programming). Fi-
nally, procedures were incorporated into the data it operated on yielding
objects/classes (object-oriented paradigm).

However, according to Kuhn, paradigms do not evolve, although it might
seem so; it is the scientific revolution that ends the old and starts a new
paradigm [Kuh70]. A paradigm is dominant by definition and thus there
can be only one at a time in a given field of science unless the field is in an
unstable state. According to this, simultaneous existence of several software
development paradigms indicates that the field of software development is
either in an unstable state, or all these paradigms are parts of the one
not yet fully recognized nor explicitly named paradigm.2 That paradigm
is beyond the commonly recognized paradigms and it is about the (right)
use and combination of those paradigms. Therefore it can be denoted as
metaparadigm.

2.3 Small-Scale Paradigms

Another perception of paradigm, based on the programming language per-
spective, is apparent in James O. Coplien’s multi-paradigm design [Cop99b]
(covered in more detail in Section 3.5). According to Coplien et al. [CHW98],
paradigms such as procedures, inheritance and class templates can be fac-
tored out by identifying the common and variable parts of paradigms. A
paradigm is then a configuration of commonality and variability [Cop99b].
This is analogous to conjugation or declension in natural languages, where
the common is the root of a word and variability is expressed through the
suffixes or prefixes (or even infixes) added to the root in order to obtain
different forms of the word.

2The existence of several software development paradigms has also been observed
by [Flo79], but it was misinterpreted as normal state of a science according to [Kuh70].



8 The Concept of Paradigm in Software Development

Scope, commonality and variability (SCV) analysis [CHW98] can be used
to describe these language level paradigms. Here are the definitions of the
three cornerstone terms in SCV analysis (instead of entities the word objects
was used in [CHW98], but this could lead to a confusion with objects in the
sense of object-oriented paradigm):

Scope (S): a set of entities;

Commonality (C): an assumption held uniformly across a given set of
entities S;

Variability (V ): an assumption true for only some elements of S.

SCV analysis of procedures paradigm illustrates the definition (based on
an example from [CHW98]):

S: a collection of similar code fragments, each to be replaced by a call to
some new procedure P ;

C: the code common to all fragments in S;

V : the “uncommon” code in S; variabilities are handled by parameters to P
or custom code before or after each call to P .

In the context of the small-scale paradigms, it is hard to find a single-
paradigm programming language. The relationship between the small- and
large-scale paradigms is similar to that between the programming language
features and programming languages; the large-scale paradigms consist of
the small-scale ones. With respect to this, the source of the name of a large-
scale paradigm can be revised here: the name of a large-scale paradigm some-
times comes from the most significant small-scale paradigm it contains. For
example, object-oriented (large-scale) paradigm consists of several (small-
scale) paradigms: object paradigm, procedure paradigm (methods), virtual
functions, polymorphism, overloading, inheritance, etc. Lack of a common
agreement what are the exact characteristics of object-oriented paradigm
makes it impossible to introduce the exact list of the small-scale paradigms
that object-oriented paradigm consists of.

Having an expressive programming language that supports multiple pa-
radigms introduces another issue: a method is needed for selecting the right
paradigms for the features that are to be implemented. Such a method is
a metaparadigm with respect to the small-scale paradigms. The small-scale
paradigms metaparadigm is therefore a less elusive concept than the large-
scale paradigms metaparadigm. One such small-scale metaparadigm, the
already mentioned multi-paradigm design, is described in Section 3.5.

One can understand small-scale paradigms as a programming language
issue exclusively, while large-scale programming paradigms seem to have a
broader meaning as they are affecting all the phases of software development.
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Actually, small-scale paradigms have an impact to all the phases of software
development as well; either with or without an explicit support in analysis
and design.





Chapter 3

Towards Multi-Paradigm
Software Development

This chapter is a survey of selected post-object-oriented software develop-
ment paradigms in which a move towards the integration of paradigms is
apparent.1

After a brief look at object-oriented programming in the multi-paradigm
light, the chapter proceeds with the description of selected multi-paradigm
approaches. Among implicitly multi-paradigm approaches, i.e. approaches
based on multiple paradigms, but not explicitly concerned with paradigm
selection, aspect-oriented programming and related approaches (Section 3.2)
and generative programming (Section 3.3) are described. Next, explicitly
multi-paradigm approaches are described: multi-paradigm programming in
Leda (Section 3.4), multi-paradigm design (Section 3.5), and intentional
programming (Section 3.6). The chapter is concluded by an evaluation of
the presented multi-paradigm approaches (Section 3.7).

3.1 Beyond Object-Oriented Programming

Human perception of the world is to the great extent based on objects.
Object-oriented programming, well-known under the acronym OOP, is based
precisely on this perception of the world natural to humans. But what is
OOP exactly? This question seems to be an answered one. Actually, there
is a plenty of answers to this question, but the trouble is that they are
all different. OOP has passed a very long way of changes to reach the
form in which it is known today. Yet, there is no general agreement about
what are its essential properties (to some even inheritance is not an essential
property of OOP, or it is being denoted as a minor feature [Bud95]). Perhaps
the Bertrand Meyer’s viewpoint that “‘object-oriented’ is not a boolean

1This chapter is based on [Vra02b, Vra00b, Vra00c, Vra00d].
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condition” [Mey97] is the best characterization of this issue.

OOP is not always the best choice among all the paradigms. This is
recognized even in the OOP literature. Thus Booch points out that there
is no single paradigm best for all kinds of applications. But, according to
Booch, OOP has another important feature: it can serve as “the architec-
tural framework in which other paradigms are employed” [Boo94]. Although
this statement is probably overestimated in its applicability to all paradigms,
the truth is that some multi-paradigm languages (like Leda, see Section 3.4)
are designed in this fashion. This reveals that OOP is multi-paradigmatic
in its very nature and leaves not much space for the object-oriented purism.

The object-oriented purism comes from the dogma that everything should
be modeled by objects. But not everything is an object; neither in the real
world, nor in programming. Consider synchronization as a well-known ex-
ample of a non-object concept; in natural language, we would probably refer
to it as aspect. The aspects crosscut the structure of objects (or functional
components, in general) making the code tangled. The pieces of code are
either repeated throughout different objects or unnatural inheritance must
be involved. Among other inconveniences, this “code scattering” has a bad
impact on reuse.

There are also other problems with OOP, including those it was sup-
posed to solve, which are mainly in the areas of reuse (discussed in [SN97]),
adaptability, management of complexity and performance [CE00]. In the
sense of the means for solution that are at the developer’s disposal—that
can be denoted as a solution universe—OOP is not a universal paradigm.
Actually, OOP is not a universal paradigm in C++, which is just a part of
the solution universe of software development, because it is not capable of
making a full use of all of its features. OOP encompasses only a few interest-
ing kinds of commonality and variability [Cop99a]. Other kinds are needed
as well, so the non-object-oriented features of programming languages are
often used even though the analysis and design were object-oriented.

3.2 Aspect-Oriented Approaches

According to one of those who stood upon its birth, Gregor Kiczales, aspect-
oriented programming (AOP) is a new programming paradigm that enables
the modularization of crosscutting concerns [KLM+97]. The field of aspect-
oriented software development is a subject of the intense research and dozens
of aspect-oriented approaches exist today (see [AOS, Fil03, DVB01]). In this
section, the four foundational aspect-oriented approaches will be described
and compared.
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3.2.1 Aspect-Oriented Programming

Most of the aspect-oriented terminology (as well as its name) later adopted
by others was coined by the PARC AOP group. Their research effort is
being concentrated mainly on AspectJ [Ecla] (recently, the project has been
transfered to Eclipse [Eclb]), a general purpose aspect-oriented extension to
Java [LK98].

AOP appeared as a reaction to the problem known from the general-
ized procedure languages [KLM+97], i.e. languages that use the concept of
procedure to capture functionality (besides procedural languages, this in-
cludes functional and object-oriented languages as well). In such languages
some program code fragments that implement a clearly separable aspect of
a system (such as synchronization) are scattered and repeated throughout
the program code that becomes tangled. AOP aims at factoring out such
aspects into separate units. Aspects crosscut the base code in join points.
These must be specified so aspects could be woven into the base code by a
weaver.

A simple example written in AspectJ (version 1.1.1), similar to the ex-
ample from [LK98], in Fig. 3.1 illustrates the idea. Two classes are presented
there, Point and Line, whose methods are of three kinds: creating, writ-
ing and reading (the implementation of the methods is omitted). Suppose
we want to be informed what kind of access to these classes has been per-
formed. In ordinary Java we would have to modify each method of both
Point and Line. Moreover, this would result in a tangled code. In AspectJ
both problems can be avoided using aspects. In our example it is the aspect
ShowAccesses that solves the problem. Note that the original code remains
unchanged.

The solution with aspects is undoubtedly more elegant than the tangled
one would be. However, the information where an aspect is to be woven
(i.e., join points) is included in the aspect itself. This complicates the aspect
reuse. AspectJ addresses this problem with abstract aspects and named sets
of join points, so-called pointcuts.

3.2.2 Adaptive Programming

Adaptive programming (AP), proposed by Demeter group [Dem] at North-
eastern University in Boston, deals mainly with the traversal strategies of
class diagrams. Demeter group has used the ideas of AOP several years
before the name aspect-oriented programming was coined. After the collab-
oration with the PARC AOP group had begun (which at that time was a
part of Xerox), Demeter group redefined AP as “the special case of AOP
where some of the building blocks are expressible in terms of graphs and
where the other building blocks refer to the graphs using traversal strate-
gies” (building block stands for aspect or component) [Lie]. The traversal
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class Point {

int x,y;

Point(int x, int y){...}

void set(int x, int y){...}

void setX(int x){...}

void setY(int y){...}

int getX(){...}

int getY(){...}

}

class Line {

int x1,y1,x2,y2;

Line(int x1, int y1, int x2, int y2){...}

void set(int x1, int y1, int x2, int y2){...}

int getX1(){...}

int getY1(){...}

int getX2(){...}

int getY2(){...}

}

aspect ShowAccesses {

before(): execution(* (Point || Line).set*(..)) {

System.out.println("Write");}

before(): execution(* Point.get*(..)) {

System.out.println("Read");}

before(): execution((Point || Line).new(..)) {

System.out.println("Create");}

}

Figure 3.1: Tracking access in AspectJ.

strategies are partial graph specifications through mentioning a few isolated
cornerstone nodes and edges, and thus they crosscut the graphs they are
intended for.

An example of AP is presented in Fig. 3.2. The left part of the figure
presents a UML class diagram of a system. Assume we would like to count
the people waiting at the bus stations along the bus route. In ordinary OOP
this would require either the implementation of small methods in all of the
affected classes (depicted shaded) or rough breaking of the encapsulation by
exposing some of the classes’ private data.

If we use a traversal strategy, as it is proposed in AP, there is no need
for a change in the existing classes. In this case, the traversal strategy:

from BusRoute through BusStop to Person

solves the problem of getting to objects of the class Person along the bus
route, which is sufficient to count them. The right part of Fig. 3.2 demon-
strates the robustness of this technique: the traversal strategy mentioned
above applies in this case as well although the class diagram it was con-
structed for has changed.
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Figure 3.2: Traversal strategies (from [Lie97], c©1997 Northeastern Univer-
sity).

3.2.3 Composition Filters

Composition filters (CF) is an aspect-oriented programming approach in
which different aspects are expressed as declarative and orthogonal message
transformation specifications called filters [AT98].

A message sent to an object is evaluated and manipulated by the filters
of that object, which are defined in an ordered set, until it is discarded or
dispatched (i.e., activated or delegated to another object). A filter behavior
is simple: each filter can either accept or reject the received message, but
the semantics of the operations depends on the filter type. For example,
if an Error filter accepts the received message, it is forwarded to the next
filter, but if it was a Dispatch filter, the message would be executed. A
detailed description of CF can be found in [AWB+93, Koo95].

In Fig. 3.3 two sets of filters (written in Sina language [Koo95], which
directly adopt the CF model [AT98, AWB+93]) are shown. These filters
are attached to the Point and Line classes from Fig. 3.1. The existence of
the class ShowAccess is presumed. ShowAccess provides three methods—
WriteAccess, ReadAccess and CreateAccess)—that simply write out the
type of the access. They are called by the three corresponding Dispatch
filters, in case the message was accepted. Afterwards, the method of the
inner object, which has actually been called, is executed (inner.*).

From the perspective of AOP, the class ShowAccess implements the as-
pect, while the filters represent the join points. Thus, the join points in
this case are separated from the aspect, which is better regarding the aspect
reuse.

3.2.4 Subject-Oriented Programming

A concept can be defined by naming its properties. This is sufficient to
precisely define and identify mathematical concepts, but the same does not
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Point

acc: ShowAccess;

inputfilters

WriteAccess: Dispatch = {set, acc.WriteAccess, inner.*};

ReadAccess: Dispatch = {getX, getY, acc.ReadAccess, inner.*};

CreateAccess: Dispatch = {Point, acc.CreateAccess, inner.*};

Execute: Dispatch = {true => inner.*};

Line

acc: ShowAccess;

inputfilters

WriteAccess: Dispatch = {set, acc.WriteAccess, inner.*};

ReadAccess: Dispatch = {getX, getY, getX1, getY1, acc.ReadAccess, inner.*};

CreateAccess: Dispatch = {Line, acc.CreateAccess, inner.*};

Execute: Dispatch = {true => inner.*};

Figure 3.3: Tracking access example implemented using composition filters
approach.

apply to natural concepts. Their definitions are subjective and thus never
complete (more details about conceptual modeling can be found in [CE00]).

Subject-oriented programming (SOP), developed at IBM as an extension
to OOP [IBM], is based on subjective views, so-called subjects. A subject is a
collection of classes or class fragments whose hierarchy models its domain in
its own, subjective way. A complete software system is then composed out of
subjects by writing the composition rules, which specify the correspondence
of the subjects (i.e., namespaces), classes and members to be composed and
how to combine them.

As a result of the research effort in SOP, the Watson Subject Compiler
was developed [KOHK96], which allows partial (subjective) definitions of
C++ program elements and automates the composition required to produce
a running program. There are also other platforms SOP support was built
for, such as IBM VisualAge for C++ Version 4, HyperJ and Smalltalk.

The example from Fig. 3.1 reimplemented in Watson Subject Compiler-
like syntax (the actual syntax could by slightly different) is presented in
Fig. 3.4. Assume that the class ShowAccess is implemented in Access
namespace and that the classes Point and Line are implemented in the
Graphics namespace. The join-points, represented by composition rules,
are separated from the aspect and represented by a separate class (as in CF
approach). The composition rules for the methods getY, getX1, getY1 and
getX2 are omitted in Fig. 3.4 (indicated by ellipsis) since they are analogous
to the rules for getX or getY2.

This is not a characteristic case of the application of SOP (such can be
found in [OHBS94, KOHK96, IBM]); it is presented here in order to show
how a well-known AOP example can be easily transformed into its SOP
version. Nevertheless, there is no general agreement whether SOP is AOP.
In [CE00] SOP is viewed as a special case of AOP where the aspects accord-
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namespace GraphicsWithAccess{

class Point;

class Line;}

GraphicsWithAccess.Point.Point :=

Merge[Graphics.Point.Point, Access.ShowAccess.CreateAccess];

GraphicsWithAccess.Line.Line :=

Merge[Graphics.Point.Line, Access.ShowAccess.CreateAccess];

GraphicsWithAccess.Point.set :=

Merge[Graphics.Point.set, Access.ShowAccess.WriteAccess];

GraphicsWithAccess.Line.set :=

Merge[Graphics.Line.set, Access.ShowAccess.WriteAccess];

GraphicsWithAccess.Point.getX :=

Merge[Graphics.Point.getX, Access.ShowAccess.ReadAccess];

. . .

GraphicsWithAccess.Line.getY2 :=

Merge[Graphics.Line.getY2, Access.ShowAccess.ReadAccess];

Figure 3.4: Tracking access example implemented using subject-oriented
approach.

ing to which the system is being decomposed are chosen in such a manner
that they represent different, subjective views of the system. On the other
hand, Kiczales et al. reject the very idea that SOP (which they call subjec-
tive programming) could be AOP, arguing that the methods from different
subjects, which are being automatically composed in SOP, are components
in the AOP sense since they can be well localized in a generalized procedure
(routine) [KLM+97]. But this seem to be a more general issue, since it ap-
plies to AspectJ, too, where it has been identified as aspectual paradox by
Liebrherr et al. [LLM99]:

An aspect described in AspectJ, the PARC’s AOP language,
which has a construct for specifying aspects, is by definition no
longer an aspect, as it has just been captured in a (new kind of)
generalized routine.

As observed in [Cza98], SOP is close to GenVoca [BG97], a successful
approach to software reuse. In GenVoca, systems are composed out of lay-
ers according to design rules: GenVoca layers can be easily simulated by
subjects.

3.3 Generative Programming

Generative programming [CE00] is a software development paradigm based
on modeling software system families using feature modeling, a conceptual
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modeling technique which focuses on modeling common and variable fea-
tures of the concepts in a domain.2

Generative programming aims at automations of software production by
enabling a highly customized and optimized intermediate or end-product
to be automatically manufactured on demand from elementary, reusable
implementation components by means of configuration knowledge.

Generative programming brings together object-oriented analysis and
design methods, which provide effective system modeling techniques, with
domain engineering methods, which actually enable development of the fam-
ilies of systems. It is also closely related to generic programming, which
enables reuse through parameterization, domain-specific languages, which
increase the abstraction level for a particular domain, and aspect-oriented
programming, which is used to achieve the separation of concerns (see Fig-
ure 3.5).

PARC Aspect-Oriented Programming

Composition Filters

Demeter/Adaptive Programming

Subject-Oriented Programming

Object-Oriented Programming

Generic Programming

Domain-Specific Languages

Aspect-Oriented Programming

Generative Programming

. . .

Figure 3.5: Generative programming and related approaches. The arrows
represent “is incorporated into” relationship.

Generative programming first has to be tailored to a particular domain
in order to be used. This process will yield a methodology for the families
of systems to be developed, which can be viewed as a paradigm in its own
right. This gives a certain metaparadigm flavor to generative programming.

In the solution domain, generative programming requires metaprogram-
ming for weaving and automatic configuration. To support domain-specific
notations, syntactic extensions are needed. Active libraries are proposed
in [CE00], which can be viewed as knowledgeable agents interacting with
each other to produce concrete components, as appropriate to cover this
requirement.

3.4 Multi-Paradigm Programming in Leda

The question how to support multi-paradigm programming at the language
level can be answered simply: create a multi-paradigm language.

2Chapter 4 describes feature modeling for multi-paradigm design. Section 6.1 describes
how it differs from Czarnecki-Eisenecker feature modeling used in generative programming.
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Timothy Budd took this route by creating a multi-paradigm program-
ming language called Leda. Despite Leda is not widely used, it is worth
consideration because it demonstrates the combination of paradigms. For
example, the inference mechanism of logic programming can be used inside
of a procedure.

The rest of this section is devoted to a brief overview of Leda program-
ming language and a multi-paradigm design method for Leda (Sections 3.4.1
and 3.4.2). It ends with some remarks on large-scale paradigm based multi-
paradigm programming languages in general (Section 3.4.3).

3.4.1 Leda Programming Language

According to Budd, Leda supports four programming paradigms [Bud95]:
imperative (procedural, to be more precise), logic, functional, and object-
oriented. The term paradigm, as used by Budd, denotes a large-scale pa-
radigm (with respect to the classification of paradigms introduced in Chap-
ter 2). This means that Leda actually supports more than four small-scale
paradigms. This is clear having in mind that, for example, object-oriented
paradigm breaks down into six or more small-scale paradigms, as has been
shown in Section 2.3. Nevertheless, in order not to digress from the intent
of this approach, just the mechanisms by which each of the four proclaimed
paradigms is supported in the language will be discussed.

Leda has a Pascal-like (i.e., Algol-like) syntax and, moreover, the mech-
anism upon which all the four supported paradigms realization is based on
in Leda are functions (procedures that return values). This makes a good
background for procedural paradigm, denoted as imperative by Budd.

Logic paradigm is supported by a special type of function that returns
relation data type and by a special assignment operator <-. These indicate
when the inference mechanism, inherent to logic programming, is to be
activated.

Functional paradigm requires no mechanism other than functions because
Leda permits a function to be an argument of another function and to return
a function. Thus, functional paradigm is achieved by using functions in the
recursive fashion while refraining from assignments.

In addition to the basic mechanisms of object-oriented paradigm, such
as classes, inheritance, encapsulation etc., Leda also supports parameterized
types (considered by some authors a part of object-oriented paradigm [Mey97]).

3.4.2 A Multi-Paradigm Design Method for Leda

Leda provides its four paradigms; it does not force nor guid a developer to use
any of them. To help with the selection among the four Leda’s paradigms, an
empirical design method has been proposed [KBV00]. Although proposed
in connection with Leda, the method is not limited to it.
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The method is based on a top-down decomposition of a system. Start-
ing at the top level, the main paradigm for the overall system and then for
each system component is being selected with respect to its advantages and
disadvantages (called “pros” and “cons”), and its level of compatiblity with
other paradigms, i.e. how it restricts the use of other paradigms in sub-
components. In addition, the merge points for mixing with other paradigms
inside of a component are being analyzed.

3.4.3 Leda Approach Evaluation

Leda is an example of a programming language constructed to support mul-
tiple paradigms. As is usual with such languages, Leda is based on the
large-scale paradigm perspective.

There are a lot of approaches that fall into this category. Yet another
approach and an overview of similar approaches along with the discussion
of the paradigms integration problems can be found in [VS95]. Such ap-
proaches are popular especially in the field of artificial intelligence because
of the need to combine the two paradigms traditionally used in this field,
logic and functional programming, both with each other and together with
OOP.

Leda is a language created from scratch. Interconnection of existing lan-
guages that support different paradigms through an interface instead is an al-
ternative to this. There is also a possibility of implementing one language on
top of the other, but this leads to a certain degradation of performance. An
example of interconnecting object-oriented and logic programming (Loops
and Xerox Quintus Prolog) can be found in [KE88].

Different paradigms are expressed using different syntax. BETA lan-
guage [Mad00] is supposed to overcome this inconvenience through a unified
syntax achieved by introducing so-called pattern as an abstraction of all
other programming language constructs appearing in the paradigms it sup-
ports. The approach is therefore denoted as unified paradigm, but it is not
fundamentally different from the other large-scale paradigm based multi-
paradigm programming languages.

