Multiple Software Development Paradigms and Multi-Paradigm
Software Development

Valentino Vranié¢ *
vranic@elf.stuba.sk

Abstract: While OOP (including OOA /D) is reaching the level of maturity of structured
programming, new design paradigms are arising. To a big extent this is motivated by the
faith in the existence of “the best paradigm”, which could solve the difficulties software
engineering deals with today. On the other hand, undoubtedly a great effort has been
made in order to enable and manage the application of different paradigms to a single
system (or a family of systems) development in a coexistent way. This is referred to as
multi-paradigm design and implementation. What do new paradigms, like aspect-oriented
programming, subject-oriented programming and generative programming, offer and what
are the possibilities of a multi-paradigm design and implementation (as a metaparadigm)—
these are the questions addressed in this article.

Keywords: software development paradigm, metaparadigm, multi-paradigm, aspect-
oriented programming, subject-oriented programming, generative programming, multi-
paradigm design, intentional programming.

1 Introduction

Why do new paradigms appear? The answer is simple: existing paradigms are not good
enough. Consider the object-oriented paradigm. Many times before it has been pointed
out that object-oriented paradigm (i.e. object-oriented programming, OOP) fails to solve
some very important issues it was proposed it would. The problems appear to be mainly
in the field of reuse [12], adaptability, management of complexity and performance [5].
These open issues create a space for new paradigms to rise and so we could expect that
the upcoming paradigms would be better and better until one day the best one would
appear. This is rather simplified view, but the point is that there is a certain evolution of
paradigms. However, is there a best paradigm—that’s a tough question.

Speaking of the paradigms’ evolution yet another thing has to be considered: the
integration of paradigms (which is known as multi-paradigm approach). The goal of such
an integration can be a collaboration of paradigms (an example can be found in [7]), but
the integration between paradigms can be loose, so paradigms would just coexist rather
than build on each other or collaborate.

In this paper, several current software paradigms are briefly presented and then a
multi-paradigm approach is considered together with two examples of it.

2 Multiple Software Development Paradigms. ..

In software engineering the term software development paradigm (or, more often, simply
paradigm), is widely used to refer to the essence of certain software development process.

* Department of Computer Science and Engineering, Slovak University of Technology, Bratislava, Slo-
vakia



A software development paradigm represents a consistent collection of methods and tech-
niques accepted by the relevant scientific community as a prevailing methodology of the
specific field. The name of a paradigm reveals what is a central abstraction it deals with,
as it is an object to object oriented paradigm, a function to functional paradigm etc.

In spite of the fact that software development paradigm refers to all the phases of
the software development process, not only to the implementation, in place of a term
software development paradigm