Of course, creating a language that supports multiple paradigms and
expecting it would be the best language to program in is futile as the search
for the best programming paradigm. No matter how many paradigms are
supported in a programming language, the number is finite and, obviously,
it cannot embrace the future paradigms. One can argue that it is possi-
ble to extend the language with new programming constructs in order to
support new paradigms. This is not only possible, but often practiced. Un-
fortunately, programming languages cannot be extended indefinitely due to
limitations of parsing methods.
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3.5 Multi-Paradigm Design

Multi-paradigm design (MPD), as proposed by Coplien [Cop99b, Cop00], is
a metaparadigm intended for developing families of systems, therefore akin
to domain engineering approaches. It deals with selcting the appropriate
paradigm for a feature being designed and implemented.

MPD is based on scope, commonality, and variability (SCV) analysis
(discussed in Section 2.3) or, to be more precise, SCVR analysis, where R
stands for relationships between domains [Cop00], which are expressed by
variability dependency graphs (explained further in this section).3 Common-
ality analysis concentrates on common attributes while the aim of variability
analysis is to parameterize the variation.

SCVR analysis is applied to both application and solution domain. A
domain is an area of interest [Cop99b]. Two kinds of domains can be dis-
tinguished based on their role in software development: application and so-
lution domains [Cop99b]. An application domain is a domain to which soft-
ware development process is being applied. It is the body of knowledge that
is of interest to users, sometimes denoted as a problem domain [Cop99b]. A
solution domain is a domain in which a solution is to be expressed (usually
a programming language). The major steps performed in MPD are:

• application domain SCVR analysis,

• solution domain SCVR analysis,

• transformational analysis, and

• code design.

These steps need not to be performed sequentially; they can be per-
formed in parallel (to some extent) and revisited as needed. Before starting
the actual MPD, it is recommended to evaluate the possibility to reuse an
existing (similar) design. If the commonalities and variabilities of the appli-
cation domain do not fit any existing solution domain structures, creation
of a new application-oriented (i.e., domain-specific) language should be con-
sidered.

3.5.1 Application Domain SCVR Analysis

Commonality analysis of the application domain (usually denoted as prob-
lem domain) starts with finding commonality domains and creating domain
dictionary. It then proceeds in parallel with variability analysis, whose re-
sults —the parameters of variation of a given commonality domain and

3In [Cop99b], neither SCV, nor SCVR analysis is mentioned; the term commonality
and variability analysis is used instead.
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their characteristics— are being summarized in variability tables (one per
each commonality domain), as depicted in the upper part of Fig. 3.6.

As already has been mentioned, variability dependency graphs (denoted
also as domain dependency graphs or diagrams) are used to capture the
relationship between domains and their parameters of variation, which are
also domains. Variability dependency graphs are directed graphs whose
nodes represent domains and edges represent “depends on” relationship (in
the direction indicated by an arrow) between domains and their parameters
of variation. Despite the simple notation, variability dependency graphs
are quite useful in identifying overlapping domains (such domains can be
merged) and codependent domains, i.e. the domains with circular depen-
dencies (which must be resolved).

3.5.2 Solution Domain SCVR Analysis

The same commonality and variability analysis as applied to the applica-
tion domain is applied to the solution domain, i.e. the programming lan-
guage. First, a description of the identified small-scale paradigms, mani-
fested through the language features, structured according to commonality,
variability, binding, and example is provided. The analysis proceeds with
exploring the negative variability, a variability that violates the rule of vari-
ation by attacking the underlying commonality. A positive variability, as
opposed to the negative one, can be parameterized. The negative variability
has to be kept small. If it becomes larger than the commonality, the design
should be refactored to reverse the commonality and variability.

The results of the solution domain commonality and variability analysis
are summarized in the family table, as shown in the lower part of Fig. 3.6,
and in the table used to express features for negative variability, where for
each combination of the kind of commonality and kind of variability the
language feature for positive variability and the one for the corresponding
negative variability is introduced. In [Cop99b, Cop00] the C++ program-
ming language has been analyzed as a solution domain.

3.5.3 Transformational Analysis and Code Design

The tables obtained in the preceding analyses are used in transformational
analysis, which is, roughly speaking, a matching of application domain struc-
tures, described in variability tables, with solution domain structures, i.e.
paradigms, described in family tables. Figure 3.6 shows how is this match-
ing performed. Prior to the matching, the commonality domain has to be
generalized (e.g., Text Editing Buffers: behavior, structure), and the
parameters of variation also (e.g., output medium: structure, algorithm).

Finally, the code corresponding to the transformational analysis results
should be written. It is obvious that transformational analysis determines
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Variability tables (from application domain SCVR analysis) 

Commonality Variability Binding Instantiation Language 
Mechanism 

.  .  . 
.  .  . 

Algorithm 
(especially multiple), 
as well as (optional) 
data structure and 
state 

Compile 
time 

Optional Inheritance 
Related 
operations and 
some structure 
(positive 
variability) 

Algorithm, as well as 
(optional) data 
structure and state 

Run time Optional Virtual functions 

 

 

Parameters of variation Meaning Domain Binding Default 
Output medium 
Structure, Algorithm 

… Database, RCS file, 
TTY, UNIX file 

Run time UNIX file 

     

Text Editor Variability Analysis for Commonality domain: 
TEXT EDITING BUFFERS (Commonality: Behavior and Structure) 

Family table (from solution domain SCVR analysis) 

Figure 3.6: Transformational analysis in MPD (according to an example
from [Cop99b]).

only the code skeleton.

3.5.4 Multi-Paradigm Design Evaluation

MPD emphasizes solution domain analysis, underestimated in contemporary
software development methodologies resulting into a gap between design and
implementation.

To a certain extent, MPD enforces the reuse of design: both applica-
tion and solution domain analysis can be reused independently; however,
transformational analysis is not reusable. This brings MPD close to design
patterns, as discussed in [Cop99b]. On the very cover of the design patterns
cornerstone book [GHJV95] Steve Vinoski points out that a reusable de-
sign is “the real key to software reuse”. This claim is being justified in the
ongoing research on reuse with design patterns [SN00].

Indeed, MPD and design patterns seem to be complementary; design
patterns capture designers’ experience by documenting the recommended
solutions for the common problems in software development, while MPD
relies on this experience. However, to make a full use of design patterns
in MPD, and in software development in general, a better way of their
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representation is needed [SNB98].
Although the design patterns from [GHJV95] are inspired by Alexan-

drian patterns [Ale79], not all of them are the patterns in Alexandrian sense:
some of them can be formalized as configurations of commonality and vari-
ability (unlike Alexandrian patterns). As such they can be incorporated
directly into MPD (by adding them to the family table), as anything else
that can be formalized as a configuration of commonality and variability (i.e.,
other paradigms and solution domain tools that are not supported by the
main programming language, like databases or parser generators) [Cop99b].

One of the problems with MPD is the unsuitability of the notation used:
only a few types of tables and variability diagrams with a lot of the relevant
details expressed as informal text do not support transformational analysis
sufficiently. A better notation could also ease the transition to the actual
program code (the program skeleton).

3.6 Intentional Programming

Programming languages with fixed syntax are limiting otherwise unlimited
number of programming abstractions. Intentional programming group at
Microsoft Research offered a solution to this problem as a new software
development paradigm called intentional programming (IP) [Sim99, Sim96,
RΞod99] (the project is on hold from Spring 2001 [Roe]). The idea behind
IP is that programming abstractions, which are in IP denoted as intentions,
could live better without their hosts, (fixed-syntax) programming languages,
because of their limits in the accepted notations (due to underlying gram-
mars).

A program in IP is represented by a so-called intentional tree, whose
nodes represent intention instances. Each intention instance points to the
corresponding intention declaration node that provides a method which
specifies the process of transforming the subtree headed by the intention
instance. The executable program is obtained in a process called reduction
in which the intentional tree is traversed and transformed according to the
rules indicated by intention declarations until it consists only of executable
nodes. Such a reduced tree is represented in an intermediate language. The
executable code is generated from this representation.

It would be inconvenient for a human to directly maintain the intentional
tree. This is being performed in a programming environment with a special
graphic editor instead of the usual text editor. This enables each intention to
have its own graphic representation. Of course, entering a program in such
an environment is quite different from entering it in a classic text editor.
A program text, as we are used to it, is a complete and an unambiguous
representation of the program. In IP environment this is not so. What is
presented in IP editor is only a view of the actual program. To illustrate
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this, consider one peculiarity: two distinct variables can have the same name
(even if they reside the same scope). This is possible because the intentional
tree does not rely on the names to identify intentions; the names are provided
only for developers’ convenience.

Although it can seem so, IP is not intended to push out the existing
programming languages from the scene. It can import any program in
any programming language if a parser for that language—in the form of
a library—is added to IP environment.

3.7 Summary

There is a growing tendency towards multi-paradigm software development
notable not only in the explicitly multi-paradigm approaches, but also in
the implicit ones, such as aspect-oriented programming and generative pro-
gramming. The three explicitly multi-paradigm approaches presented in
this chapter are compared in Table 3.1 according to the selected criteria:
the concept of paradigm the approach enforces, a programming language
the approach is bound to, and whether the approach supports the language
extension.

Approach Paradigm Language Language extension
Multi-Paradigm Programming in Leda large-scale Leda no
Multi-Paradigm Design small-scale any not applicable
Intentional Programming small-scale none yes

Table 3.1: The three multi-paradigm approaches compared.

It is important to note that these three approaches are not antagonistic;
they are complementary. Multi-paradigm design arms us with techniques
for dealing with multiple paradigms when a multi-paradigm environment is
available. Intentional programming enables such an environment to be cre-
ated and maintained easier than it is the case with the classical programming
languages. Finally, multi-paradigm programming in Leda demonstrates how
four specific programming paradigms can be combined.

As has been shown on the example of object-oriented programming in
Section 2.3, there is no a common agreement what are the exact charac-
teristics of the large-scale paradigms. This is even more notable in aspect-
oriented programming, as has been shown by the comparison of the four
foundational aspect-oriented approaches: despite they are all analogous and
can be characterized as aspect-oriented, each one supports aspect-oriented
programming by different programming language constructs. These pro-
gramming language constructs can be modeled as small-scale paradigms,
and this approach has been taken in multi-paradigm design by employing
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SCVR analysis and applied to C++ [Cop99b].
However, as has been pointed out in Section 3.5.4, the table notation

used in SCVR analysis is not suitable to represent paradigms, nor applica-
tion domain structures. Moreover, the matching of the application domain
structures to paradigms is hard to perform in this notation. Feature model-
ing, a modeling technique used in domain engineering to express commonal-
ity and variability in a domain, appears to be more appropriate for this task.
The next chapter introduces feature modeling adapted to multi-paradigm
design. Although there are many analogies between feature modeling and
SCVR analysis (see Section 6.2.1), the change of the underlying modeling
technique affects the whole approach significantly; the new, feature modeling
based multi-paradigm design is proposed in Chapter 5.



Chapter 4

Feature Modeling for
Multi-Paradigm Design

Feature modeling is a conceptual domain modeling technique in which con-
cepts are expressed by their features taking into account feature interde-
pendencies and variability in order to capture the concept configurability (a
definition adapted from [CE00]).1

A domain is understood here as an area of interest [Cop99b].2 Two kinds
of domains can be distinguished based on their role in software development:
application and solution domains [Cop99b]. An application domain, some-
times denoted as a problem domain [Cop99b], is a domain to which software
development process is being applied. A solution domain is a domain in
which a solution is to be expressed (usually a programming language).

Feature modeling for multi-paradigm design, described in this chapter,
is based on Czarnecki-Eisenecker feature modeling [CE00, Cza98]. The ori-
gins of feature modeling are in FODA method [KCH+90]. Feature model-
ing has been used to represent models of application domains in many do-
main engineering approaches to software development beside FODA such as
FORM [KKL+98], ODM [Sim95], or generative programming [CE00, Cza98].
Each such a method usually employs somewhat different feature modeling
notation, adapted to its needs (compared in Section 6.1).

In multi-paradigm design with feature modeling, the method proposed
in this thesis (Chapter 5), feature modeling is going to be used to express
both application and solution domain concepts in order to simplify finding a
correspondence and establishing the mapping between the application and
solution domain concepts in transformational analysis. Therefore, Czarnec-
ki-Eisenecker feature modeling has to be adapted, and this chapter will focus

1This chapter is based on [Vra].
2The notions domain, application domain, and solution domain have already ben de-

fined in Section 3.5. Their definitions are repeated here for convenience.
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on the adaptation.3

After introducing the basic feature modeling notions (Section 4.1) and
the notation of feature diagrams (Section 4.2), including concept references
as the means of structuring feature diagrams (Section 4.3), the informa-
tion associated with concepts and features will be explained (Section 4.4).
Subsequently, parameterization in feature models (Section 4.6), concept in-
stantiation (Section 4.7), and equivalent and normalized feature diagrams
(Section 4.8) will be discussed. Finally, some guidelines regarding the use of
feature modeling (Section 4.9) and a brief overview of the available feature
modeling tools will be given (Section 4.10).

To illustrate the technique of feature modeling, several examples will be
introduced. To improve readability, the examples will be numbered and an
end of each example marked by a filled square ( ). Appendix A presents a
detailed example of a feature model of the domain of feature modeling itself.

4.1 Basic Notions

A concept is an understanding of a class or category of elements in a do-
main. Individual elements that correspond to this understanding are concept
instances.

A feature is an important property of a concept [CE00]. A feature may
be common, in which case it is present in all concept instances, or variable,
in which case it is present only in some concept instances. Any feature
may be isolated and modeled further as a concept, therefore being a feature
is actually a relationship between two concepts. However, the concepts
identified only in the context of other concepts, i.e. as their features, will be
referred to as features exclusively. This helps emphasize the main concepts
in a domain.

The output of feature modeling is a feature model of a domain. A feature
model consists of a set of feature diagrams, information associated with
concepts and features, as well as constraints and default dependency rules
associated with feature diagrams. A feature diagram is a directed tree whose
root represents a concept and the rest of the nodes represent its features.

Each concept has a name unique in its domain. A concept is described
by its features organized in a feature diagram. Each feature has a name
unique among the first-level features of its parent. A feature may have its
own features, which are sometimes denoted as subfeatures with respect to
their parent [CE00].

The features connected directly to a concept or feature are being denoted
as its direct features; all other features are its indirect features [CE00]. A
feature or concept that has at least one direct variable feature is called a
variation point [CE00].

3The differences are discussed in Section 6.1.
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Concepts and features are referred to by their names. To avoid name
clashes when combining features from several diagrams in one expression,
their names should be qualified according to this convention:

Concept.Feature 1.Feature 2. . .Feature n

In case of combining concepts and features from several domains, the domain
name followed by a colon should precede the expression:

Domain:Concept.Feature 1.Feature 2. . .Feature n

4.2 Feature Diagrams

Each concept is presented in a separate feature diagram. A feature diagram
is drawn as a directed tree with edge decorations. The root represents a
concept, and the rest of the nodes represent features. Edges connect a
concept with its features, and a feature with its subfeatures.

Concept instances are represented by configurations of concept features
achieved by a selection of these features according to their variability. A
feature can be included in a concept instance only if its parent has been
included. A concept instance must have all the mandatory features and can
have the optional features.

There are two types of edges used to distinguish between mandatory
features, ended by a filled circle, and optional features, ended by an empty
circle. A concept instance must have all the mandatory features and can
have the optional features.

The edge decorations are drawn as arcs connecting disjunct subsets of the
edges originating in the same node. They are used to define a partitioning of
the subnodes of the node the edges originate in into alternative, drawn as an
empty arc, and or-features, drawn as a filled arc. The alternative features
(whose origin is in FODA) have exclusive-or semantics. Or-features have
inclusive-or semantics (added in Czarnecki-Eisenecker feature modeling).4

Exactly one feature can be selected from the set of alternative features. If
the selected feature is optional, its inclusion in a concept instance is further
decided based on that optionality.

Any subset or all of the features can be selected from the set of or-
features. Among the selected features, each optional feature’s inclusion in a
concept instance is further decided based on that optionality.

Alternative and or-feature sets containing optional features are further
discussed in Section 4.8.

A concept or feature is open if it is expected to have new direct variable
subfeatures. This is indicated directly in feature diagrams by introducing the

4These two types of features are sometimes referred to as exclusive-or and inclusive-
or [CEH03].
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open concept or feature name in square brackets and optionally by ellipsis
at its subfeatures. The openness may be explained further in the concept
or feature description, which is a part of the information associated with
concepts and features (explained in Section 4.4).

A feature diagram in Fig. 4.1 demonstrates the notation. Features f1,
f2, f3, and f4 are direct features of the concept C1, while other features are
its indirect features. Features f1 and f2 are mandatory alternative features.
Feature f3 is an optional feature. Features f5, f6, and f7 are mandatory
or-features; they are also subfeatures of f3. Feature f3 is open. In addi-
tion, ellipsis expresses more precisely that new mandatory or-features are
expected in the group of f5, f6, and f7.

C1

[f3]f2f1 f4

f6f5 f7

...

Figure 4.1: A feature diagram.

Example 4.1 Consider the text editing domain and its concept of a text
editing buffer5 whose feature diagram is presented in Fig. 4.2. Ignore the
(R) marks that appear at some of the features for the moment; these will be
explained in the next section. A text editing buffer represents the state of
a file being edited in a text editor which is modeled as a mandatory feature
File. Each text editing buffer employs some memory management scheme to
be able to deal with big files that cannot be loaded in the working memory
at once. This is modeled by a mandatory feature Memory Management.

A text editing buffer uses one of the available character sets. This is
modeled by the mandatory feature Character Set and its mandatory alter-
native subfeatures. Feature Character Set is open; ellipsis indicates that
new features (i.e., character sets) are expected in the existing group of al-
ternative features. Debugging code might be useful during the development,
but should not be present in the final product. This is modeled by the op-
tional feature Debugging Code. All text editing buffers load and save their
contents into a file, maintain a record of the number of lines and characters,
the cursor position, etc., modeled by further mandatory features (bearing
the corresponding names).

5This example is adapted from [Cop99b, Vra01a])
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Text Editing Buffer

load file
File (R)

[Character Set]

cursor position

number of lines

Memory Management (R)

Debugging Code (R) 

save file

ASCII

UNICODE

...
insert text

remove text

Figure 4.2: The feature diagram of the Text Editing Buffer concept.

4.3 Concept References

A concept can be referenced as a feature in another or even in its own
feature diagram. A concept reference is a feature that stands for an already
defined concept. The r© mark6 follows the names of concept references
in order to distinguish them from the rest of the features. The features
File r©, Memory Management r©, and Debugging Code r© in Fig. 4.2 represent
concept references.

The introduction of a concept reference is equivalent to the repetition of
the whole feature diagram of the concept in the place of the reference. The
referencing is used to avoid repeating in order to improve the readability of
feature diagrams. The repeating can be used instead of referencing (although
the referencing is more elegant) except in the case of a self-reference (i.e.,
when the concept is referenced in its own feature diagram) because that
would lead to an infinite repetition of the referenced concept feature diagram.

Figure 4.3a presents the feature diagram of concept C2 that refers to the
concept C1 from Fig. 4.1. Figure 4.3b presents the same feature diagram,
but with the feature diagram of C1 repeated instead of being referenced.

C1 (R)

C2

g2g1

C1

[f3]f2f1 f4

f6f5 f7

C2

g2g1

...

(a) (b)

Figure 4.3: Referring to concepts.

6For technical reasons, presented as (R) in diagrams.
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If the concept being referenced belongs to another domain, and if the
domain in which the concept is being referenced already contains a concept
with the same name, then the reference name qualification should include the
domain name (see Section 4.1). Otherwise, the concept name is sufficient.

It is not possible for a concept reference to have subfeatures. In case this
appears to be needed, the referenced concept should be extended with the
additional subfeatures. The applicability of the additional feature may be
controlled by constraints in the information associated with the concept.

The subfeatures attached to the concept should be optional even if they
ought to be mandatory for the concept reference. This may always be reg-
ulated by appropriate additional constraints on feature selection (explained
in Section 4.5).

4.4 Information Associated with Concepts and Fea-
tures

The following information (needed in multi-paradigm design) should be as-
sociated with concepts and features:

Description (D) Each feature and concept is provided with the descrip-
tion, the text explaining the meaning of the concept or feature. If the
concept or feature is open, i.e. if new direct subfeatures are expected,
this should be explained in its description also.

Presence rationale (Rp) Each feature may be provided with presence
rationale, the text that specifies the reasons (beyond the obvious ones)
for having it in the feature model of a concept.

Inclusion rationale (Ri) Each variable feature may be provided with in-
clusion rationale, the text that specifies the special reasons for its
inclusion or non-inclusion in a concept instance, if any.

Binding time/mode (B) Each variable feature is provided with the in-
formation on binding time or mode.

Note (N) Any other information about a feature may be introduced as a
note.

The above list is also the form the information associated with con-
cepts and features should be introduced in. The abbreviation introduced in
parentheses following the name of each part will be used in referring to it.

4.4.1 Binding Time/Mode

The information on binding time/mode requires further explanation. The
binding time describes when a variable feature is to be bound, i.e. selected.
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The binding time of a variable feature is determined in terms of the binding
times available in the solution domain. The following list presents the usual
binding times [Cop99b]:

Source time The time of program source code writing, when a program-
mer explicitly decides what is performed (e.g., that a class will provide
some method).

Compile time The time of program source code compiling, when decisions
are made by a compiler (e.g., which method to select among the over-
loaded ones).

Link time The time of program linking, when decisions are made by a
linker.

Load time The time of program loading, when decisions are made by a
loader.

Run time The time of program running, when decisions are made by the
running program.

The binding mode describes how a variable feature is bound from the
perspective of a running program. A variable feature may be bound stat-
ically, in which case it cannot be rebound at run time, or dynamically, in
which case it can be rebound at run time [CE00]. Other, more specific bind-
ing modes may be defined as well, e.g. changeable binding as an optimized
dynamic binding [CE00] (see also Section 6.1.8).

At the time of modeling application domain, the solution domain may
be unknown or we may want to keep the application domain feature model
free of the solution domain details. In that case, using the binding mode
instead of the binding time is more appropriate.

Both binding time and binding mode further in this thesis will be denoted
as binding whenever it is clear from the context whether the binding time,
binding mode, or both are considered.

The binding may be indicated directly in feature diagrams. If at one
variation point all its direct variable subfeatures have the same binding, it
is sufficient to indicate the binding at one of them.

4.4.2 Associated Information Applicability

Table 4.1 summarizes the applicability of the individual parts of the infor-
mation associated with concepts and different types of features.

A concept reference may be associated with its own information as any
other feature, but the information associated with the concept it references
applies to it as well. If no further information is to be provided with the
concept reference, the information associated with it may be left out.
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Table 4.1: The associated information applicability.

Information: D Rp Ri B N
Concept X X
Common feature X X X
Variable feature X X X X X

4.5 Constraints and Default Dependency Rules

Feature diagrams define the main constraints on legal feature combinations
in concept instances. Since feature diagrams are represented as trees, in all
but simplest cases it is impossible to express all the constraints solely by a
feature diagram. Additional constraints are expressed in a list of constraints
associated with the feature diagram. Also, a list of default dependency rules
is associated with each feature diagram in order to specify which features
should or should not appear together by default.

Constraints and default dependency rules are predicate logic expressions
formed out of specific and parameterized names of concepts and features (ex-
plained in Section 4.6.1), logical connectives, quantifiers, and parentheses.
The intention of using predicate logic to express constraints and default de-
pendency rules is to avoid ambiguities natural language is prone to. At this
stage, the automated evaluation of the constraints and default dependency
rules has not been considered, although that would certainly be useful.7

Commonly used quantifiers—∀ (universal quantifier) and ∃ (existential
quantifier)—and connectives— ¬ (not), ∧ (and), ∨ (or), ∨ (xor), ⇒ (impli-
cation), ⇔ (equivalence)—should suffice to express constraints and default
dependency rules, but other connectives and quantifiers may be used as well
if they would improve the clarity of expressions. The precedence of connec-
tives in descending order (from left to right) with the connectives with equal
precedence placed together in parentheses is as follows:

¬, ∧ , (∨ , ∨ ), (⇒, ⇔)

A feature name f in constraint or default dependency rule expressions
stands for is in instance(f), where is in instance is a predicate which is true
if f is embraced in the concept instance, and false otherwise. Obviously, for
each mandatory feature f is in instance(f) is true. Therefore, it makes no
sense for a mandatory feature to appear in a constraint or default depen-
dency rule. The same applies to concepts.

7Constraints as predicate logic expressions enable automated feature model consistency
or concept instance validity checking. This issue is out of the scope of this thesis; see
Section 6.1 for a brief information on approaches concerned with it.
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Parameters in parameterized names of concepts and features (explained
in Section 4.6.1) appearing in expressions must be quantified; otherwise, the
expression containing parameterized names cannot be evaluated. However,
if the name of a feature in a feature diagram of a parameterized concept
is parameterized, no quantification is needed because the expression is then
related to it as such.

Feature names in expressions should be fully or partially qualified to
avoid name clashes (see Section 4.1). Note that since each expression is
associated with exactly one feature diagram, the domain and the concept
name are unnecessary. To avoid repeating long qualifications, as in:

A.B.C.x ∨A.B.C.y

the expression which a qualification is related to may be introduced in paren-
theses and preceded by the qualification as if it was a feature, transforming
the above example into:

A.B.C.(x ∨ y)

The feature that belongs to a concept referenced in another feature dia-
gram (and which actually does not appear in the diagram directly) may also
appear in the expressions. Such a feature should be qualified as if the ref-
erenced concept has been expanded. For example, in expressions regarding
the feature diagram in Fig. 4.3a, the feature C2.C1.f3.f7 may be referred to.

4.5.1 Constraints

A list of constraints associated with a feature diagram is a conjunction of
the expressions it consists of. Thus, for a concept instance to be valid, all
the constraints associated with the feature diagram must be fulfilled, i.e.
they must evaluate to true.

Constraints express mutual exclusions and requirements among features,
i.e. they determine which features cannot appear together and which must
appear together, respectively [CE00]. A single constraint expression may
express several mutual exclusions and requirements at once.

Constraints may have numerous equivalent forms (that may be derived
one from another following the rules of predicate logic). However, constraints
are intended to be read by humans; therefore they should be kept in the form
which is as comprehensible as possible and accompanied by an explanatory
note, if needed. Bearing this in mind, mutual exclusions may be expressed by
connecting features with exclusive or, while requirements may be expressed
as implications or equivalences, depending on whether the requirement is
bidirectional or not.



36 Feature Modeling for Multi-Paradigm Design

Example 4.2 Consider again the text editing buffer feature diagram from
Example 4.1 (page 30). If, for some reason, we would want to say that no
text editing buffer employing ASCII character set may be provided with the
debugging code, we would add the following constraint to it:

Character Set.ASCII ∨Debugging Code

As has been said, the main constraints are expressed directly in feature
diagrams and thus need not be repeated in the information associated with
them. However, sometimes it may be needed to change a feature diagram
constraint to associated one, or vice versa. In a feature diagram, mutual
exclusion is expressed by alternative features. A requirement is expressed by
a variable subfeature whose parent is also a variable feature: the subfeature
requires its parent to be included. Also, a requirement may be expressed by
or-features: at least one feature is required from the set of or-features.

In case of any contradiction among the constraints, it is impossible to
instantiate the concept. While the notation of feature diagrams prevents
the creation of contradictory feature diagrams, the constraint expressions
contradictory either among themselves or to the feature diagram they are
associated with are easily built.

4.5.2 Default Dependency Rules

A list of default dependency rules associated with a feature diagram is a dis-
junction of an implicit (and not displayed in the list) true and the expressions
it consists of. The implicit true disjunct in a list of default dependency rules
assures that it always evaluates to true.

Default dependency rules determine which features should appear to-
gether by default. They are expressed by the same means as constraints.
The difference between default dependency rules and requirements is that
requirements must hold for any concept instance, while default dependency
rules are applied at the end of the process of concept instantiation if there
are variable features left such that no explicit selection has been made among
them. Which of these features will be included in the concept instance is
decided according to the default dependency rules.

4.6 Parameterization in Feature Models

Two kinds of parameterization may appear in feature models: parameterized
feature and concept names, explained in Section 4.6.1, and parameterized
concepts, explained in Section 4.6.2. Section 4.6.3 explains how to represent
cardinality in feature models using parameterized concepts.
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4.6.1 Parameterized Feature and Concept Names

In case we need to reason about several concepts or features in constraints
and default dependency rules (see Section 4.5), parameterized names of con-
cepts and features may be used to skip the repetition of the expression with
each concept or feature name.

A parameterized name of a concept or feature has the form:

p1p2 . . . pn

where for each i ∈ [1, n] pi is either a parameter or specific string and where
exists j ∈ [1, n] such that pj is a parameter. For each parameter, a set
of possible strings that may be substituted for it has to be defined in its
description. Parameters are introduced in <> brackets to distinguish them
from specific strings.

An expression in which one or more parameterized names appear is de-
noted as a parameterized expression. A parameterized expression is equiv-
alent to the conjunction of the expressions created by substituting all the
combinations of the appropriate specific strings for the parameters.

Parameterized names are the only way to express constraints and default
dependency rules about subfeatures of an open feature because their number
is unknown. Consider the feature diagram in Fig. 4.4. The feature f is open;
further direct variable subfeatures of the form f<i>, where <i> is a natural
number, are expected at it. All these features may be referred to by the
parameterized feature name f<i>.

C

f1

[f] g

...

f2

Figure 4.4: A feature diagram with an open feature.

4.6.2 Parameterized Concepts

The concept of a parameterized name allows for concepts to be parameter-
ized, too. This is useful when there is a number of concepts with structurally
equal feature diagrams.

A parameterized concept or feature is a concept or feature whose name is
parameterized. Parameterized features may appear only in feature diagrams
of parameterized concepts. A feature model containing a non-parameterized
concept with parameterized features in its feature diagram would be incon-
sistent since it would define a set of different feature diagrams for a single
concept. For the same reason, parameterized concepts may not be referenced
in feature diagrams of specific (i.e., non-parameterized) concepts.
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Example 4.3 Figure 4.5 shows an example of a parameterized concept.
The name <Plural Form> is the plural form of <Singular Form>.

[<Plural Form>]

<Singular Form> 1

<Singular Form>

<Singular Form> 2

<Singular Form>

...

Figure 4.5: Dealing with plural forms using a parameterized concept.

4.6.3 Representing Cardinality in Feature Models

Parameterized concepts are capable of representing UML style cardinalities
represented by a comma separated list of the minimum..maximum cardi-
nality pairs [Obj03]. The exact cardinality is achieved by introducing it in
both minimum and maximum. This may be achieved by a feature diagram
in Fig. 4.6a with the following constraint which will assure the appropriate
number of features according to the specified cardinality:

<n>∨

<i>=1

((max<i>6= ∗ ⇒
<max<i>>−<min<i>>+1∨

<j>=<min<i>>

i∧

k=1

<C><k>) ∧

∧ (max<i>= ∗ ⇒
<min<i>>∧

k=1

<C><k>))

[<Cs>:<min1>..<max1>,...,<min<n>>..<max<n>>]

<C>1

<C> (R)

<C>2

<C> (R)

...
Book

Authors:1..* References:1..*

(a) (b)

Figure 4.6: Parameterized concept for representing cardinality (a) and an
example of its application (b).

The parameter <Cs> is the plural form of the parameter <C>. Note
that parameters <min<i>> and <max<i>> are in fact doubly param-
eterized. This is to enable the parameterization of the number of mini-
mum..maximum cardinality pairs.

The values allowed for both minimum and maximum cardinalities are
natural numbers. Also, an additional value denoted by an asterisk is allowed
for the maximum cardinality value meaning “many,” as in [Obj03]. Zero car-
dinality is achieved by referencing the concept <Cs>:<min1>..<max1>,. . . ,
<min<n>>..<max<n>> as an optional feature.
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This parameterized concept may be applied to any domain by including
it in the feature model of the domain. Next, the set of the singular and plural
forms of concept names corresponding to each other (representing possible
values for <C> and <Cs>, respectively) has to be defined. Obviously,
a feature model must include the concepts singular form concept names
refer to. Finally, specific concept name and a set of minimum..maximum
cardinality pairs should be substituted. An example is shown in Fig. 4.6b;
a book has at least one author, and it may have zero (modeled by the
optionality of References:1..*) or more references.

4.7 Concept Instantiation

Concept instantiation mentioned in Section 4.1 abstracts from instantiation
time. A full definition of a concept instance is given here.

An instance I of the concept C at time t is a configuration of C’s features
which includes the C’s concept node and in which each feature whose parent
is included in I obeys the following conditions:

1. All the mandatory features are included in I.

2. Each variable feature whose binding time is earlier than or equal to
t is included or excluded in I according to the constraints of the fea-
ture diagram and those associated with it. If included, it becomes
mandatory for I.

3. The rest of the features, i.e. the variable features whose binding time
is later than t, may be included in I as variable features or excluded
according to the constraints of the feature diagram and those associ-
ated with it. The constraints (both feature diagram and associated
ones) on the included features may be changed as long as the set of
concept instances available at later instantiation times is preserved or
reduced.

4. The constraints associated with C’s feature diagram become associated
with the I’s feature diagram.

If binding mode is used instead of binding time (see Section 4.4), and the
concept instantiation is needed for some reason, the features bound statically
are considered to be bound earlier than those bound dynamically.8

A concept may be instantiated in a top-down or a bottom-up fashion.
The top-down instantiation starts by the inclusion of the concept node; then
inclusion of each feature whose parent has been included is considered.

8In multi-paradigm design with feature modeling, only solution domain concepts are
being instantiated, and the variable features of solution domain concepts have precise
binding times (see Section 5.2).
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The bottom-up instantiation starts at leaves and proceeds towards the
root. Inclusion of the concept and each feature is stipulated by the inclusion
of its children. This means that a feature may be considered for inclusion
only if all of its mandatory subfeatures have been included and if each its
variable subfeature has been included or left out respecting its variability
constraints (including the associated ones) and binding time. This holds for
the concept node itself; in case it cannot be included in the concept instance,
the instantiation has been unsuccessful.

A concept instance is represented by a feature diagram derived from the
feature diagram of the concept by showing only the features included in the
concept instance.

A concept instance is regarded further as a concept and as such may
be considered for further instantiation at later instantiation times. This is
demonstrated in Fig. 4.7 on the concept repeated from Fig. 4.1 augmented
with the binding time information (following the notation proposed in Sec-
tion 4.4); it is assumed that there are no other constraints associated with
the feature diagram.

C1

[f3]f2 f4

f6f5 f7

run time

compile time

C1

f3f2 f4

f5 f7

run time

source time run timecompile time t

C1

f3f2 f4

f5 f7

C1

[f3]f2f1 f4

f6f5 f7

source time run time

compile time

......

Figure 4.7: Concept instantiation with respect to instantiation time.

During instantiation, a concept reference may appear in a concept in-
stance as any other feature if it is not replaced by the diagram of the concept
it references prior to instantiation.

4.8 Equivalent and Normalized Feature Diagrams

Different feature diagrams may define the same set of concept instances;
such feature diagrams are denoted as equivalent [CE00].

This is caused by sets of alternative and or-features that involve optional
features. For each such a set of features, there are several different sets of
features that define the same constraints on feature selectability; such sets
will be denoted as equivalent.

Given a set of alternative features of which one or more features are
optional, any feature optionality modification that preserves at least one of
the features optional, will result in an equivalent set of features. The set
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in which all alternative features are optional is considered to be the normal
form in this case. An example is presented in the bottom of Fig. 4.8a.

a

yx z

a

yx z

a

yx z

b

vu w

b

vu w

b

vu w

(a) (b)

Figure 4.8: Equivalent feature diagrams and normalization: (a) optional
alternative features, (b) optional or-features.

Similarly, given a set of or-features of which one or more features are
optional, any feature optionality modification preserving at least one of the
features optional will result in an equivalent set of features. The additional
equivalent set is the set with all the features being optional; this set is
considered to be the normal form in this case. An example is presented in
the bottom of Fig. 4.8b.

A feature diagram whose each set of alternative or or-features with op-
tional features is replaced by the equivalent normal form is said to be nor-
malized. Examples of such transformations are shown in Fig. 4.8. The
diagrams in the lower part of the figure are normalized.

Note that since the transformation to an equivalent feature diagram (in-
cluding the normalization) does not affect the structure of a feature diagram,
nor it changes the set of concept instances defined by it, all the constraints
associated with it apply to the resulting feature diagram without change.

4.9 Applying Feature Modeling

This section gives some guidelines regarding the use of feature modeling as
has been proposed in this chapter. These guidelines do not go into the details
of extracting concepts and features from the domain related information.
Please refer to [CE00] for more on strategies for identifying features.

Prior to modeling, the main concepts in a domain have to be identified.
A key to identifying main concepts is the terminology found in the domain
related information. The main concepts found in the domain related infor-
mation should be listed. Further concepts may be discovered during the
modeling of the main concepts.

Example 4.4 Consider the text editing domain. This domain has already
been mentioned in Example 4.1 (page 30) in the context of the feature
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diagram of the text editing buffer concept. This is an important concept in
the text editing domain, which represents the state of a file being edited in
a text editor. From this, it implies that a file is also a concept that should
be considered. To deal with big files that cannot be loaded in the working
memory at once a memory management scheme may be needed. Also, for
development purposes, a debugging code may be useful. To summarize, four
main concepts have been identified in the text editing domain: text editing
buffer, file, memory management scheme, and debugging code.

After identifying the main concepts, we may proceed with their modeling.
Features of concepts may be identified in the domain related information.
Further features and concepts may emerge from the interaction of already
identified features.

In modeling first-level features (including concept references), proceed
as follows for each concept C from the set of identified concepts:

1. Describe C.

2. Identify C’s direct common features and arrange them in the feature
diagram with C as their parent.

3. Identify C’s variable features and arrange them in the feature diagram
with C as their parent.

4. Analyze C’s feature interactions, i.e. determine the constraints of C’s
features.

In modeling subfeatures of the first-level features proceed as follows for
each concept C:

1. From the set of identified first-level features of C select a not yet
analyzed feature. Denote it F .

2. Describe F .

3. Determine F ’s presence rationale.

4. If F is a variable feature:

(a) Determine F ’s inclusion rationale.

(b) Determine F ’s binding time or mode.

5. Identify whether F has subfeatures (a concept reference cannot have
subfeatures, see Section 4.3). If it does, then:

(a) Identify F ’s direct common features and arrange them in the
feature diagram with F as their parent.



4.9 Applying Feature Modeling 43

(b) Identify F ’s direct variable features and arrange them in the fea-
ture diagram with F as their parent.

(c) Analyze F ’s feature interactions, i.e. determine the constraints
of F ’s features.

(d) For each such an identified feature G of F perform this procedure
from step 2 where F is set to G.

6. If F ’s subtree is repeated, F may represent a concept that has been
overlooked. Consider introducing it as a concept in a separate feature
diagram with F referring to it.

7. Analyze feature combinations and interactions:

(a) Identify further constraints among the features and modify the
corresponding features constraints accordingly.

(b) Identify new features based on interactions of already identified
features.

(c) For each such an identified feature G perform this procedure from
step 2 with F set to G.

Variable features binding times can be determined when the set of bind-
ing times defined in the solution domain becomes available. The set of
binding times may be different for each solution domain. If the solution do-
main is unknown at the time of the application domain modeling, binding
modes may be used instead of binding times (see Section 4.4).

The given order of steps of the procedures for obtaining feature mod-
els need not be followed strictly. The main purpose of introducing these
procedures is to define precisely what has to be provided in a feature model.

Example 4.5 In Example 4.4 (page 41), four concepts have been identified
in the text editing domain. The concept of a text editing buffer has already
been presented in Example 4.1 (page 30). The only information that’s miss-
ing is the information on binding: all the variable features that appear in
the Text Editing Buffer feature diagram are statically bound. This example
will consider the other three concepts identified in the text editing domain.
Figure 4.9 shows their feature diagrams.

The concept of a file presented in Fig. 4.9a represents the state of a file
being edited in a text editor. A file is identified by its name. A file may
be read and written. The status presents an information on the last write
operation performed on a file. A file may be of one of the several available
types; there may be file types other than those presented in the diagram, so
the concept is open. The alternative file type features of the File concept
are bound dynamically because we need to be able to change the output file
type at run time.
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Figure 4.9: File (a), Memory Management (b), and Debugging Code concept
(c) feature diagram.

The concept of memory management presented in Fig. 4.9b enables to
deal with big files that cannot be loaded in the working memory at once on
the line basis. Different memory management schemes are possible, which is
modeled by alternative features; there may be memory management schemes
other than those presented in the diagram, so Memory Management concept
is open. This scheme is not supposed to change during the lifetime of a text
editing buffer, so the alternative features of Memory Management concept
are bound statically.

The concept of debugging code presented in Fig. 4.9c is intended to pro-
vide the debugging messages for development purposes. It is assumed here
that the debugging code is provided either for file or memory management
parts, or both, which is modeled by statically bound or-features. The file
debugging is concerned with supplying the file type in case of reading, and
the file status in case of writing. The memory management code displays
the contents of the line being inserted into the working memory or removed
from it.

4.10 Feature Modeling Tool Support

Feature modeling tool support is far from being satisfactory, although there
are three tools that aim at such a support available.9 This section will briefly
present these tools.

4.10.1 ASADAL

ASADAL (version 1.0) [POS] is intended for use in conjunction with the
FORM method [KKL+98] and besides feature modeling, it supports other
models used in this method. However, ASADAL enforces FORM feature

9As of this writing, no other feature modeling support tools are available to the best
knowledge of the author.
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modeling notation that originates in FODA [KCH+90] and its layered feature
model (briefly explained in Section 6.1), which makes it inappropriate for
other methods.

4.10.2 AmiEddi

AmiEddi (version 1.3), available at [CE], and its successor Captain Fea-
ture [Cap] implement a more general Czarnecki-Eisenecker feature modeling
notation [CE00]. Both tools store feature models in XML format. AmiEddi
provides a repository model to organize large feature models. It supports
different views of feature diagrams, in which some features may be hidden.
Information associated with features is configurable through so-called meta-
model editor [Bli01, CEH03].

AmiEddi lacks a mechanism for managing large feature diagrams as con-
cept references. Also, it lacks a possibility to export associated information
and a better export capabilities for both feature diagrams.

4.10.3 Captain Feature

Captain Feature (version 0.1) supports the extensions to the original Czar-
necki-Eisenecker feature modeling notation proposed in [CBUE02] (briefly
explained in Section 6.1.8).

In Captain Feature, the whole feature modeling notation should be con-
figurable through a metamodel represented by a feature model [Bed02,
CBUE02]. However, it seems10 that it is not possible to edit this meta-
model in Captain Feature. Also, it is not possible to create feature groups
(to represent alternative and or-features), although these may be modified
if they are already present in a diagram (as in the example file that comes
with Captain Feature), but the problem that makes this tool completely
unusable is its inability to save feature models.

10No user manual nor help system is available for Captain Feature.





Chapter 5

Multi-Paradigm Design with
Feature Modeling

In this chapter a new method of multi-paradigm software development is
proposed: multi-paradigm design with feature modeling (MPDfm).1 The
method employs feature modeling, the modeling technique presented in the
previous chapter.

The examples in this chapter introduced to illustrate solution domain
feature modeling and transformational analysis in MPDfm are related to
AspectJ programming language [Ecla] (version 1.1.1). A whole AspectJ
paradigm model, which defines MPDfm for AspectJ, has been created and
may be found in Appendix B.2 Also, an application of MPDfm for AspectJ
to the domain of feature modeling is presented in Appendix C. Based on the
results presented in these two appendices, the method has been evaluated.

Section 5.1 presents the process of MPDfm. Solution domain feature
modeling is presented in Section 5.2. Transformational analysis is presented
in Section 5.3. Code skeleton design is described in Section 5.4. Section 5.5
evaluates the method.

5.1 The Process of Multi-Paradigm Design with
Feature Modeling

MPDfm follows the same process framework as multi-paradigm design (de-
scribed in Section 3.5). However, all activities in MPDfm are based on
feature modeling. Figure 5.1 shows the four activities MPDfm consists of:

Application domain feature modeling results in an application domain
feature model.

1This chapter is based on [Vra].
2The AspectJ paradigm model presented in this thesis is based on the preliminary work

presented in [Vra01a, Vra02a].
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Solution domain feature modeling results in a solution domain feature
model, i.e. paradigm model.

Transformational analysis establishes an application to solution domain
mapping.

Code skeleton design translates an application to solution domain map-
ping into the code.

Application domain feature modeling follows the general process of fea-
ture modeling described in Chapter 4. Solution domain feature modeling has
some peculiarities, so it will be described in detail (in Section 5.2) along with
transformational analysis and code skeleton design (Sections 5.3 and 5.4).

The inputs to MPDfm are:

Application domain related information contained in domain knowl-
edge, the information about stakeholders, requirements, information
about existing systems in the domain, etc.

Solution domain related information actually the information about
the programming language that is going to be used, which is contained
in the programming language textbooks and manuals, experience from
existing systems, etc.

The output of MPDfm is the code skeleton. However, the application
domain feature model and solution domain feature model are also useful
intermediate outputs of MPDfm. Once created, the solution domain fea-
ture model can be reused in transformational analysis of all the application
domains that are to be implemented in that solution domain. The applica-
tion domain feature model can be reused in transformational analysis if its
implementation in another solution domain is required.

Transformational Analysis

Application Domain Feature Modeling Solution Domain Feature Modeling

Code Skeleton Design

solution domain feature model 
(paradigm model)

application domain feature model

application to solution domain mapping
(paradigm instances)

code skeleton

application domain related information solution domain related information

Figure 5.1: Multi-paradigm design with feature modeling.
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The place of MPDfm in the overall process of software development is
shown in Fig. 5.2. Detailed design and implementation is based on the fi-
nal result of MPDfm, the code skeleton, as well as some of its intermediate
results: the application domain feature model and application to solution do-
main mapping. At that point, the paradigm-specific methods pointed to by
the small-scale paradigms selected in transformational analysis of MPDfm
may be used.3

Multi-Paradigm Design with Feature Modeling

Detailed Design and Impelementation

Paradigm-Specific Methods

Application Domain Definition Solution Domain Definition

 

application domain related information solution domain related information

partial code
skeleton code

stakeholders
requirements

domain knowledge
programming language information, manuals

software family code

application to solution domain mapping

existing software systems

application domain feature model
application to solution domain mapping

code skeleton

Figure 5.2: Multi-paradigm design with feature modeling and other activi-
ties during software development.

5.2 Solution Domain Feature Modeling

A solution domain is a domain in which a solution is to be expressed. A
solution domain feature model, obtained by applying feature modeling to the
solution domain related information, expresses the paradigms the solution
domain supports. A paradigm is modeled as a solution domain concept.

The solution domain is here assumed to be a programming language,
but other means of solution that are at disposal and that can be modeled as
configurations of commonality and variability, as in case of multi-paradigm

3This is possible due to a fact that large-scale paradigms appear to be consisting of
small-scale paradigms. This is discussed in Section 2.3.
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design for C++ [Cop99b] (e.g., non-Alexandrian [Cop00, Vra02b] design
patterns [GHJV95]), can be embraced in a model, too).

The solution domain concepts are the paradigms it provides. This is in
compliance with the definition of a small-scale paradigm as a configuration
of commonality and variability (see Section 2.3). Solution domain feature
models will be referred to also as paradigm models.

Solution domain feature modeling starts by identifying the paradigms
supported by it, which is described in Section 5.2.1. It proceeds with iden-
tifying binding times of the solution domain, described in Section 5.2.2,
and with the actual modeling of the paradigms, described in Sections 5.2.3
and 5.2.4.

5.2.1 Identifying Paradigms

The identification of paradigms starts by the language concepts that can be
used directly at the topmost level of programs. Such paradigms are directly
usable. An example is the class paradigm in AspectJ programming language.

A directly usable paradigm may also be used by other paradigms; if it
doesn’t, then it is a pure directly usable paradigm. All other paradigms
are indirectly usable paradigms. The important subconcepts of the directly
usable paradigms constitute indirectly usable paradigms. An example is the
method paradigm in AspectJ, which, unlike the class paradigm, can be used
only inside of a class or aspect.

There may be several levels of indirectly usable paradigms. However, the
first-level indirectly usable paradigms would probably be sufficient. This is-
sue must be solved with respect to the purpose of the paradigm model, which
is its use in transformational analysis. It is not feasible to model all the lan-
guage constructs as paradigms. Much of such low-level paradigms would
never be used during transformational analysis because the application do-
main feature model would be far less detailed. For example, a method in
AspectJ may contain an assignment construct, so there could be an assign-
ment paradigm. On the other hand, an application domain feature model
would hardly mention assignments, so having the assignment paradigm in
the paradigm model is futile.

During the identification of paradigms, it is useful to draw a hierarchy
of paradigms. Fig. 5.3 presents a hierarchy of AspectJ paradigms. In the
paradigm model, each parent paradigm would reference its daughter para-
digms.

5.2.2 Identifying Binding Times

Based on the solution domain related information, the binding times the
solution domain provides should be determined. For this, we must know
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Figure 5.3: The hierarchy of AspectJ paradigms. The arrows mean “may
use”.

whether programs in a given programming language are compiled or inter-
preted, whether they are loaded at once or part-by-part, etc.

Usually, binding times include:

source time the time of program source code writing, when a programmer
explicitly decides what is performed (e.g., that a class will provide
some method)

compile time the time of program source code compiling, when decisions
are made by a compiler (e.g., which method to select among the over-
loaded ones)

link time the time of compiled code units linking, when decisions are made
by linker which precompiled code to link to a program

load time the time of program loading, when decisions are made by loader

run time the time of program running, when decisions are made by the
running program

Binding times, as any other times, are comparable. There are later and
earlier binding times. Thus, the binding times of a solution domain may
be arranged into a sequence. The list of binding times introduced above
forms such a sequence where the earliest binding time is source time, and
the latest one is run time.

5.2.3 First-Level Paradigm Model

Having identified the paradigms, we may proceed with feature modeling.
The directly usable paradigms represent the subconcepts of the solution
concept, so their references should appear as features of the solution concept.
As any other concept, the solution concept should be described.

To create a first-level paradigm model proceed as follows for each directly
usable paradigm P :
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1. If P may appear more than once in a program, introduce its reference
in the solution domain feature diagram in plural, otherwise in singu-
lar. If needed, model the plural forms as individual concepts or as a
parameterized concept.

2. Determine the variability of P ’s reference according to the restrictions
posed by the programming language.

3. If P ’s reference is a variable feature, determine of P ’s reference binding
time (usually source time).

4. Analyze solution concept feature interactions, i.e. determine the initial
constraints among paradigms.

Example 5.1 The feature diagram of AspectJ programming language
first-level paradigm model is presented in Fig. 5.4. All the directly usable
paradigms of AspectJ are modeled as source time bound optional features
of an AspectJ program as a solution concept.

Classes(R) Interfaces(R) Inheritances(R) Aspects(R)

AspectJ Program

Figure 5.4: First-level AspectJ paradigms.

They are introduced in plural, since they may appear more than once
in the same AspectJ program. The plural form is modeled by <Plural
Form> parameterized concept presented in Fig. 5.5 (repeated from Fig. 4.5
for convenience) mentioned in Section 4.6.2. The concept <Plural Form>
may be any one of AspectJ paradigms or Type concept (see Example 5.2 on
page 53). The name <Plural Form> is the plural form of <Singular Form>.
All the variable features have the source time binding.

[<Plural Form>]

<Singular Form> 1

<Singular Form>

<Singular Form> 2

<Singular Form>

...

Figure 5.5: Dealing with the plural form of concepts using a parameterized
concept.

5.2.4 Modeling Individual Paradigms

A paradigm is a concept and as such is presented in a separate feature
diagram. Features of paradigms may be found in the solution domain related
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information. Paradigms that may be used in the paradigm being modeled
should be referenced by it. Further features may emerge from the interaction
of already identified features.

The first-level features of a paradigm are identified similarly as the first-
level features of any other concept (see Section 4.9). In addition, if the
paradigm enables instantiation, it has to be modeled as a feature (or several
features).

The subfeatures of the first-level paradigm features are modeled similarly
as the subfeatures first-level features of any other concept (see Section 4.9).
However, there are two differences. First, a binding time for each variable
feature must be introduced, and it cannot be replaced by a binding mode.
Second, there is no need for introducing the presence rationale for features,
as their presence is practically defined by the solution domain.

If some feature’s subtree is repeated, it may represent a concept. In a
solution domain feature model, this concept may be a paradigm. Even if it
is not a paradigm, it should be introduced in a separate feature diagram.
Such concepts will be denoted as auxiliary concepts further (see Examples 5.2
and 5.3). In both cases, such a feature would be introduced in a separate
feature diagram and referenced as needed.

Much of the paradigms correspond to the main constructs, i.e. struc-
tures, of the programming language. In transformational analysis, a node
in the application domain feature model can match with the root of such a
structural paradigm. The AspectJ structural paradigms are: class, interface,
method, and aspect. The aspect paradigm will be considered as an example.

Example 5.2 The aspect paradigm is presented in Fig. 5.6. The aspect
paradigm enables to articulate related structure and behavior that cross-
cuts otherwise possibly unrelated classes, interfaces, and other aspects (only
static aspects are allowed) into a named unit.

An aspect is similar to a class in the sense that it also embodies related
structure (fields) and behavior (methods). But this structure and behavior is
used only to support the croscutting, which is achieved by two paradigms an
aspect is a container of: the advice and inter-type declaration. In addition,
the pointcut paradigm is used to specify the join points (where the aspect
is to be attached).

As classses, aspects can also be instantiated, but the instantiation is
automatic. By default, an aspect is a singleton, i.e. there is a single aspect
per Java virtual machine. Further, it is possible to declare that an aspect
instantiates per each of the specified objects (executing or target ones) at
any of the join points specified by a pointcut or per each flow of control (as
it is entered or below it) of the join points specified by a pointcut.

Aspects can be priviledged in order to override the access rules of the
elements they crosscut. The aspect paradigm enables employing (inside of
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Figure 5.6: The aspect paradigm in AspectJ.

it) the same paradigms as the class paradigm beside inter-type declarations
and pointcuts, which have a special position in it.

The parts of an aspect (without considering inheritance) are known at
source time, which means that all the variable features presented in Fig. 5.6
have the source time binding.

The access to an aspect may be controled, which is modeled by an aux-
iliary concept Access (see Fig. 5.7). The default value is the package access.

The following constraint is associated with the aspect paradigm feature
diagram:

abstract ∨final

which means that the aspect is either final, or abstract.
A default dependency rule associated with the aspect paradigm feature

diagram:

Instantiation policy ⇒Instantiation policy.singleton

defines that the instantiation policy is by default single.

Access

private protected public package

Figure 5.7: The access concept.
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Besides structural paradigms, there are also paradigms that are about
the relationship between some language structures. In transformational
analysis, no single node in the application domain feature model will match
with the root of such a relationship paradigm. The AspectJ relationship
paradigms are: inheritance (a relationship between classes), overloading (a
relationship between methods), inter-type declaration, advice, and pointcut.
The last two will be considered as examples.

Example 5.3 Inside of an aspect, the advice paradigm (see Fig. 5.8) may
be used to articulate the actions to be performed in the context of the join
points specified by the pointcut. An advice provides a piece of code (in its
body) to be run before, after, or in place (around) of a pointcut. The body
of an advice is similar to the body of a method.

Advice

aroundafter

throwingreturning

before

Body

Pointcut(R)

context

Return value type

Type(R)Type(R) Type(R)

Figure 5.8: The advice paradigm in AspectJ.

An after advice can run after the execution of each join point specified
by the Pointcut r© completes normally, after it throws an exception, or after
it does either one. In the last case, no matching based on the type, which is
modeled by an auxiliary concept (see Fig. 5.9), being returned or exception
being thrown can be made.

Type

Class(R)
Interface(R) Aspect(R)

Figure 5.9: The type concept.

Around advice returns a value which will replace the original one at each
join point specified by the Pointcut r©. An advice can use a context exposed
by its pointcut. The original join point return value may also be captured
and returned, modified or not, by letting the original join point execute
inside of the advice body. However, this AspectJ paradigm model does not
go into such details as they could hardly be used in the transformational
analysis.
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Pointcut
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BodyName

Static join points Dynamic join points

abstractfinal

Access(R)
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Figure 5.10: The pointcut paradigm in AspectJ.

Example 5.4 The pointcut paradigm (see Fig. 5.10) enables to specify the
join points. Two kinds of join points exist: static and dynamic join points.
Both are specified at source time, but are really determined later; static join
points, such as method calls or executions, are determined at compile time,
while dynamic join points, such as all method calls performed by an object
of some type, may be determined only at run time. This means that the
Static join points.Join points feature has the compile time binding, while
Dynamic join points.Join points has the run time binding.

A pointcut is a logical expression formed out of the primitive pointcuts
and the pointcuts already defined. It can be named or not (if it is specified
directly in the place of its use). A pointcut can expose the context, i.e. an
object or its fields, caught by some of the primitive pointcuts.

The access to a pointcut may be controled, which is modeled by an
auxiliary concept Access (see Fig. 5.7). The default value is the package
access.

The following two constraints are associated with the pointcut paradigm
feature diagram:

abstract ∨Body

Access ⇒Name

which means that an abstract pointcut cannot have a body (or vice versa),
and that only a named pointcut may have an access type specified.

5.3 Transformational Analysis

Transformational analysis in multi-paradigm design is a process of find-
ing the correspondence and establish the mapping between the application
and solution domain concepts. Transformational analysis in MPDfm is per-
formed as bottom-up instantiation of paradigms over application domain con-
cepts at source time.
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The input to transformational analysis are two feature models: the ap-
plication domain one and the solution domain one. The output of transfor-
mational analysis is a set of paradigm instances annotated with application
domain feature model concepts and features. Before presenting the pro-
cess of transformational analysis and providing an example of it, the key
issue of it—paradigm instantiation over application domain concepts—will
be explained.

5.3.1 Paradigm Instantiation

In MPDfm, paradigm instantiation is performed over application domain
concepts. Paradigm instantiation over application domain concepts is a
bottom-up instantiation of paradigms as solution domain concepts (see Sec-
tion 4.7) in which the inclusion of paradigm nodes is stipulated by the
mapping of the application domain concept nodes to them. By this, the
correspondence of the paradigm instances to application domain concepts is
enforced.

However, not all nodes of application domain concepts and paradigm
instances need to be mapped. An inner4 node of an application domain
concept or paradigm feature diagram may act as an auxiliary node to ease
the categorization of subfeatures. A feature represented by such a node may
have no counterpart in the other domain.5 Such nodes will be denoted as
mediatory.

Further, there may (and usually will) be a mismatch in detailedness
between the application and solution domain feature model. If solution
domain feature model is more detailed, features of some paradigms or even
some indirectly usable paradigms will not be mapped to in transformational
analysis, but in spite of that they may be included in paradigm instances
if determined so from the application domain concept semantics. In case
of the application domain feature model is more detailed, there may be no
corresponding nodes of the solution domain feature model for some of the
non-mediatory nodes or even whole application domain concepts.

Any other non-mediatory feature diagram node of an application domain
concept has to be mapped to the corresponding node of a paradigm instance.
In general, only the correspondence between the nodes of the same category
may be considered, i.e. between two concepts or between two features. Note
that concept references are also features (as defined in Section 4.3). Further,
semantics (according to the description) of the two nodes have to correspond
to each other.

The binding times of the nodes being mapped must correspond. For the
purposes of the binding time comparison, mandatory features are treated as
if they have the earliest binding time the solution domain provides (which

4An inner node of a tree is a non-root and non-leaf node.
5However, there may be other mappings in which such a feature would be mapped.
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is usually the source time, as discussed in Section 4.4.1). The binding time
correspondence may mean equality, but it may be relaxed to mean that the
binding time of the paradigm feature may not be earlier than required by the
application domain concept feature (as that can only prolong the execution
time).

If binding modes were used in the application domain analysis instead
of binding times, then the correspondence between the application domain
binding modes and the solution domain binding times has to be established.
However, in most cases, run time binding corresponds to dynamic binding
mode, and the rest of binding times correspond to static binding mode.

In addition, if features are bound later than at the instantiation time,
their variability types must correspond, too. To a certain extent, a pa-
radigm instance may accommodate to the variability type needed by an
application domain concept (see step 3 of concept instantiation introduced
in Section 4.7).

Each mapping between the nodes should be recorded in the form of an
annotation, which is graphically presented by connecting the nodes with a
dashed line. Annotations other than the feature diagram nodes of an appli-
cation domain concept should be introduced in dashed boxes. For example,
some paradigm features may have specific values intended for use in the code
skeleton design (e.g., a name of the class).

5.3.2 The Process of Transformational Analysis

Transformational analysis is performed as follows. For each concept C from
the application domain feature model, the following steps are performed:

1. Determine the structural paradigm corresponding to C:

(a) Select a structural paradigm P of the solution domain feature
model that has not been considered for C yet.

(b) If there are no more paradigms to select, there may be a level
mismatch: C may correspond to a paradigm feature, and not to
a paradigm itself. Unless C has been factored out as a concept
in step 1d, continue transformational analysis considering C only
as a feature of the concepts where it is referenced, and not as a
concept. Otherwise, the process has terminated unsuccessfully.

(c) Try to instantiate P over C at source time. If this couldn’t be per-
formed or if P ’s root doesn’t match with C’s root, go to step 1a.
Otherwise, record the paradigm instance created.

(d) If there are unmapped non-mediatory feature nodes of C left,
factor out them as concepts (introducing concept references in
place of the subtrees they headed) and perform the transforma-
tional analysis of them. Subsequently, regard them as concept
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references in C’s feature diagram and reconsider the paradigm
instance created in step 1c.

2. If there are relationships (direct or indirect ones) between the concept
node of C and its non-mediatory features not yet mapped to rela-
tionships between the corresponding paradigm feature model nodes,
determine the corresponding relationship paradigms for each such a
relationship:

(a) Select a relationship paradigm P of the solution domain feature
model that has not been considered for a given relationship in
C yet. If there are no more paradigms to select, the process has
terminated unsuccessfully.

(b) Try to instantiate P over the relationship in C at source time.
If this couldn’t be performed or if there are no P ’s nodes that
match with the C’s relationship nodes, go to step 2a. Otherwise,
record the paradigm instance created.

Paradigm instances could be presented in the overall solution instance
tree. However, this is not convenient since the solution instance tree would
be too big to cope with it, and it would not provide any additional benefits
compared to presenting paradigm instances individually.

A successful transformational analysis results in only one of the possible
solutions. Carrying out transformational analysis differently can lead to
another solution. Deciding which solution is the best is out of the scope of
this method.

Example 5.5 Consider again the text editing buffers debugging code con-
cept from Example 4.5 (page 43). Assume that the File feature matches with
the class paradigm, and that its features read and write represent methods,
while name and status are its attributes. Further, assume that the file types
inherit from this base file class. In the following example, the transfor-
mational anaysis of the file debugging code will be performed (Debugging
Code.File).

As has been presented in Example 4.5, the file debugging code consists
of reading and writing part. Debugging Code.File.reading is concerned with
reading files and supposed to provide an information on the type of the
file before it has been read. Debugging Code.File.writing should provide an
information on the status of the file after it has been written to.

One could choose the method paradigm for both these features because
they represent functionality. However, a more careful examination of the
description of the two features given in the previous paragraph reveals that
this functionality is performed in connection with some other functionality.
Recalling that the debugging code should be plugable, and thus separated
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Figure 5.11: The file debugging code concept transformational analysis; an
aspect with two advices.

from the rest of the code as much as possible, brings us to another form of
expressing functionality in AspectJ: the advice paradigm.

As shown in Fig. 5.11, both Debugging Code.File.reading and Debugging
Code.File.writing match with the body of a separate advice. An advice per-
forms its actions with respect to the join points specified by a pointcut. In
both cases, the pointcut would be unnamed, as it is needed only for this one
application, and thus final (Pointcut.final). The context of the read method
execution object would be needed to determine the file type in reading file
advice and file status in writing file advice. Thus, the context should be
exported by the pointcut (Pointcut.context) to be used by the advice (Ad-
vice.context). The reading file advice should be run before (Advice.before)
the calls to File.read method, while the writing file advice should be run
after (Advice.after) the calls to File.write method.

Note that Fig. 5.11 presents actually five paradigm instances: two point-
cuts, two advices, and one aspect. Since paradigm instances are concept
instances (see Section 4.7), and concept instances are specialized concepts,
each paradigm instance could be presented in a separate diagram, as well,
with enclosing paradigm referencing the enclosed paradigm instances.

5.4 Code Skeleton Design

Code skeleton design is performed by traversing paradigm instances and
writing the source code manually. The paradigm instances obtained in trans-
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formational analysis define the code skeleton, but the notes made during
transformational analysis (as those accompanying the feature model ele-
ment transformational analysis example) may also help mold the skeleton
more accurately and make it more concrete.

Code skeleton design consists of the two major steps:

1. Transform the paradigm instances of structural paradigms into code.

2. Transform the paradigm instances of relationship paradigms into code.

The first step produces the basis the second one builds upon. This is
because relationship paradigms are usually not represented by independent
syntactical structures. Rather, they are attached to the syntactical struc-
tures representing structural paradigms.

Transforming a paradigm instance into the code means to analyze it
and produce the corresponding piece of code according to the syntax of the
programming language which serves as a solution domain.

Example 5.6 Following the transformational analysis of the file debugging
code concept presented as a paradigm instance in Example 5.5 (page 59),
the following code could be written:

aspect FileDC {

before(File f): target(f) && call(* File.read(..)) { . . . }

after(File f): target(f) && call(* File.write(..)) { . . . }

}

The code represents an aspect with two advices. The first one is being
executed before reading any file, and the second one after writing each file.
Both advices expose the current File object which is to be utilized in the
advice bodies in order to output the file type in the first advice, and file
status in the second advice.

5.5 Method Evaluation

In order to evaluate the proposed method of multi-paradigm design with
feature modeling, it has been applied to an application and solution domain
of a considerable size. The evaluation is concerned with the method scala-
bility and reusability, and readability and comprehensibility of the artifacts
created in its application. The results of this application will be evaluated
in this section.6

6An additional evaluation of the method with respect to the related approaches is
provided in Chapter 6.
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5.5.1 Application Domain Feature Modeling

The application domain feature modeling of MPDfm has been applied to the
domain of feature modeling itself. Its model may be found in Appendix A.
In the domain of feature modeling, twelve concepts have been identified.
The maximum height of the feature diagrams in the model is two, and the
largest feature diagram consists of 23 nodes (the one that represents the
concept of feature diagram). According to these figures, the model should
be quite readable and comprehensible.

Concept references enable to avoid producing bigger feature diagrams
both in case the application domain scope is broad or a more detailed feature
model of it is required.

Although not practically demonstrated in this thesis, feature models of
application domains may be reused in transformational analysis. Such a
reuse may arise in case of a transformation of the application domain into
another solution domain, but a repeated transformation into the same so-
lution domain may also be performed in order to explore alternative solu-
tions. Actually, if binding times are used in an application domain feature
model, it will depend on a solution domain which provides these binding
times. In order to reuse such an application domain feature model in a
transformational analysis with another solution domain, the binding times
have to be adjusted to this solution domain or eliminated by using binding
modes instead of binding times (see Section 4.4). In addition, an application
domain feature model may be reused in other feature modeling based soft-
ware development methods (such as FODA [KCH+90], FORM [KKL+98],
or generative programming [CE00]), or vice versa. However, in both cases,
an adaptation of an application domain feature model may be needed.

5.5.2 Solution Domain Feature Modeling

Solution domain feature modeling of MPDfm has been applied to AspectJ
programming language (version 1.1.1) resulting in an AspectJ paradigm
model, which is provided in Appendix B. Creating a paradigm model of a
solution domain can be viewed as a specialization of MPDfm to that domain
with respect to transformational analysis. Thus, the AspectJ paradigm
model defines MPDfm for AspectJ.

The AspectJ paradigm model consists of ten paradigms. The model
includes directly usable and first-level indirectly usable paradigms. Also,
four auxiliary concepts have been identified, making the total number of
fourteen feature diagrams in the model. The maximum height of the fea-
ture diagrams in the model is three. The largest feature diagram consists
of 25 nodes (the one that represents the aspect paradigm). These figures
are similar to those of the application domain model, which suggests that
feature diagrams of similar size, quite acceptable regarding the readability
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and comprehensibility, may be expected in other domains.
Subsuming only directly and first-level indirectly usable paradigms are

considered, paradigm models of other programming languages may be ex-
pected to be of similar size or smaller since AspectJ includes the whole Java.
However, as in application domain modeling, concept references enable to
avoid producing bigger feature diagrams even in more detailed paradigm
models, which will encompass other than first-level indirectly usable para-
digms, too.

As expected, paradigm models may be reused independently of the ap-
plication domain feature models. AspectJ paradigm model has been reused
in this thesis: it was used both in transformational analysis of the domain
of text editing buffers, and in transformational analysis of the domain of
feature modeling.

5.5.3 Transformational Analysis and Code Skeleton Design

MPDfm for AspectJ has been applied to the domain of feature modeling.
The application of MPDfm for AspectJ took part in transformational anal-
ysis and code skeleton design (presented in Appendix C).

Transformational Analysis

Transformational analysis the domain of feature modeling with the pro-
posed AspectJ paradigm model has been successfully performed. Its output
is presented in Appendix C, Section C.1. Height of feature diagrams of some
paradigm instances created in this transformational analysis reaches six with
the number of nodes exceeding fifty. This is caused by expanding concept
reference nodes in paradigms during their instantiation (see Example 4.5 on
page 59). Introducing each instance of the referenced concept in a separate
feature diagram and referring to it in the main diagram using a concept
reference would solve this problem. However, the compound paradigm in-
stances should be preferred whenever possible in order to provide a better
overview of related paradigm instances.

Regardless of the application or solution domain size, paradigm instan-
tiation, the main activity in transformational analysis, involves only a few
application domain concepts and only one paradigm, possibly with the pa-
radigms it refers to. Therefore, increasing the number of application domain
concepts or paradigms would not affect the complexity of paradigm instan-
tiation.

Code Skeleton Design

As has been demonstrated in Appendix C, Section C.2, code skeleton is eas-
ily derived from paradigm instances. This process is performed sequentially,
so the number of paradigm instances doesn’t affect its complexity.
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The order in which paradigm instances are being transformed mat-
ters. In general, as proposed in Section 5.4, the structural paradigm in-
stances have to be transformed before transforming relationship paradigm
instances. However, as has been shown in Section C.2, it is sufficient to keep
in mind that the relationship paradigm instances cannot be transformed
before transforming the relationship paradigm instances related to them.
This is especially useful if related paradigm instances are groupped dur-
ing transformational analysis, as are the paradigm instances presented in
Section C.1.



Chapter 6

Related Approaches

In this chapter, multi-paradigm design with feature modeling (MPDfm) and
related approaches are compared. Since MPDfm is a feature modeling based
method, Section 6.1 compares the feature modeling as used in MPDfm with
other approaches to feature modeling. Following that, Section 6.2 compares
MPDfm with three related methods.

6.1 Feature Modeling Techniques

Feature modeling originates from Software Engineering Institute (SEI), where
it was used in a domain analysis method FODA (feature-oriented domain
analysis) [KCH+90] developed there, which became a part of MBSE (model-
based software engineering) [Sofb]. Recently, MBSE has been replaced by
PLP (product line practices) [CDKT01, Sofa], which also employ feature
modeling. An adapted version of FODA feature modeling is also a part of
FORM (feature-oriented reuse method) [KKL+98].

Since the publishing of FODA in 1990, several approaches have adopted
FODA feature modeling, often in an adapted version [GFd98, CE00, Gey00].
Some work has been devoted primarily to extending feature modeling as such
(with respect to UML) [RBSP02, Cla01], or even to formalize it [JG02].

Czarnecki-Eisenecker feature modeling [CE00] generalized FODA fea-
ture modeling notation and accepted a more general notion of a feature
from ODM (Organization Domain Modeling) in which features are associ-
ated with particular domain practitioners and domain contexts [Sim95], i.e.
a feature is any concept instance property important to some of the stake-
holders [CE00]. Such understanding of a feature has been adopted also by
FORM [KKL+98], a direct ancestor of FODA.

Czarnecki-Eisenecker feature modeling is also more abstract than FODA
or FORM feature modeling. In Czarnecki-Eisenecker feature modeling, re-
lationships between a feature and its subfeatures don’t have any predefined
semantics; the relationship is fully determined by the semantics of subfea-
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tures. FORM feature modeling defines three types of relationships of a
feature to its subfeature: composed-of, generalization/specialization, and
implemented-by. Moreover, each feature is classified as a capability, operat-
ing environment, domain-technology, or implementation technique feature.1

According to their type, features are placed into one of the four layers feature
diagrams are divided into. On the other hand, Matthias Riebisch argues
against the classification of features according to FORM and proposes to
classify features into functional, interface, and parameter features [Rie03].
Therefore, it seems that it is better not to enforce such predefined feature
categories in feature modeling.

Feature modeling used in MPDfm is based on Czarnecki-Eisenecker fea-
ture modeling. However, it introduces the following new concepts:

• concept instantiation with respect to feature binding time,

• concept instances represented visually by feature diagrams,

• concept references,

• parameterization in feature models,

• constraints and default dependency rules represented by logical ex-
pressions,

• a dot convention for referring to concepts and features, and

• representing cardinalities without compromising the principles of fea-
ture modeling.

Sections 6.1.1 to 6.1.6) compare these new concepts with related ones in
other approaches to feature modeling. Section 6.1.8 explains the adaptation
of the information associated with feature diagrams proposed in [CE00] to
the needs of MPDfm.

6.1.1 Concept Instantiation

Concept instantiation with respect to feature binding time (see Section 4.7)
is a generalization of concept instantiation as proposed in [CE00].

6.1.2 Concept Instances Represented by Feature Diagrams

Compared to the set representation proposed in [CE00], even if the features
are qualified as proposed in Section 4.1, feature diagrams are a more appro-
priate way to represent concept instances (see Section 4.7). Moreover, they
enable to represent concept instantiation in time.

1This classification has been proposed already in [KCH+90], but since FODA was
concerned with user visible features, it dealt only with (application) capabilities.
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6.1.3 Concept References

The problem of coping with the complex feature diagrams has been recog-
nized already in [CE00], where complex diagram are divided into a number
of smaller diagrams, which then may be referred to in the main diagram by
introducing their roots.

Concept references, introduced by MPDfm feature modeling (see Sec-
tion 4.3), are a logical extension of this idea. MPDfm feature modeling
specifies how the information associated with the concept applies to its ref-
erences and how it may be adapted to the needs of a particular reference.

Concept references enable a concept to reference itself (directly or in-
directly). This enables feature diagrams to be viewed as trees while being
in conformance with the fact that feature diagrams in general are directed
graphs.

6.1.4 Parameterization in Feature Models

Parameterization in feature models (see Section 4.6) enables both to reason
about feature models in a more general way and to create generic feature
diagrams.

6.1.5 Constraints and Default Dependency Rules as Logical
Expressions

In MPDfm, constraints and default dependency rules are expressed concisely
as logical expressions (see Section 4.5). Logical expressions are capable of ex-
pressing both mutual exclusions and requirements among features. In fact,
a single logical expression may encompass both types of the constraints. In
FODA feature modeling, as well as in Czarnecki-Eisenecker feature model-
ing, constraints are expressed by explicitly stating which feature is mutually
exclusive or requires which other feature.

In [SRP03],2 constraints are written in an adapted version of Object
Constraint Language (OCL) used in Unified Modeling Language [Obj03]. It
is merely a matter of preference whether to use OCL syntax or traditional
mathematical symbols for logical connectives (e.g., implies vs. ⇒). However,
in [SRP03], constraints are also accompanied by the information to be passed
to the developer who instantiates the concepts that, for example, another
feature has to be selected. For example, the constraint:

(if not(selected(Audio)

implies selected(’Add Music’))

then

info("Select ’Add Music’")

endif)

2Constraints and default dependency rules representation proposed in this thesis has
been developed independently of the approach proposed in [SRP03].
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and

(if not(selected(’Add Music’)

implies selected(Audio)

then

info("Select Audio")

endif)

introduced in [SRP03] in MPDfm feature modeling would be written simply
as:

Audio ⇔ Add Music

Incorporating messages to developers significantly reduces the readabil-
ity of such constraints. Moreover, such messages to the developer may be
generated or, even better, a whole constraint may be passed instead.

The proposed form of expressing constraints and default dependency
rules may be applied also to the constraints expressed directly by feature
diagrams. This way, a whole feature diagram may be represented as a
set of logical expressions. For the purpose of a graphical representation, a
set of views of the feature diagram could be then defined. For each view,
the relationships that should be shown would have to be specified with
respect that the feature diagram should be a tree. The new constraints
for the feature diagram could be then calculated to avoid duplicity (some
of the constraints would be expressed in the feature diagram). In order to
distinguish the primary relationships between the features expressed in a
feature diagram from the constraints associated with it, one of the views
could be denoted as primary.

The need to represent feature diagrams in a graphically independent
form has been identified also in [LKL02]. The formalized feature modeling
proposed in [JG02] actually relinquishes the feature diagrams completely,
and with them the primary relationships between the features, too (though
allowing for the visualization of desired feature relationships).

6.1.6 Referring to Concepts and Features

To refer to a concept or features unambiguously, a common dot convention
is used in MPDfm feature modeling (see Section 4.1). A similar convention
is used in FeatuRSEB [GFd98], though without taking into account domain
names, which may lead to ambiguities when talking about concepts and
features from several domains.

6.1.7 Representing Cardinalities

In the original Czarnecki-Eisenecker feature modeling, introducing feature
cardinalities was strictly avoided arguing that since the only semantics of
an edge is whether to assert a feature or not, cardinality would only mean
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to assert it several times, which is useless [CE00, p. 117]. Instead, to model
the cardinality as a feature was recommended, as shown in Fig. 6.1. In
spite of this, a later work these authors participated in proposes to use the
UML-style cardinalities with features [CBUE02] (only at the child site of
the edge, of course). Also, a generalized form of alternative and or-features
is introduced in which the number of features which may be included is
specified also as a cardinality (which does not contradict to the original
Czarnecki-Eisenecker feature modeling).

Car

k wheels, where k>=3 
and k mod 2=0

Figure 6.1: Representing cardinality in Czarnecki-Eisenecker feature mod-
eling (from [CE00]).

As has been demonstrated in Section 4.6, plural forms of the concepts
and cardinality in general can be specified by parameterized concepts with-
out compromising the principles of feature modeling. If preferred, UML
cardinalities can be used instead, provided they are defined as a notational
extension with respect to the parameterized concept (see Section 4.6.3).

6.1.8 Information Associated with Concepts and Features

Information associated with feature diagrams subsumed by Czarnecki-Eise-
necker feature modeling has been adapted to the needs of MPDfm (see
Sections 4.4).

The parts of the information associated with concepts and features not
used in transformational analysis in MPDfm have been left out: stakeholders
and client programs, exemplar systems, availability and binding sites, and
priorities. Since the openness of the features is expressed directly in feature
diagrams, the open/closed attribute has been left out, too.

The information on rationale in Czarnecki-Eisenecker feature modeling
explains why the feature is included (i.e., present) in the model and, if the
feature is variable, it also introduces conditions and recommendations on its
selection. In MPDfm feature modeling, the two parts have been formally
separated into the presence rationale and the inclusion rationale. In MPDfm
feature modeling rationales have clearly a recommendatory character, which
is not that clear in Czarnecki-Eisenecker feature modeling, as rationale there
introduces both conditions and recommendations.

A general approach to the issue of specifying feature binding (and avail-
ability, too) is proposed in [CE00]. Since this generality is not needed
in MPDfm, a FODA approach to defining binding times [KCH+90] has
been applied in MPDfm feature modeling with binding times understood as
in [Cop99b]. In addition, binding modes as defined in [CE00] have been used
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with exception of the changeable binding mode, since it is only an optimized
form of dynamic binding.

Constraints and default dependency rules are considered separately from
the rest of the associated information (see Section 6.1.5), since in MPDfm
they apply to whole feature diagrams.

In [CE00], the description of the concepts and features is denoted as
semantic description, which is somewhat superfluous, so only description
has been used here (as in [KCH+90]).

6.2 Multi-Paradigm Approaches

Since MPDfm is conceptually closest to multi-paradigm design (MPD), de-
scribed in Section 3.5, the main part of this section is devoted to the dis-
cussion of differences and similarities between MPDfm and MPD. However,
MPDfm is discussed in the context of two other related approaches: multi-
paradigm programming in Leda and generative programming.

6.2.1 Multi-Paradigm Design

Both MPD and MPDfm follow the same procedure consisting of the follow-
ing main steps:

• application domain analysis,

• solution domain analysis,

• transformational analysis, and

• code skeleton design.

By employing feature modeling, MPDfm introduces several improve-
ments into this procedure. These will be discussed further in this section.

Feature Modeling and SCVR Analysis

As MPD, MPDfm also applies the same means to both application and
solution domain. While MPDfm employs an adapted version of Czarnecki-
Eisenecker feature modeling (presented in Chapter 4; differences discussed in
Section 6.1), MPD employs scope, commonality, variability, and relationship
(SCVR) analysis (see Sections 2.3 and 3.5).3

Feature modeling and SCVR analysis have much in common. SCVR
analysis is based on the notions of commonality and variability (hence the
name), and the notions of common and variable features are crucial in fea-
ture modeling.

3This section is based on [Vra01b, Vra01d].
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A scope in SCVR analysis, defined as a set of entities [CHW98], is noth-
ing but a concept in an exemplar representation.4 Thus, SCVR analysis
commonalities (assumptions held uniformly across the scope) and variabil-
ities (assumptions true for only some elements in the scope) correspond to
common and variable features of feature modeling, respectively. The scope
is in [Cop99b] actually referred to as domain, so it can be concluded that a
domain in MPD corresponds to a concept in feature modeling.

The main difference between feature modeling and SCVR analysis is
that while commonalities and variabilities in feature modeling are primar-
ily represented diagrammatically, which allows for representing hierarchical
relationships between concepts, commonalities and variabilities in SCVR
analysis are represented descriptively in family and variability tables.

In MPD, relationships between domains are represented using variability
dependency graphs in which the nodes represent domains and the directed
edges represent the “depends on (a parameter of variation)” relationship.
Despite their simplicity, variability dependency graphs enable the identi-
fication of circular dependencies between domains (so-called codependent
domains), and the identification of shared domains and their unification
(i.e., reduction of variability dependency graphs). However, unlike feature
modeling in MPDfm, variability dependency graphs are used only in appli-
cation domain analysis of MPD, and not in solution domain analysis, where
representing hierarchical relationships between concepts, i.e. paradigms, is
especially useful.

Parts of variability dependency diagrams can be derived from feature
diagrams. Commonality domain depends on its parameters of variation,
or—in the feature modeling terminology—a concept depends on its variation
points. While the relationships between domains in variability dependency
graphs have a particular semantics (dependence), the relationships in fea-
ture diagrams do not have any predefined semantics, which makes feature
diagrams more abstract.

Table 6.1 aligns the terms of feature modeling with their variability and
family table counterparts (the columns). The information provided in the
variability and family tables is a subset of the information provided by a
feature model.

While binding time in MPD is being denoted for a domain as a whole,
feature modeling enables to specify binding time directly where it applies:
at individual variable features.

In MPDfm feature modeling, instantiation is modeled by features. Its
details are concept-dependent and modeled as subfeatures. An example is
Objects feature of the class paradigm or Instantiation policy feature of the
aspect paradigm (see Appendix B, Sections B.3.2 and B.3.4).

Negative variability, which is in SCVR analysis presented in separate ta-

4In exemplar representation, a concept is defined by the set of its instances [CE00].



72 Related Approaches

Table 6.1: Feature modeling and MPD variability and family tables.
Feature modeling Multi-paradigm design

Variability tables Family tables
concept commonality domain language mechanism
common feature commonality
variable feature variability
variation point parameter of variation
alternative features domain (of values)
binding time binding binding
description (and rationales) meaning
default dependency rules default (value)
feature instantiation

bles (negative variability tables), is in feature modeling expressed by fea-
tures. The negative variability features of paradigms are actually their
specializations. An example from MPD is the template specialization in
C++ [Cop99b]. In MPDfm, the template specialization would be a feature
of the template paradigm.

Transformational Analysis

Performing transformational analysis as bottom-up instantiation of para-
digms enables to overcome the MPD’s problem of having to decide the con-
ceptual correspondence between the paradigm and the parameter of varia-
tion at once (see Section 3.5).

MPDfm does so by the means of decomposition. In MPDfm, the con-
ceptual correspondence is being decided bottom-up, so the correspondence
of more complex concepts is decided according to the correspondence of
their features, the correspondence of the features is decided according to
the correspondence of the subfeatures (if any) and so on (see Section 5.3).

Transformational analysis in MPDfm is performed between diagrams,
i.e. in a visual fashion, which enables a better control over it than it is in
MPD. Its output are annotated paradigm instances, which are more appro-
priate for this purpose than annotations of variability tables in MPD.

Code Skeleton Design

In MPD, transformational analysis results are only a guide in choosing a pa-
radigm for an application domain structure. To construct a code skeleton,
one must also follow the structure of the application domain and dependen-
cies between the domains.

Annotated paradigm instances, the results of transformational analysis
in MPDfm, provide enough information about the mapping between the
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application and solution domain concepts to obtain the main part of the
skeleton code by traversing their trees. Augmenting the paradigm model
with the translation rules would be a logical step towards the automation
of transformational analysis in MPDfm.

6.2.2 Multi-Paradigm Programming in Leda

A design method proposed in connection with multi-paradigm programming
in Leda [KBV00] also aims at helping in the paradigm selection (see Sec-
tion 3.4.2). However, it does so in a different way than MPDfm.

While MPDfm is domain-oriented, Leda design method is concerned
with the design of one system. In connection with that, MPDfm is based
on feature modeling. Leda design method does not prescribe any special
modeling technique.

The substantial difference is that MPDfm is performed in a bottom-up
fashion, and Leda design method in a top-down fashion, which is related to
the large-scale paradigm view it’s being based on. Each small-scale para-
digm in an MPDfm solution domain model is bound to a specific language
feature. Large-scale paradigms may be understood as sets of small-scale pa-
radigms. The elements of such a set often aren’t precisely determined, which
makes large-scale paradigms more abstract than small-scale paradigms (see
Chapter 2). This naturally leads to its application to higher levels of ab-
straction first (starting at the top).

The selection of the main paradigm for the system or its part is a hard
decision to make at once. Leda design method tries to help in arriving to
this decision by comparing the impact of the selection of a paradigm to lower
levels of the system. This is not needed in MPDfm, since the paradigms are
being selected in a bottom-up fashion.

6.2.3 Generative Programming

Although generative programming (see Section 3.3) is not primarily con-
cerned with the paradigm selection, it is related to MPDfm. Both ap-
proaches employ feature modeling, although with some differences (see Sec-
tion 6.1).

Figure 6.2 shows the main phases of both generative programming and
MPDfm. The arrows between phases indicate the flow of results. The
common phases are placed in the middle. As can be seen from the figure,
one could do the domain scoping and application domain feature modeling
without having to decide for either of the two approaches in these early
phases. The difference is in the selection of paradigms: while in MPDfm
it is performed directly as a matter of the primary concern, in generative
programming it can be viewed as being delegated to the generator.
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Figure 6.2: Generative programming and MPDfm.

Variability dependency graphs used in MPD to show the relationship
between domains and their parameters of variation are similar to component
categories dependency graphs used in generative programming to sort com-
ponent categories into a GenVoca layered architecture. Although variability
dependency graphs are actually not used in MPDfm,5 they can be easily
derived from MPDfm feature diagrams (see Section 6.2.1).

Component categories dependency graphs are also being derived from
feature models. A node in a component categories dependency graph repre-
sents either a component category or configuration repository (a composite
node containing all the component categories that all other component cate-
gories depend on, but that do not depend on each other), and edges represent
“uses” dependency (in the direction of an arrow). A configuration repos-
itory can be easily decomposed into a component categories dependency
subgraph.

A component category is an abstraction of the component. When gener-
ating family members, a concrete component will take place of the compo-
nent category. According to this, a component category represents a param-
eter of variation in the sense of MPD, or a singular variation point in the
sense of feature modeling. The “uses” dependency has the same meaning as
“depends on” relationship in MPD. According to [CE00], A uses B means
that B is a support domain of A (e.g., “the domain of container packages is
a support domain of the domain of matrix packages”), and this means that
A uses B (i.e., the domain of matrix packages uses the domain of container
packages).

5Variability dependency graphs were actually supposed to be integrated into
MPDfm [Vra01c], but were finally left out.



Chapter 7

Conclusions

Software development tends to be multi-paradigm. This can be seen in the
approaches that integrate multiple paradigms, such as generative program-
ming, multi-paradigm programming in Leda, or intentional programming.
Even better example is aspect-oriented programming, which subsumes the
existence of a base, i.e. another, paradigm, and thus is principally multi-
paradigm, as opposed to intentionally created multi-paradigm approaches
and programming languages.

Each multi-paradigm approach to software development has to deal with
the issue of selecting an appropriate paradigm for a given application do-
main concept at least to some extent. As has been demonstrated by multi-
paradigm design [Cop99b], where this process is seen as a mapping between
the application (problem) and solution domain, it is possible to deal with
this issue solely.

Multi-paradigm design with feature modeling (MPDfm), a new method of
multi-paradigm software development proposed in this thesis, improves the
multi-paradigm design by employing feature modeling to model both appli-
cation and solution domain (Chapter 5). For this purpose, Czarnecki-Eise-
necker feature modeling [CE00] has been extended and adapted (Chapter 4).
The proposed extensions are applicable outside MPDfm, too.

By modeling paradigms as solution domain concepts, MPDfm provides
a better basis for the transformational analysis, the key activity of multi-
paradigm design, in which paradigms (solution domain concepts) appro-
priate for given application domain concepts are being selected, has been
proposed in terms of feature modeling as a bottom-up paradigm instanti-
ation over application domain concepts (Section 5.3). Code skeleton, the
final output of MPDfm, may then be obtained by traversing the trees of an-
notated paradigm instances, which represent the output of transformational
analysis, and writing the source code manually, as explained in Section 5.4.

To obtain the whole code skeleton, transformational analysis should be
performed for each application domain concept, as explained in Section 5.3.2.
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It is also possible to do transformational analysis only of some application
domain concepts (e.g., the critical ones) and do the rest of the design with-
out MPDfm. The rest of the design would be restricted by such partial
transformational analysis results.

MPDfm offers several opportunities for reuse (see Section 5.5). Both
application and solution domain feature models may be reused in different
transformational analyses. Application domain feature models—possibly
adapted—may also be reused in other feature modeling based software de-
velopment methods (e.g., FODA [KCH+90], FORM [KKL+98], or generative
programming [CE00]), or vice versa.

Creating a feature model of a solution domain can be viewed as a spe-
cialization of MPDfm with respect to transformational analysis. Such a
specialization of MPDfm to AspectJ has been presented (see Appendix B)
and applied in this thesis (in the examples in Chapter 5).

The following two sections summarize the contributions of this thesis
and identify the possible directions of further work.

7.1 Summary of Contributions

The main contributions of this thesis are as follows:

1. Multi-paradigm design with feature modeling, a new method of multi-
paradigm software development based on feature modeling which im-
proves paradigm selection process (Chapter 5).

2. Multi-paradigm design with feature modeling for AspectJ, the method
specialization to AspectJ defined by providing an AspectJ paradigm
model (parts are introduced in Chapter 5; the complete model is pre-
sented in Appendix B).

3. Improvements of feature modeling (Chapter 4):

(a) Concept instantiation with respect to instantiation time with con-
cept instances represented by feature diagrams (Section 4.7).

(b) Parameterization in feature models (Section 4.6).

(c) Representing constraints and default dependency rules by logical
expressions (Section 4.5).

(d) Concept references to enable to deal with complex feature models
(Section 4.3).

(e) A dot convention to enable referring to concepts and features
unambiguously (Section 4.1).

(f) A parameterized concept for representing cardinality in feature
modeling (Section 4.6.3).
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4. A feature model of the domain of feature modeling itself, which pro-
vides a basis for further reasoning on this modeling technique (Ap-
pendix A).

5. An application of multi-paradigm design with feature modeling for
AspectJ to the domain of feature modeling, which provides a basis for
developing systems to support feature modeling (Appendix C).

In addition to contributions listed above, the thesis contributes to the
understanding of the concept of paradigm in software development (Chap-
ter 2), provides an overview of selected multi-paradigm approaches to soft-
ware development (Chapter 3 and Section 6.2), and evaluates approaches to
feature modeling (Section 6.1).

7.2 Further Work

MPDfm enables to reuse both application and solution domain feature mod-
els. These models are reused as a whole. However, some domains overlap,
and this happens even if one of them is an application domain and the other
one is a solution domain (e.g., <Plural Form> concept is in both AspectJ
and feature modeling domain). Thus, the issue of overlapping domains is
worth considering as a step towards reuse of individual concepts.

The reuse of individual concepts which are similar to each other would
require their generalization. Subsequently, they would appear as special-
izations of a more general concept. This would be particularly useful for
paradigm models of related programming languages.

Another interesting topic for further work would be experimenting with
MPDfm specialization to solution domains other than programming lan-
guages, especially those that are used in conjunction with programming
languages (e.g., design patterns).
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Appendix A

Domain of Feature Modeling

This appendix presents a feature model of the application domain of feature
modeling.

The domain of feature modeling has been selected for practical reasons.
Since MPDfm is a feature modeling based method, the MPDfm CASE
tool is among the software systems in this domain. Thus, this study is a
step towards a tool support for MPDfm. This feature model will be used
transformational analysis presented in Appendix C.

This appendix is divided into two sections. Prior to the actual feature
modeling, Section A.1 provides the domain definition and scope. Section A.2
presents the feature model.

A.1 Domain Definition and Scope

MPDfm follows the process of domain engineering based approaches. Prior
to the actual feature modeling, domain related information should be gath-
ered and analyzed. This task is not an explicit part of MPDfm. However,
its results, the domain definition and scope, will be provided in this section,
as they are needed further in feature modeling.

Sources of the information related to domain of feature modeling are the
literature on feature modeling discussed in Section 6.1, including feature
modeling for multi-paradigm design proposed in Chapter 4. Also, available
feature modeling tools mentioned in Section 4.10 have been considered.

The domain of feature modeling is understood here as a domain of the
tools that support feature modeling based software development methods.
The feature modeling based methods (mentioned in the thesis), such as
generative programming, FODA, FORM, FeatuRSEB, including the one
proposed in this thesis, all have in common the central role of feature models
from which traceability links to other models are provided. The variability
lies in the notations of feature modeling employed by different methods. The
systems built in the domain would represent feature modeling CASE tools
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suitable for individual methods (possibly groups of methods), e.g. feature
modeling CASE tool for generative programming or feature modeling CASE
tool for MPDfm.

The traceability links in feature models, in most cases, would lead to
external models. MPDfm employs feature modeling for application and
solution domain modeling. Transformational analysis appears to be an ex-
ternal activity that should be linked to the feature models it is related to.
However, the results of transformational analysis are concept instances rep-
resented again as feature models. A concept instance feature diagram should
be linked to the feature diagram of the paradigm whose instance it is, and
also with the concepts mapped to it. Transformational analysis is then
viewed as a construction of yet another feature model.

Special support for code skeleton design, e.g. a tool automating this
process, is not considered here. Code skeleton design may be performed
by traversing paradigm instances and writing the source code manually.
Traceability links from paradigm instances to the source code files may be
provided.

A.2 Feature Model

The concepts identified in the domain of feature modeling are:

• feature model

• feature diagram

• node

• feature

• partition

• associated information

• AI item

• AI value

• constraint

• default dependency rule

• link

The purpose of this model is to provide a basis for further development
by describing the core concepts of feature modeling. It does not cover all the
concepts that might have been identified in the domain of feature modeling,
e.g. those related to file management, visual side of feature diagrams, or
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consistency checking. Also, some of the features of the concepts listed above
have not been fully elaborated (this is indicated in the feature description).

Sections A.2.1–A.2.6 present feature diagrams of these concepts and the
information associated with them. Section A.2.12 presents parameterized
feature diagrams of plural forms needed for some of the concepts. Conven-
tions introduced in Section B.3 apply to Sections A.2.1–A.2.12, too.

A.2.1 Feature Model

A feature model (Fig. A.1) represents the model of a domain obtained by
the application of feature modeling.

Feature Diagrams Set

Feature Model

DescriptionName

New feature diagram

Delete feature diagram

NormalizeLink Set

Links(R)Feature Diagrams(R)

Figure A.1: Feature model.

Feature Model.Name

D: The feature model name.
Rp: The feature model name will serve as a domain name when referring

to it or when referencing the concepts defined in it in other feature
models.

Feature Model.Description

D: A feature model textual description.
Rp: The feature model description will enable a better orientation in the

feature model.

Feature Model.Feature Diagram Set

D: A feature model consists of a set of feature diagrams.

Feature Model.Feature Diagram Set.Feature Diagrams r©
D: A set of feature diagrams (Sections A.2.2 and A.2.12).
B: dynamic
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Feature Model.Link Set

D: A feature model has a set of links.
Ri: There is a need to link feature models with other modeling artifacts.
B: static

Feature Model.Link Set.Links r©
D: A set of links (Sections A.2.11 and A.2.12).
Ri: A feature model is linked with another modeling artifact.
B: dynamic

Feature Model.Normalize

D: Feature diagrams in a feature model may be normalized.

Feature Model.Create feature diagram

D: A feature diagram may be created.

Feature Model.Delete feature diagram

D: A feature diagram may be deleted from a feature model.

A.2.2 Feature Diagram

A feature diagram (Fig. A.2) presents a featural description of a concept
graphically.

Default Dependency Rule Set

Feature Diagram

Tree

Name

Description

Normalize

Graph

Default Dependency Rules(R)

Nodes (R)

Link Set

Links (R)Constraint Set

Constraints (R)

Feature Set

Features (R)

Node Set

Root

Node (R)

Add feature

Add feature Remove feature

Add node

Remove node

Figure A.2: Feature diagram.



A.2 Feature Model A-5

Feature Diagram.Name

D: The name of a feature diagram.

Feature Diagram.Description

D: A feature diagram description.

Feature Diagram.Node Set

D: A feature diagram contains a set of nodes.

Feature Diagram.Node Set.Nodes r©
D: The set of nodes a feature diagram consists of (Sections A.2.3 and A.2.12).
B: dynamic

Feature Diagram.Feature Set

D: A feature diagram contains a set of features.

Feature Diagram.Feature Set.Features r©
D: The set of features in a feature diagram (Sections A.2.4 and A.2.12).
B: dynamic

Feature Diagram.Tree

D: A feature diagram is represented by a directed tree. It describes the
features of a domain concept represented by its root node (Root.Node r©).

B: static

Feature Diagram.Tree.Add feature

D: An operation of adding a feature to a feature diagram represented as
a tree.

Rp: A feature should be added in a way that preserves the tree structure.

Feature Diagram.Graph

D: A feature diagram is considered to be a connected directed graph.
B: static

Feature Diagram.Root

D: The root of a feature diagram.
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Feature Diagram.Root.Node r©
D: The node (Section A.2.3) which represents a feature diagram root, i.e.

the concept that feature diagram models.

Feature Diagram.Constraint Set

D: A feature diagram contains a set of constraints.
Ri: In some approaches to feature modeling, constraints are associated

with feature diagrams.
B: static

Feature Diagram.Constraint Set.Constraints r©
D: A set of constraints (Sections A.2.9 and A.2.12).
B: dynamic

Feature Diagram.Default Dependency Rule Set

D: A feature diagram contains a set of default dependency rules.
Ri: In some approaches to feature modeling, default dependency rules are

associated with feature diagrams.
B: static

Feature Diagram.Default Dependency Rule Set.Default Depen-
dency Rules r©
D: A set of default dependency rules (Sections A.2.10 and A.2.12).
B: dynamic

Feature Diagram.Link Set

D: A feature diagram has a set of links.
Ri: There is a need to link feature diagrams with other modeling artifacts.
B: static

Feature Diagram.Link Set.Links r©
D: A set of links (Sections A.2.11 and A.2.12).
Ri: A feature diagram is linked with another modeling artifact.
B: dynamic

Feature Diagram.Add node

D: An operation of adding a node to a feature diagram.
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Feature Diagram.Remove node

D: An operation of removing a node from a feature diagram.

Feature Diagram.Add feature

D: An operation of adding a feature to a feature diagram.

Feature Diagram.Remove feature

D: An operation of removing a feature from a feature diagram.

Feature Diagram.Normalize

D: A feature diagram may be normalized.
B: static

Constraints:

1. ¬Root.Node.Reference
A root may not be a concept reference.

A.2.3 Node

A feature diagram node. There may be several nodes with the same name
in a single feature diagram.

Name

Node

Openness

open closedDescription
Link Set

Links(R)

Reference

Node(R)

Figure A.3: Node.

Node.Name

D: A string representing the name of a node.
B: static

Node.Reference

D: A node is a reference to another node, i.e. a concept reference.
B: static
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Node.Description

D: A textual description of the meaning of a node.

Node.Link Set

D: Feature model has a set of links.
Ri: There is a need to link nodes with other modeling artifacts.
B: static

Node.Link Set.Links r©
D: A set of links (Sections A.2.11 and A.2.12).
Ri: A feature model is linked with another modeling artifact.
B: dynamic

Node.Openness

D: An attribute that describes whether new direct variable features of a
node are expected.

Node.Openness.open

D: New direct variable features of a node are expected.

Node.Openness.closed

D: No new direct variable features of a node are expected.

A.2.4 Feature

A relationship between two nodes (Fig. A.4). Describes the variability of a
subfeature with respect to its superfeature.

mandatory optional

Feature

Name

Superfeature

[Type]

Link Set

Associated Information(R)Partition(R)

Subfeature

Node(R) Node (R)

Links(R)

Figure A.4: Feature.
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Feature.Name

D: The name of a feature (as a relationship).
Ri: In some approaches to feature modeling, relationships between nodes

are named.
B: static

Feature.Superfeature

D: The node whose feature (Subfeature) is being defined.

Feature.Superfeature.Node r©
D: A node (Section A.2.3).

Feature.Subfeature

D: The node that is being defined as a feature (of Superfeature).

Feature.Subfeature.Node r©
D: A node (Section A.2.3).

Feature.Subfeature.Reference

D: A feature may be a concept reference.
B: dynamic

Feature.mandatory

D: The subfeature is mandatory, i.e. it must be included in a concept
instance.

B: dynamic

Feature.optional

D: The subfeature is optional, i.e. it may be included in a concept in-
stance.

B: dynamic

Feature.Partition

D: A feature may belong to a partition, which has an impact on the
subfeature selectability.

B: dynamic
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Feature.Associated Information

D: The information associated with the subfeature in the context of this
feature.

Feature.Type

D: The type of a feature (e.g., “consists of”). May be selected from a list
which should be extensible. (Not elaborated further.)

Rp: Needed in some methods (e.g., FORM).
B: static

Feature.Link Set

D: Feature model contains a set of links.
Ri: There is a need to link features with other modeling artifacts.
B: static

Feature.Link Set.Links r©
D: A set of links (Sections A.2.11 and A.2.12).
Ri: A feature is linked with another modeling artifact.
B: dynamic

A.2.5 Partition

Features originating in one node may be divided into a set of disjunct par-
titions (Fig. A.5).

oralternative

Partition

Type Cardinality

open

Openness

closed

min max

Figure A.5: Partition.

Partition.Type

D: The type of a partition.
Rp: To enable having both alternative and or-partitons.
Ri: Needed by some feature modeling based methods. If not included, all

partitions are considered to be alternative as in FODA.
B: static
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Partition.Type.alternative

D: The features in a partition are alternative, i.e. one of the features in
the partition must be selected during concept instantiation.

B: dynamic

Partition.Type.or

D: The features in a partition are or-features, i.e. a non-empty subset of
the features in the partition must be selected during concept instanti-
ation.

B: dynamic

Partition.Cardinality

D: The cardinality of a partition defines the range of the number of fea-
tures in the partition that may be included in a concept instance.
Alternative features can be then expressed by cardinality 1..1, while
or-features can be expressed by cardinality 1..∗.

Rp: To enable precise control over the number of selectable features in a
partition.

Ri: A generalization of the partition type. If not included, all partitions
are considered to be alternative.

B: static

Partition.Openness

D: An attribute that describes whether new direct variable features in a
partition are expected.

Partition.Openness.open

D: There will be new direct variable features.
B: dynamic

Partition.Openness.closed

D: There will be no new direct variable features.
B: dynamic

A.2.6 Associated Information

Different approaches to feature modeling, and different applications of it,
too, require different information to be associated with features. Associated
Information concept (Fig. A.6) captures this demand by a fully configurable
set of items associated information consists of.



A-12 Domain of Feature Modeling

Add item

Associated Information

AI Items(R) Remove item

Figure A.6: Associated Information.

Associated Information.AI Items r©
D: A set of items associated information consist of (Sections A.2.7 and A.2.12).

Associated Information.Add item

D: An operation of adding an item to the set of associated information
items.

Associated Information.Remove item

D: An operation of removing an item from the set of associated informa-
tion items.

A.2.7 AI Item

AI Item (Fig. A.7) represents a piece of information associated with features.

AI Item

Textual Selectable

Text

AI Values(R)

Add value

Remove value

Applicability

common features variable features

Value

Figure A.7: AI Item.

AI Item.Textual

D: An AI item has a value represented by a free text.

B: static

AI Item.Textual.Text

D: A free text.
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AI Item.Selectable

D: An AI item has a value selected from a set of predefined values asso-
ciated with it.

B: static

AI Item.Selectable.Value

D: The value of an AI item.

AI Item.Selectable.AI Values r©
D: The set of predefined values (Sections A.2.8 and A.2.12).

AI Item.Selectable.Add value

D: An operation of adding a value to the set of predefined values.

AI Item.Selectable.Remove value

D: An operation of removing an value from the set of predefined values.

AI Item.Applicability

D: The applicability of an AI item to features with respect to their op-
tionality (to common features, variable ones, or both).

AI Item.Applicability.common features

D: An AI item is applicable to common features.
B: static

AI Item.Applicability.variable features

D: An AI item is applicable to variable features.
B: static

A.2.8 AI Value

AI Value (Fig. A.8) represents a value in a set of predefined values for
selectable associated information items.

AI Value.Name

D: The name of an AI value.
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AI Value

Name Description

Figure A.8: AI Value.

AI Value.Description

D: The description of an AI value.

A.2.9 Constraint

A constraint on feature selection (Fig. A.9). Constraints express mutual
exclusions and requirements among features beside those specified by the
feature diagram.

Logical expression FODA-like

Constraint

Textual

Figure A.9: Constraint.

Constraint.Logical expression

D: A constraint is represented by a logical expression.
B: static

Constraint.Textual

D: A constraint is represented by an informal text.
B: static

Constraint.FODA-like

D: A constraint is represented as in FODA.
B: static

A.2.10 Default Dependency Rule

A default dependency rule (Fig. A.10). Default dependency rules determine
which features should appear together by default in concept instances.
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Logical expression Textual description

Deafult dependency rule

Figure A.10: Default dependency rule.

Default Dependency Rule.Logical expression

D: A default dependency rule is represented by a logical expression.
B: static

Default Dependency Rule.Textual description

D: A default dependency rule is represented by an informal text.
B: static

A.2.11 Link

A link (Fig. A.11) enables to connect a feature model or its parts to files
other models are kept in.

Link

File Feature Diagram(R) Feature(R)Node(R)

Figure A.11: Link.

Link.File

D: A link to a file.
Ri: Linking to a model other than current feature model.
B: dynamic

Link.Feature Diagram

D: A link to a feature diagram.
B: dynamic

Link.Node

D: A link to a node.
B: dynamic
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Link.Feature

D: A link to a feature.
B: dynamic

A.2.12 <Plural Form>

Figure A.12 shows the feature diagram of the parameterized concept of the
plural form with the meaning one or more occurrences of the concept in the
singular form.1 The name of <Plural Form> (Fig. A.12) is the plural form
of the name of <Singular Form><i>.<Singular Form>.

[<Plural Form>]

<Singular Form> 1

<Singular Form>

<Singular Form> 2

<Singular Form>

...

Figure A.12: Plural forms.

<Plural Form>.<Singular Form> <i>

D: One of the concepts the plural form refers to. The parameter <i> is
a natural number.

B: dynamic

<Plural Form>.<Singular Form> <i>.<Singular Form>

D: A reference to one of the following concepts: Feature Diagram, Node,
Feature, Link, Constraint, Default Dependency Rule or AI Value.

1This plural form concept is the same as the one in the AspectJ paradigm model (see
Section B.4.4 in Appendix B) except for the binding time; the run time binding is needed
here.
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MPDFM for AspectJ

The application of feature modeling as a part of the method proposed in this
thesis to a solution domain, which is in most cases a programming language,
results in a paradigm model of the solution domain, i.e. of the programming
language. Since the purpose of such a model is to be used in transforma-
tional analysis of an application domain represented by a feature model, the
solution model defines the domain specific rules of the transformation. Each
such a paradigm model can be viewed as a specialization of multi-paradigm
design with feature modeling.

This appendix provides a complete paradigm model of AspectJ program-
ming language (AspectJ version 1.1.1). By this, it establishes MPDfm for
AspectJ. Section B.1 identifies AspectJ paradigms. Section B.2 binding
times in AspectJ. Section B.3 presents the solution concept and each one of
the AspectJ paradigms. Section B.4 presents the auxiliary concepts referred
to by paradigms.

B.1 AspectJ Paradigm Identification

AspectJ is an aspect-oriented extension to Java.1 As such, it provides all
the paradigms Java does. In addition, it provides aspect-oriented features.
However, the integration of the aspect-oriented features affects the base
Java paradigms. Because of that, AspectJ will be analyzed here as a whole,
without separating the aspect-oriented extension part from the Java base.

MPDfm solution domain analysis starts by identifying the paradigms
supported by it. AspectJ supports four directly usable paradigms: class,
interface, inheritance, and aspect. These four paradigms are at the top-level
of the AspectJ paradigm hierarchy, as is depicted in Fig. B.1. Each of them
has a corresponding construct at the top level of the AspectJ syntax. This
is obvious for the class, interface, and aspect paradigm.

1Section 3.2.1 provides some basic information on AspectJ and aspect-oriented pro-
gramming developed at PARC.
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The concept of inheritance is related to all the types in AspectJ, i.e.
classes, interfaces, and aspects. The inheritance is usually thought of as a
relationship among types (forming so-called inheritance hierarchy), not as
being used in a type. Because of that, inheritance is also introduced as
a directly usable paradigm, although it is not syntactically separated from
the definition of subtypes. Each of the four directly usable paradigms of
AspectJ be used in other paradigms, which is also indicated in Fig. B.1, i.e.
there are no pure directly usable paradigms in AspectJ.

AspectJ paradigm hierarchy comprises indirectly usable paradigms as
well, namely method, inter-type declaration, pointcut, advice, and over-
loading, which is indicated in Fig. B.1.

Class

Interface

Inheritance
Aspect

AspectJ

Method

Overloading

Pointcut Class

Aspect

Interface

Inheritance

ClassAspect Interface Inheritance

Inter-Type Declaration

Advice
Method

Class

Aspect

Interface

Inheritance

Pointcut

Figure B.1: The hierarchy of AspectJ paradigms. The arrows mean “may
use.”

B.2 AspectJ Binding Times

After writing the source code of a program in AspectJ, it is compiled into a
number of class files, one per a class. Subsequently, the program may be
executed. Classes are loaded individually as they are needed.

From the above, it follows that AspectJ provides the following binding
times:

source time the time of program source code writing, when a programmer
explicitly decides what is performed (e.g., that a class will provide
some method)

compile time the time of program source code compiling, when decisions
are made by an AspectJ compiler (e.g., which method to select among
the overloaded ones)

load time the time of program loading, when decisions are made by a
loader; programs in Java are loaded per class
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run time the time of program running, when decisions are made by the
running program

B.3 AspectJ Paradigms

In this section, the first-level AspectJ paradigm model is presented (Sec-
tion B.3.1).Following that, each AspectJ paradigm is presented in a separate
section (Sections B.3.2–B.3.8).

The following conventions apply to Sections B.3.1–B.3.8:

• The name of the section is the name of the concept being presented.

• The text that follows the section title is the concept description.

• Each section contains a figure that shows the feature diagram of the
corresponding concept.

• In the qualification of the feature names, the concept name is omitted.

• Information associated with each feature is introduced in a structured
way2

• At the end of each section, constraints and default dependency rules
are introduced (if there are any).

B.3.1 AspectJ Program

The directly usable paradigms represent the subconcepts of the solution
concept, an AspectJ program in this case, so their references should appear
as features of the solution concept. Figure B.2 presents the feature diagram
of an AspectJ program as a solution concept. The directly usable paradigms
are modeled as optional features to indicate that they can be used in an
AspectJ program.

Note that only runnable AspectJ programs are considered here. To be
runnable, an AspectJ program must contain at least one class which, in
turn, must provide the main method.

Classes(R) Interfaces(R) Inheritances(R) Aspects(R)

AspectJ Program

Figure B.2: The concept of an AspectJ program (the directly usable para-
digms of AspectJ).

2As prescribed in Section 4.4).
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AspectJ Program.Classes r©
D: The classes in the AspectJ program (Sections B.4.4 and B.3.2).
B: source time

AspectJ Program.Interfaces r©
D: The interfaces in the AspectJ program (Sections B.4.4 and B.3.3).
B: source time

AspectJ Program.Aspects r©
D: The aspects in the AspectJ program (Sections B.4.4 and B.3.4).
B: source time

AspectJ Program.Inheritances r©
D: The inheritances in the AspectJ program (Sections B.4.4 and B.3.5).
B: source time

Constraints:

1. ∀<i> ∈ N Classes.Class <i>.Class.Access.(package ∨public)

2. ∀<i> ∈ N Interfaces.Interface <i>.Interface.Access.(package ∨public)

3. ∀<i> ∈ N Aspects.Aspect <i>.Aspect.Access.(package ∨public)
The access to classes, interfaces, and aspects at top level of a program
may be defined only as package.

B.3.2 Class

The class paradigm is inevitable in any runnable AspectJ program. A class
embodies related structure (fields) and behavior (methods). This is indi-
cated in Fig. B.3 by the corresponding features. An empty class is also a
valid class, therefore these features are optional.

A class usually has a name, but anonymous classes are possible in meth-
ods, and this is indicated by optionality of Class.Name feature although this
model doesn’t go beyond the method level. A number of paradigms can be
used directly inside of a class’s scope: method, overloading, pointcut, in-
heritance, interface, aspect (only static aspects are allowed), and the class
itself.

The class paradigm is usually used in conjunction with inheritance. How-
ever, inheritance is considered as a separate paradigm for the reasons ex-
plained in Section B.1. The presence of the feature Inheritance in Fig. B.3
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indicates that inheritance can be used inside of a class by the types nested
in it.

The parts of a class (without considering inheritance) are known at
source time.

Class

Fields

Methods(R)

Overloadings(R)

Pointcuts(R)

Classes(R)

Aspects(R)

Interfaces(R)

Name

Inheritances(R)

Scope

abstract

Objects

static

final
Access(R)

Figure B.3: The class paradigm.

Class.Name

D: Unless it is anonymous (in a method), a class has a name to enable its
unique identification.

B: source time
N: Determine the value during transformational analysis.

Class.Fields

D: The data belonging to a class.
B: source time

Class.Methods r©
D: The methods of a class (Sections B.4.4 and B.3.6).
B: source time

Class.Scope

D: A class may contain other paradigms in its scope.

Class.Scope.Pointcuts r©
D: The pointcuts defined in a class (Sections B.4.4 and B.3.8).
B: source time
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Class.Scope.Overloadings

D: The overloadings defined in a class (Sections B.4.4 and B.3.7).
B: source time

Class.Scope.Aspects

D: The aspects defined in a class (Sections B.4.4 and B.3.4).
B: source time

Class.Scope.Interfaces

D: The interfaces defined in a class (Sections B.4.4 and B.3.3).
B: source time

Class.Scope.Classes

D: The other classes defined in a class (Sections B.4.4).
B: source time

Class.Scope.Inheritances

D: The inheritances defined in a class (Sections B.4.4 and B.3.5).
B: source time

Class.Objects

D: A class may have instances.
B: source time

Class.abstract

D: A class may be abstract, i.e. prevented from being instantiated.
Ri: To prevent instantiation.
B: source time

Class.static

D: A class may be static.
B: source time

Class.final

D: A class may be final, i.e. prevented from having subclasses (Sec-
tion B.3.5).

B: source time
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Class.Access r©
D: The control of the access to a class (Section B.4.1).
B: source time

Constraints:

1. ∀<i> ∈ N Scope.Aspects ⇒Scope.Aspects.Aspect <i>.Aspect.static
The aspects in classes may only be static.

2. abstract ⇒Name
An abstract class must be named.

3. abstract ∨ static
A class may not be both abstract and static.

4. abstract ∨final
A class may not be both abstract and final.

B.3.3 Interface

An interface represents a named common behavior in the form of declara-
tions of methods that can be implemented by different classes and aspects.
An interface can also contain definitions of constants. The interface pa-
radigm enables employing (inside of it) the same paradigms as the class
paradigm.

The methods in an interface are only declarations (constraint 1). With-
out having methods implementation, the overloading can be only declared.

Inheritance is here considered separately as in case of the class (Sec-
tion B.3.3). As in the class paradigm (Section B.3.2), the presence of the
feature Scope.Inheritances r© in Fig. B.4 indicates that inheritance can be
used inside of an interface by the types nested in it.

The parts of an interface (without considering inheritance) are known at
source time.

Interface.Name

D: An interface has a name to enable its unique identification.
N: Determine the value during transformational analysis.

Interface.Constants

D: The constant data belonging to the interface.
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Interface

Constants

Methods(R)
Classes(R)

Aspect (R)

Interfaces(R)
Pointcuts(R)

Name

Inheritance(R)

Overloadings

Access(R)
Scope

Figure B.4: The interface paradigm.

Interface.Methods r©
D: The methods an interface provides (Sections B.4.4 and B.3.6).

Interface.Scope

D: An interface may contain other paradigms in its scope.

Interface.Scope.Pointcuts r©
D: The pointcuts defined in an interface (Sections B.4.4 and B.3.8).
B: source time

Interface.Scope.Overloadings r©
D: The overloadings defined in an interface (Sections B.4.4 and B.3.3).
B: source time

Interface.Scope.Aspects r©
D: The aspects defined in an interface (Sections B.4.4 and B.3.4).
B: source time

Interface.Scope.Interfaces r©
D: The other interfaces defined in an interface (Sections B.4.4).
B: source time

Interface.Scope.Classes r©
D: The classes defined in an interface (Sections B.4.4 and B.3.2).
B: source time
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Interface.Scope.Inheritances r©
D: The inheritances defined in an interface (Sections B.4.4 and B.3.5).
B: source time

Interface.Access r©
D: The control of the access to an interface (Section B.4.1).
B: source time

Constraints:

1. ∀<i> ∈ N ¬Methods.Method <i>.Method.Body
In interfaces, methods are only declared.

2. ∀<i>, <j> ∈ N ¬Scope.Overloadings.Overloading <i>.Overloading.
Overloaded methods.Method <j>.Method.Body)
The overloading in interfaces may only be declared.

3. ∀<i> ∈ N Scope.Aspects ⇒Scope.Aspects.Aspect <i>.Aspect.static
The aspects in interfaces may only be static.

B.3.4 Aspect

The aspect paradigm enables to articulate related structure and behavior
that crosscuts otherwise possibly unrelated classes, interfaces, and other
aspects (only static aspects are allowed) into a named unit.

As can be seen in Fig. B.5, an aspect is similar to a class in the sense
that it also embodies related structure (fields) and behavior (methods). But
this structure and behavior is used only to support the croscutting, which is
achieved by two paradigms an aspect is a container of: advice and inter-type
declaration. The pointcut paradigm is used in addition to specify the join
points (where the aspect is to be attached).

As classes, aspects can also be instantiated, but the instantiation is au-
tomatic. By default, an aspect is a singleton, i.e. there is a single aspect
per Java virtual machine. Further, it is possible to declare that an aspect
instantiates per each of the specified objects (executing or target ones) at
any of the join points specified by a pointcut or per each flow of control (as
it is entered or below it) of the join points specified by a pointcut.

Aspects can be priviledged in order to override the access rules of the
elements they crosscut. Using inter-type declarations (Section B.3.9), the
precedence of the advices (Section B.3.10) can be set. The aspect paradigm
enables employing (inside of it) the same paradigms as the class paradigm
beside inter-type declarations and pointcuts, which have a special position
in it.
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The parts of an aspect (without considering inheritance) are known at
source time.

Aspect

Inter-type Declarations(R)

Advices(R)

Fields
Methods(R)

privileged

Instantiation policy

singleton
per object

per control flow

Classes(R)

Aspects(R)

Interfaces(R)

Name

Inheritances(R)

Pointcuts(R)

final
Scope

Access(R)

abstract

Pointcut(R)

Pointcut(R)

static

whole

below

Figure B.5: The aspect paradigm.

Aspect.Name

D: An aspect has a name to enable its unique identification.

N: Determine the value during transformational analysis.

Aspect.Inter-Type Declarations

D: An aspect may contain introductions.

Aspect.Advices

D: An aspect may contain advices.

Aspect.Pointcuts

D: An aspect may contain pointcuts.

Aspect.Fields

D: The data that belongs to an aspect.

B: source time
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Aspect.Methods r©
D: The methods of an aspect (Sections B.4.4 and B.3.4).
B: source time

Aspect.privileged

D: An aspect may access all the members of all types in the program.
B: source time

Aspect.final

D: An aspect may have no subaspects.
B: source time

Aspect.abstract

D: An aspect cannot have instances.
B: source time

Aspect.Instantiation policy

D: The instantiation policy of an aspect.
B: source time

Aspect.Instantiation policy.single

D: An aspect has a single instance.
B: source time

Aspect.Instantiation policy.per object

D: There is an aspect instance for each object that is the executing object
or the target object of the join points picked out by Aspect.Instantiation
policy.per object.Pointcut.

B: source time

Aspect.Instantiation policy.per object.Pointcut r©
D: The pointcut that defines join points (Section B.3.8).

Aspect.Instantiation policy.per control flow

D: There is an aspect instance for each flow of control of the join points
picked out by Aspect.Instantiation policy.per object.Pointcut.

B: source time
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Aspect.Instantiation policy.per control flow.whole

D: The control flow should be taken as a whole.
B: source time

Aspect.Instantiation policy.per control flow.below

D: The control flow should be taken below the entry point (i.e., without
it).

B: source time

Aspect.Instantiation policy.per control flow.Pointcut r©
D: The pointcut that defines join points (Section B.3.8).

Aspect.Access r©
D: The control of the access to an aspect (Section B.4.1).
B: source time

Constraints:

1. abstract ∨final
An aspect may not be both abstract and final.

Default dependency rules:

1. Instantiation policy ⇒Instantiation policy.single
An aspect has only a single instance by default.

B.3.5 Inheritance

The inheritance paradigm, presented in Fig. B.6, is used to express the
commonality in structure and/or behavior that a type shares with its base
type. The types that directly or indirectly inherit from one type form an
inheritance hierarchy. In general, there may be many inheritance lines in
an inheritance hierarchy. The inheritance line concept is presented in Sec-
tion B.4.2.

Inheritance is a relationship between a type and its base type with which
it shares the commonality in structure and/or behavior. Inheritance enables
keeping the related code in one place to ease programming and maintenance,
and polymorphism. Inheritance consists of one or more inheritance lines
bound at compile time (when the subtype is built out of the base type and
the members it brings itself).
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Inheritance line 1

Base type

[Inheritance]

...

Type(R)

Inheritance line(R)

Inheritance line 2

Inheritance line(R)

Figure B.6: The inheritance paradigm.

Inheritance.Base type

D: The type to be inherited from.

Inheritance.Inheritance line <i>

D: One inheritance line in the inheritance hierarchy.
B: compile time

Inheritance.Inheritance line <i>.Inheritance line r©
D: The inheritance line (Section B.4.2).
N: The feature mapped to Inheritance line <i>.Subtype.Inheritance line.Base

type must be the same as the one mapped to Base type.

Constraints:

1. ∀<i>∈ N ∀<T>∈ {Class, Interface, Aspect} Base type.Type.<T>
∧ Inheritance <i>.Inheritance line.Base type.Type.<T>
All the inheritance lines in one inheritance hierarchy have a common
base type.

B.3.6 Method

The method paradigm is presented in Fig. B.7. Methods are used to express
a named, possibly parameterized functionality (arguments) over some data
and are (usually) placed in a class where that data (fields) belong. This
functionality is expressed by the method body. A method may return a
value.

A method body forms its own namespace where classes, interfaces, and
aspects can be used. However, this paradigm model doesn’t go beyond the
method level, so this is not shown in Fig. B.7.

In AspectJ, methods may not be used directly. The method paradigm
requires an embracing paradigm which may be the class or aspect paradigm.
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A method may be the main method of a class, in which case it bears a
special name: main. Each valid AspectJ program contains at least one such
a method.

The parts of a method (without considering inheritance) are known at
source time.

Body

Method

Return value type

Argument types

Name

static

final

abstract

Access(R)

Throws exceptions

Types(R)

Type(R)

Classes(R)

Figure B.7: The method paradigm.

Method.Name

D: A method has a name to enable its unique identification.
N: Determine the value during transformational analysis.

Method.Argument types

D: A method argument types.
B: source time

Method.Argument types.Types r©
D: The types (Sections B.4.4 and B.4.3).

Method.Return value

D: A method return value type.
B: source time

Method.Argument types.Return value.Type

D: The type (Section B.4.3).

Method.Throws exceptions

D: The exceptions a method may throw.
B: source time
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Method.Throws exceptions.Classes r©
D: The classes that represent the exceptions (Sections B.4.4 and B.3.2).

Method.Body

D: The body of a method.

B: run time

Method.static

D: A method may be static.

B: source time

Method.final

D: A method may be final, i.e. prevented from being overridden.

B: source time

Method.abstract

D: A method may be abstract.

B: source time

Method.Access

D: Access control (Section B.4.1).

Constraints:

1. Body ⇒¬abstract
An abstract method has no body.

2. abstract ∨ static
A method may not be both abstract and static.

Default dependency rules:

1. Access.private ⇒final
A private method is final if not otherwise specified.
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B.3.7 Overloading

The overloading paradigm (Fig. B.8) enables to have a set of methods that
share the name, but differ in the argument list, according to which are
they selected at compile time. The type of the return value is irrelevant.
Each method has its own body, i.e. can implement a different algorithm.
Therefore it is used to enable automatic algorithm selection for different
argument types. Semantics of the methods is usually shared, too.

All the methods, including the inherited ones, may be involved in over-
loading. The overloading of inherited methods is here understood as an
overloading in an inheritance line, which is expressed by the feature Inheri-
tance line (Section B.4.2).

Overloading

Class(R)

[Overloaded methods]

Inheritance line(R)

Method 2Method 1

...

Method(R)Method(R)

Method name

Figure B.8: The overloading paradigm.

Overloading.Method name

D: Method name.
N: Determine the value during transformational analysis.

Overloading.Overloaded methods

D: The overloaded methods. The methods are either from one class
(Class) or from an inheritance line (Inheritance line).

B: source time

Overloading.Overloaded methods.Method <i>

D: An overloaded method.
B: compile time

Overloading.Overloaded methods.Method <i>.Method r©
D: The method (Section B.3.6).
N: The value of Overloaded methods.Method <i>.Method.Name must be

the same as Method name. Different Overloaded methods.Method <i>.Method.Argument
types.Types are required for each Overloaded methods.Method <i>.Method.
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Overloading.Class r©
D: The overloaded methods belong to one class (Section B.3.2).
B: source time

Overloading.Inheritance line r©
D: An inheritance line hierarchy whose classes the overloaded methods

belong to (Section B.4.2).
B: source time

B.3.8 Pointcut

The pointcut paradigm is (Fig. B.9) enables to specify the join points. Two
kinds of join points exist: static and dynamic join points. Both are speci-
fied at source time, but are really determined later; static join points, such
as method calls or executions, are determined at compile time, while dy-
namic join points, such as all method calls performed by an object of some
type, may be determined only at run time. This means that the Static join
points.Join points feature has the compile time binding, while Dynamic join
points.Join points has the run time binding.

Pointcut

context

BodyName

Static join points Dynamic join points

abstractfinal

Access(R)

Join points Join points

Figure B.9: The pointcut paradigm.

Pointcut.Name

D: The name of a pointcut.
B: source time

Pointcut.final

D: A pointcut may be final, i.e. prevented from being overridden by
subclasses or subaspects. Each pointcut that has a body is by final by
default.

B: source time
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Pointcut.abstract

D: A pointcut may be abstract, i.e. intended to be overridden by sub-
classes or subaspects. An abstract pointcut has no body.

B: source time

Pointcut.Body

D: Body
B: source time

Pointcut.Body.Static join points

D: The join points that may be determined at compile time, such as
method calls or executions.

B: source time

Pointcut.Body.Static join points.Join points

D: The set of static join points.
B: compile time

Pointcut.Body.Dynamic join points

D: The join points that may be determined only at run time, such as all
method calls performed by an object of some type.

B: source time

Pointcut.Body.Dynamic join points.Join points

D: The set of dynamic join points.
B: run time

Pointcut.context

D: A pointcut can expose the context, i.e. an object or its fields, caught
by some of the primitive pointcuts.

B: source time

Pointcut.Access r©
D: The control of the access to a pointcut (Section r©AJ-Aux-Access).
B: source time
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Constraints:

1. abstract ∨Body
An abstract pointcut has no body.

2. Access ⇒Name
Only a named pointcut may have an access type specified.

B.3.9 Inter-Type Declaration

The inter-type declaration paradigm (Fig. B.10) enables to introduce new
fields and methods into types (classes, interfaces, aspects). Further, it en-
ables to add inheritance dependencies, to declare illegal join points (pre-
vented pointcut), and to wrap the specified exceptions at the join points
from a given pointcut into an org.aspectj.lang.SoftException.

Inter-type Declaration

Field declaration

Method declaration

Inheritance declarationType(R)

Illegal join points declaration

Softened exception declaration

Pointcut(R)

error

warning

Exceptions

Inheritance(R)
Pointcut(R)

Field

Method(R) Type(R)

Classes(R)

Precedence declaration

Aspects(R)

Figure B.10: The inter-type declaration paradigm.

Inter-Type Declaration.Field declaration

D: A field declaration.
B: source time

Inter-Type Declaration.Field declaration.Field

D: A field declared.

Inter-Type Declaration.Field declaration.Types r©
D: The types in which Field declaration.Field is declared (Sections B.4.4

and B.4.3).
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Inter-Type Declaration.Method declaration

D: A method declaration.
B: source time

Inter-Type Declaration.Method declaration.Method r©
D: A method declared (Section B.3.6).

Inter-Type Declaration.Method declaration.Types r©
D: The types in which Field declaration.Method is declared (Sections B.4.4

and B.4.3).

Inter-Type Declaration.Inheritance declaration

D: An inheritance declaration.
B: source time

Inter-Type Declaration.Inheritance declaration.Inheritance r©
D: An inheritance declared (Section B.3.5).

Inter-Type Declaration.Illegal join points declaration

D: If any of the join points specified by Illegal join points declaration.Pointcut
appears in the program, a compile time error or warning should be
generated.

B: source time

Inter-Type Declaration.Illegal join points declaration.warning

D: Compile time warning should be generated.
B: source time

Inter-Type Declaration.Illegal join points declaration.error

D: Compile time error should be generated.
B: source time

Inter-Type Declaration.Illegal join points declaration.Pointcut r©
D: The pointcut that defines join points (Section B.3.8).
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Inter-Type Declaration.Softened exception declaration

D: Wrap Inter-Type Declaration.Softened exception declaration.Exceptions
at the join points from Inter-Type Declaration.Softened exception dec-
laration.Pointcut into a org.aspectj.lang.SoftException.

B: source time

Inter-Type Declaration.Softened exception declaration.Exceptions

D: The exceptions to be wrapped.

Inter-Type Declaration.Softened exception declaration.Exceptions.
Classess r©
D: The classes that represent exceptions (Sections B.4.4 and B.3.2).

Inter-Type Declaration.Softened exception declaration.Pointcut r©
D: The pointcut that defines join points (Section B.3.8).

Inter-Type Declaration.Precedence declaration

D: The declaration of the aspect precedence which defines the order their
advices are to be run on common join points.

B: source time

Constraints:

1. Method declaration.Method.Body
A declared method must have a body.

2. ¬Illegal join points declaration.Pointcut.Dynamic join points
Only static join points may be specified in an illegal join points dec-
laration.

3. ¬Softened exception declaration.Pointcut.Dynamic join points
Only static join points may be specified in a softened exception decla-
ration.

B.3.10 Advice

Inside of an aspect, the advice paradigm (Fig. B.11) may be used to artic-
ulate the actions to be performed in the context of the join points specified
by the pointcut. An advice provides a piece of code (in its body) to be run
before, after, or in place (around) of a pointcut. The body of an advice is
similar to the body of a method.
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After advice can run after the execution of each join point specified by
the Pointcut r© completes normally, after it throws an exception, or after
it does either one. In the last case, no matching based on the type being
returned or exception being thrown can be made.

Around advice returns a value which will replace the original one at each
join point specified by the Pointcut r©. An advice can use a context exposed
by its pointcut. The original join point return value may also be captured
and returned, modified or not, by letting the original join point execute
inside of the advice body. However, this AspectJ paradigm model does not
go into such details as they could hardly be used in the transformational
analysis.

Advice

aroundafter

throwingreturning

before

Body

Pointcut(R)

context

Return value type

Type(R)Type(R) Type(R)

Figure B.11: The advice paradigm.

Advice.before

D: An advice is to be performed before the join points.

B: source time

Advice.after

D: An advice is to be performed after the join points.

B: source time

Advice.after.returning

D: An advice is able to modify the return value.

B: source time

Advice.after.throwing

D: An advice is able to modify the throwing of the exception.

B: source time
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Advice.around

D: An advice is to be performed instead the join points.
B: source time

Advice.around.proceed

D: An around advice may allow the execution of the join points it affects
to proceed.

B: source time

Advice.Body

D: The body of an advice. The body specifies the actions to be performed.

Advice.context

D: An advice can use a context exposed by its pointcut.
B: source time

Advice.Pointcut r©
D: The pointcut that specifies the join points affected by an advice (Sec-

tion B.3.8).

B.4 Auxiliary Concepts

In this section, auxiliary concepts refereed to by paradigms are introduced.
Each such a concept is presented in a separate section (Sections B.4.1–B.4.4).
The conventions listed in Section B.3 apply to these sections, too.

B.4.1 Access

The usual access control as known in ordinary Java is applicable to several
paradigms of AspectJ.

Access

private protected public package

Figure B.12: The concept of access.
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Access.private

D: A private access.
B: source time

Access.protected

D: A protected access.
B: source time

Access.public

D: A public access.
B: source time

Access.package

D: A package access.
B: source time

B.4.2 Inheritance Line

The inheritance paradigm is used to express the commonality in structure
and/or behavior that the subtype shares with its base type (Section B.3.5).
The types that directly or indirectly inherit from one type form an inher-
itance hierarchy. In general, there may be many inheritance lines in an
inheritance hierarchy. Figure B.13 shows the feature diagram of the inheri-
tance hierarchy concept.

Each one of the base type and subtype is either a class, interface, or
aspect. Any type can inherit from any other type, except a class cannot
inherit from an aspect. This is expressed in the constraints of the features.

There are two types of the inheritance: extending and implementing one.
The extending inheritance combines inheritance of structure and behavior.
It is used between the two elements of equal type and for an aspect to extend
a class. The implementing inheritance is the inheritance of behavior.3 It is
used for classes and aspects to declare that they implement some behavior
(specified in interfaces).

The extending inheritance allows for method overriding: the methods
from the subtype override the methods with the same name and interface
from the base type. A method to be executed among the overridden methods
is being selected according to the exact object type.

The inheritance hierarchies are bound at compile time, but the base type
methods overridden in the subtype are being selected at run time (the exact
object type is known only at run time).

3With a bit of structure contained in the constants possibly defined in interfaces.
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Base type

Inheritance line

Type(R) implements

extends

Subtype

Type(R)

Inheritance line(R)

Figure B.13: The concept of inheritance line.

Inheritance Line.Base type

D: The type to be inherited from.

Inheritance Line.Base type.Type r©
D: The type (Section B.4.3).

Inheritance Line.Subtype

D: The type that inherits. It is built out of the base type and the members
it brings itself at compile time.

Inheritance Line.Subtype.Type r©
D: The type (Section B.4.3).

Inheritance Line.Subtype.Inheritance line r©
D: A subtype may be a base type to other types building further the

subtype hierarchy.
B: source time
N: The feature mapped to Subtype.Inheritance line.Base type must be

the same as the one mapped to Subtype.

Inheritance Line.Subtype.extends

D: The inheritance of structure and behavior.
Rp: The subtype can be an extension of the base type.
B: source time

Inheritance Line.Subtype.implements

D: The inheritance of behavior.
Rp: The subtype can be an implementation of the base type.
B: source time
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Constraints:

1. Base type.Type.Class ∧Subtype.Type.((Class ∨Aspect) ∧ extends)
A class may only be extended by another class or an aspect.

2. Base type.Type.Interface ∧
Subtype.Type.(((Class ∨Aspect) ∧ implements) ∨ (Interface ∧ extends))
An interface may only be implemented by a class or aspect, or extended
by another interface.

3. Base type.Type.Aspect ∧Subtype.Type.(Aspect ∧ extends)
An aspect may only be extended by another aspect.

4. Base type.Type.(Class ∨Class.final)
A final class may not be extended.

5. Base type.Type.(Aspect ∨Aspect.final)
A final aspect may not be extended.

B.4.3 Type

Classes, interfaces, and aspects are in AspectJ denoted as types, as they
encapsulate the common structure that may be used further. The feature
diagram in Fig. B.14 describes this concept.

Type

Class(R)
Interface(R) Aspect(R)

Figure B.14: The concept of a type.

Type.Class

D: The type is a class (Section B.3.2).
B: source time

Type.Interface

D: The type is an interface (Section B.3.3).
B: source time

Type.Aspect

D: The type is an Aspect (Section B.3.4).
B: source time
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B.4.4 <Plural Form>

In AspectJ paradigm model, often there is a need to refer to concepts in plu-
ral. The feature diagram in Fig. B.15 presents these plural forms in a generic
form. The concept <Singular Form> may be any of the AspectJ paradigms
or Type concept (introduced in Section B.4.3). The name of <Plural Form>
is the plural form of the name of <Singular Form> <i>.<Singular Form>.

[<Plural Form>]

<Singular Form> 1

<Singular Form>

<Singular Form> 2

<Singular Form>

...

Figure B.15: The plural forms of concepts.

<Plural Form>.<Singular Form> <i>

D: One of the concepts the plural form refers to. The parameter <i> is
a natural number.

B: source time

<Plural Form>.<Singular Form> <i>.<Singular Form>

D: A reference to one of the following concepts: Class, Interface, Aspect,
Inheritance, Method, Overloading, Pointcut, Inter-Type Declaration,
Advice, or Type.





Appendix C

Applying MPDFM for
AspectJ

This appendix presents an application of multi-paradigm design with feature
modeling (MPDfm) for AspectJ (introduced in Appendix B). The appli-
cation domain under consideration here is the domain of feature modeling,
whose feature model has been introduced in Appendix A.

This appendix is divided into two sections. The results of the transforma-
tional analysis performed using the AspectJ paradigm model are presented
in Section C.1. The code skeleton corresponding to this transformational
analysis is introduced in Section C.2.

C.1 Transformational Analysis

In this section the transformational analysis of the feature model of the
domain of feature modeling using the AspectJ paradigm model is presented.

Individual paradigm instances are represented by feature diagrams (as
proposed in Section 5.3) and their creation is explained.

C.1.1 Feature Model

Feature Model concept (Section A.2.1) incorporates data about a feature
model and operations on this data. This roughly corresponds to the class
paradigm. The class paradigm instantiated over the feature model concept
is presented in Fig. C.1.

Based on their semantics, Name, Description, and Feature Diagram
Set would be fields of the class corresponding to Feature Model. Feature
Diagrams r©, a plural form (see Section C.1.12) of Feature Diagram con-
cept, which has been found to correspond to the class paradigm (see Sec-
tion C.1.2), describes further the structure of the field. This is beyond the
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Class

Fields
Methods(R)

Name Scope

Objects
FeatureModel

Feature Model.New feature diagram

Feature Model.Delete feature diagram

Feature Model

Feature Model.Name

Feature Model.Description

Feature Model.Feature Diagram Set

Figure C.1: The class paradigm instantiated on Feature Model.

detailedness of the AspectJ paradigm model used, so this feature stays un-
mapped.

Carrying further with the mapping to the class paradigm, New feature di-
agram and Delete feature diagram features would represent methods. Since
these two features have no subfeatures, no sufficient details are available
to create corresponding method paradigm instances, so their exact form
remains unknown.

Feature Model concept may have instances (specific feature models),
which has determined the inclusion of Objects feature in the paradigm in-
stance.

At first glance, Normalize should be another method of the class corre-
sponding to Feature Model. The fact it is optional with source time binding
implies it could be simply removed from the source code if not needed.
However, this issue concerns also Feature Diagram concept, since it also
has Normalize feature (see Section A.2.2). A solution that takes this into
account is presented in Section C.1.13. Link Set feature requires a similar
solution described in Section C.1.14.

C.1.2 Feature Diagram

Transformational analysis of Feature Diagram concept (Section A.2.2) is
similar to transformational analysis of Feature Model concept introduced
in the previous section. The class paradigm instantiated over the feature
diagram concept is presented in Fig. C.2. This paradigm instance determines
the skeleton code for a class corresponding to Feature Diagram concept.

A feature diagram is either a tree or a graph, which is indicated by Tree
and Graph statically bound alternative features. There is no corresponding
feature in the class paradigm for these features, so we try to regard them
as concepts, according to step 1d of the transformational analysis process
(see Section 5.3.2). The two corresponding paradigm instances of the class
paradigm to these concepts are shown in Fig. C.3 and C.4.
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Class

Fields
Methods(R)

Name

Scope

Feature Diagram

Feature Diagram.Name

Feature Diagram.Description

Feature Diagram.Feature Set

Feature Diagram.Node Set

Feature Diagram.Constraints Set

Feature Diagram.Default Dependency Rule Set

FeatureDiagram

Feature Diagram.Add node

Feature Diagram.Add feature

Feature Diagram.Remove node

Feature Diagram.Remove feature

Figure C.2: The class paradigm instantiated on Feature Diagram.

Class

Methods(R)

Name

Scope
FDTree

Feature Diagram.Tree.Add feature

Feature Diagram.Tree

Objects

Figure C.3: The class paradigm instantiated on Feature Diagram.Tree.

The relationship between these two newly factored out concepts and
Feature Diagram represents an inheritance. The corresponding inheritance
paradigm instance is shown in Fig. C.5. By this, the method corresponding
to Feature Diagram.Add feature will be overridden in the class corresponding
to Feature Diagram.Tree.

As already mentioned in the previous section, Feature Model.Normalize
and Feature Diagram.Normalize features are correlated; a solution is pro-
vided in Section C.1.13. Section C.1.14 presents a solution for Link Set
feature.

C.1.3 Node

Node concept (Section A.2.3) represents a feature diagram node with related
data. These data correspond to the fields of a class. The class paradigm

Class

Name

Scope

Feature Diagram.Graph

FDGraph
Objects

Figure C.4: The class paradigm instantiated on Feature Diagram.Graph.
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Inheritance line 1Base type

Inheritance

Type(R)

Inheritance line 2

Base type

Inheritance line

Type(R) extends

Subtype

Type(R)

Base type

Inheritance line

Type(R) extends

Subtype

Type(R)

Class(R) Class(R)
Class(R) Class(R)

Class(R)

Feature Diagram

Feature diagram.Tree

Feature Diagram
Feature Diagram

Feature diagram.Graph

Figure C.5: The inheritance paradigm instantiated on Feature Diagram,
Feature Diagram.Tree, and Feature Diagram.Graph.

instance instantiated on Node concept is presented in Fig. C.6.

Class

Fields

Name

Scope

Node

FDNode

Node.Description Openness

abstract

Figure C.6: The class paradigm instantiated on Node.

A feature diagram node represents either an independent concept or a
feature, which is named, or a concept reference, which bears the name of
the referenced concept. This is indicated by alternative features Name and
Reference. Based on this, two types of the nodes may be distinguished. The
corresponding class paradigms are presented in Figures C.7 and C.8. Name
field has been introduced into the class paradigm instance corresponding to
Name feature.

Class

Fields

Name

Scope

Node.Name

CFDNode

Name

Objects

Figure C.7: The class paradigm instantiated on Node.Name.

The two types of the feature diagram nodes are related to Node concept
by inheritance, as presented in Fig. C.9.
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Fields

Name

Scope

Node.Name

RFDNode

Reference

Objects

Figure C.8: The class paradigm instantiated on Node.Reference.

Inheritance line 1Base type

Inheritance

Type (R)

Inheritance line 2

Base type

Inheritance line

Type (R) extends

Subtype

Type (R)

Base type

Inheritance line

Type (R) extends

Subtype

Type (R)

Class (R) Class (R)
Class (R) Class (R)

Class (R)

Node

Node.NameNode
Node Node.Reference

Figure C.9: The inheritance paradigm instantiated on Node, Node.Name,
and Node.Reference.

The expectation of further features at some of the feature diagram nodes
is being indicated in some approaches to feature modeling. This is modeled
by Openness feature. This feature would appear as a class field if needed.
Otherwise, it wouldn’t be present. Another solution would be to employ an
aspect as with Link Set feature.

Section C.1.14 presents a solution for Link Set feature. The subfeatures
of Openness feature, which has been determined to be a class field, represent
its possible values which is beyond the detailedness of the AspectJ paradigm
model being used. The same situation is with Reference.Node r© feature.

C.1.4 Feature

Feature concept (Section A.2.4) represents a relationship between two fea-
ture diagram nodes. This relationship bears with it some related data which
includes an information about the two nodes in case (Superfeature and Sub-
feature). These two and Associated Information correspond to class fields.
The class paradigm instance corresponding to Feature concept is presented
in Fig. C.10.

Partition r© feature denotes whether a feature belongs to a partition and
is supposed to be dynamically changeable as a class field value. However,
the AspectJ paradigm model used here doesn’t go into such details, so this
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feature stays unmapped. Recognizing the meaning of Partition r© feature,
InPartition field is introduced into the class paradigm instance as if it has
been a feature of Feature and Partition r© its subfeatures.

A similar situation with a similar solution is the one with the group of
alternative features mandatory and optional. Optionality field is introduced
into the class paradigm instance as if it has been a feature of Feature and
mandatory and optional its subfeature.

Class

Fields
Name

Scope

Feature

Feature.Superfeature

Feature.Subfeature

Feature

Feature.Type
Feature.Associated Information(R)

Feature.InPartition

Feature.Optionality

Feature.Name

Figure C.10: The class paradigm instantiated on Feature.

In some approaches to feature modeling (e.g., FORM), features are be-
ing categorized, which is modeled by Type feature. Some approaches may
require named (labeled) feature relationships, which is modeled by Name
feature. These two features would appear as class fields if needed (inde-
pendently of each other). Otherwise, they wouldn’t be present. Features
Superfeature.Node r© and Subfeature.Node r© represent values of the fields,
which is beyond the detailedness of the AspectJ paradigm model being used.
Section C.1.14 presents a solution for Link Set feature.

C.1.5 Partition

The class paradigm instance corresponding to Partition concept (Section A.2.5)
is presented in Fig. C.11. It represents alternative feature partition and is
instantiable (Class.Objects) as such.

Class

Fields

Name

Scope

Partition

Partition

Partition.Openness

Figure C.11: The class paradigm instantiated on Partition.

There are two different notations for partitions in approaches to feature
modeling represented by alternative features Type and Cardinality, which
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leads to the use of inheritance. These two features are regarded further
as concepts with the corresponding class paradigm instances presented in
Figures C.12 and C.13. They are related to the class paradigm corresponding
to Partition concept through inheritance, as shown in Fig. C.14.

Class

Fields

Name

Scope

Partition.Type

TPartition

Type

Objects

Figure C.12: The class paradigm instantiated on Partition.Type.

Class

Fields

Name

Scope

Partition.Cardinality

CPartition

Min Max

Objects

Figure C.13: The class paradigm instantiated on Partition.Cardinality.

Inheritance line 1Base type

Inheritance

Type(R)

Inheritance line 2

Base type

Inheritance line

Type(R) extends

Subtype

Type(R)

Base type

Inheritance line

Type(R) extends

Subtype

Type(R)

Class(R) Class(R)
Class(R) Class(R)

Class(R)

Partition

Partition.TypePartition Partition Partition.Cardinality

Figure C.14: The inheritance paradigm instantiated on Partition, Parti-
tion.Type, and Partition.Cardinality.

C.1.6 Associated Information

The class paradigm instance corresponding to Associated Information con-
cept (Section A.2.6) is presented in Fig. C.15. Feature Associated Infor-
mation.AI Items r© represents its field, while features Associated Informa-
tion.Add item and Associated Information.Remove item represent its meth-
ods.
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Class

Fields

Name

Scope

Associated Information

AInfo

Associated Information.AI Items(R)

ObjectsMethods(R)

Associated Information.Remove item

Associated Information.Add item

Figure C.15: The class paradigm instantiated on Associated Information.

C.1.7 AI Item

The class paradigm instance corresponding to AI Item concept (Section A.2.7)
is presented in Fig. C.16. Feature AI Item.Applicability represents its only
field.

Class

Fields

Name
Scope

AI Item

AIItem

AI Item.Applicability

abstract

Figure C.16: The class paradigm instantiated on AI Item.

There are two different types of associated information items represented
by alternative features AI Item.Text and AI Item.Selectable, which leads to
the use of inheritance. These two features are regarded further as concepts
with the corresponding class paradigm instances presented in Figures C.17
and C.18. They are related to the class paradigm corresponding to Associ-
ated Information concept through inheritance, as shown in Fig. C.19.

Class

Fields

Name

Scope

AI Item.Textual

AIItemTxt

AI Item.Textual.Text

Objects

Figure C.17: The class paradigm instantiated on AI Item.Textual.

C.1.8 AI Value

The class paradigm instance corresponding to AI Value(Section A.2.8) con-
cept is presented in Fig. C.20. Features AI Value.Name and AI Value.Name
represent its fields.
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Fields

Name

Scope

AI Item.Selectable

AIItemTxt ObjectsMethods (R)

AI Item.Selectable.Remove Value

AI Item.Selectable.Add Value
AI Item.Selectable.AI Values(R)

AI Item.Selectable.Value

Figure C.18: The class paradigm instantiated on AI Item.Selectable.
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Inheritance line 2

Base type

Inheritance line

Type(R) extends

Subtype

Type(R)

Base type

Inheritance line

Type(R) extends

Subtype

Type(R)

Class(R) Class(R)
Class(R) Class(R)

Class (R)

Associated Information.Textual

Associated Information

Associated Information
Associated Information

Associated Information.Selectable

Figure C.19: The inheritance paradigm instantiated on AI Item, AI
Item.Textual, and AI Item.Selectable.

C.1.9 Constraint

Constraint (Section A.2.9) can be represented by a class (Fig. C.21). Dif-
ferent approaches to feature modeling represent constraints in a different
way. These different constraint representations correspond to subclasses of
the class corresponding to Constraint concept (Fig. C.22).

Class

Fields

Name

Scope

AI Value

AIValue

AI Value.Name

Objects

AI Value.Description

Figure C.20: The class paradigm instantiated on AI Value.
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Name

Scope
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Figure C.21: The class paradigm instantiated on Constraint.
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ConstraintTxt Objects
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ConstraintFODA

Figure C.22: The inheritance paradigm instantiated on Constraint and its
subfeatures.

C.1.10 Default Dependency Rule

Default Dependency Rule concept (Section A.2.10) can be represented by
a class (Fig. C.23). Different approaches to feature modeling represent con-
straints in a different way. These different constraint representations are
subclasses of the class corresponding to Constraint concept (Fig. C.24).

Class

abstract
Name

Scope

Default Dependency Rule

DDR

Figure C.23: The class paradigm instantiated on Default Dependency Rule.

C.1.11 Link

Link concept (Section A.2.11) can be represented by a class (Fig. C.25).
Different types of links are subclasses of the class corresponding to Link
concept (Fig. C.26).
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Figure C.24: The inheritance paradigm instantiated on Default Dependency
Rule and its subfeatures.

Class

abstract
Name

Scope

Link

Link

Figure C.25: The class paradigm instantiated on Link.

C.1.12 Plural Forms

Plural concept references Feature Diagrams r©, Concept r©, Features r©,
Links r©, AI Items r©, and AI Values r© are special cases of the concept of
plural introduced in Section A.2.12. This concept gets into the structure
of data, which is beyond the detailedness of the AspectJ paradigm model
used here. However, based on the specification provided by Plural concept,
it may be concluded that a class field of a container type similar to Array
should be used to implement such concept references.

C.1.13 Normalization

Both Feature Model and Feature Diagram concepts (Sections A.2.1 and A.2.2)
have Normalize feature. From descriptions of these features we conclude
that they match with the method paradigm. Further, we conclude that one
without another makes no sense. For this reason, we instantiate an aspect
paradigm with two inter-type method declarations as shown in Fig. C.27.
Normalize feature is optional with statical binding, which is supported by a
possibility to plug in or out the aspect at source time.



C-12 Applying MPDFM for AspectJ

Inheritance line 1Base type

Inheritance

Type(R)

Base type

Inheritance line

Type(R) extends

Subtype

Type(R)

Class(R) Class

Class(R)

Link

Link.File

Link

Inheritance line 2

Base type

Inheritance line

Type(R) extends

Subtype

Type(R)

Class(R) Class

Link.Feature Diagram(R)

Link

Inheritance line 3

Base type

Inheritance line

Type(R) extends

Subtype

Type(R)

Class(R) Class

Link.Node(R)

Link

Inheritance line 4

Base type

Inheritance line

Type(R) extends

Subtype

Type(R)

Class(R) Class

Link.Feature(R)

Link

ObjectsName

Scope

FileLink

Objects
Name

Scope

FDLink Objects

Name Scope

NodeLink
Objects

Name Scope

FeatureLink

Figure C.26: The inheritance paradigm instantiated on Link and its subfea-
tures.

C.1.14 Linking

Concepts Feature Model, Feature Diagram, Node, and Feature (Sections
A.2.1–A.2.4) have a common feature Link Set. From descriptions of these
features we conclude that they correspond to a class field. These features
should be included if interlinking of the feature model parts or their linking
to other resources is needed. Therefore, we instantiate an aspect paradigm
with four inter-type field declarations as shown in Fig. C.28. Link Set r©
feature is optional with statical binding, which is supported by a possibility
to plug in or out the aspect at source time.

C.2 Code Skeleton Design

According to the paradigm instances created in transformational analysis
of the domain of feature modeling (presented in Section C.1), code skeleton
can be designed.

The structural paradigm instances should be transformed into code first
(as proposed in Section 5.4). After that, relationship paradigm instances
can be transformed into code, as they depend on the structural paradigm
instances.

However, in the presented transformational analysis, the relationship
paradigm instances are always introduced after the structural paradigm in-
stances they depend on, so paradigm instances can be transformed into code
in the order of appearance.
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Figure C.27: The normalization aspect.
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Figure C.28: The linking aspect.

The rest of this section is the code skeleton designed according to the pa-
radigm instances from Section C.1. The statically optional parts are marked
as such in the comments. When including such parts, the constraints speci-
fied in the application domain feature model have to be taken into account.
The missing parts of the code skeleton are indicated by ellipses. Since the
AspectJ paradigm model used for transformation doesn’t go the beyond the
method level, method bodies are left out completely.

class FeatureModel {
String Name;
String Description;
Array FeatureDiagrams;

... NewFD(...);

... DeleteFD(...);
}
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abstract class FeatureDiagram {
String Name;
String Description;
Array Nodes;
Array Features;
Array Constraints;
Array DDRs;

... AddNode(...);

... RemoveNode(...);

... AddFeature(...);

... RemoveFeature(...);
}

class FDTree extends FeatureDiagram {
AddFeature();
}

class FDGraph extends FeatureDiagram {
}

abstract class FDNode {
String Description;
Boolean Openness; // optional
}

class CFDNode extends FDNode {
String Name;
}

class RFDNode extends FDNode {
CFDNode Reference;
}

class Feature {
CFDNode Superfeature;
CFDNode Subfeature;
AInfo AI;
Boolean Optionality;
Partition InPartition;
String Name; // optional
Type; // optional
}

class Partition {
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Boolean Openness; // optional
}

class TPartition extends Partition {
Type;
}

class CPartition extends Partition {
int Min;
int Max;
}

class AInfo {
Array AIItems;

... AddItem(...);

... RemoveItem(...);
}

abstract class AIItem {
Applicability;
}

class AIItemTxt extends AIItem {
String Text;
}

class AIItemSel extends AIItem {
AIValue Value;
Array Values;

... AddValue(...);

... RemoveValue(...);
}

class AIValue {
String Name;
String Description;
}

abstract class Constraint {
}

class ConstraintLog extends Constraint {
}

class ConstraintTxt extends Constraint {
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}

class ConstraintFODA extends Constraint {
}

abstract class DDR {
}

class DDRLog extends DDR {
}

class DDRTxt extends DDR {
}

abstract class Link {
}

class FileLink extends Link {
}

class FDLink extends Link {
}

class NodeLink extends Link {
}

class FeatureLink extends Link {
}

aspect Normalization {
... FeatureModel.Normalize(...) {
...};
... FeatureDiagram.Normalize(...) {
...};
}

aspect Linking {
Array FeatureModel.Links;
Array FeatureDiagram.Links;
Array FDNode.Links;
Array Feature.Links;
}
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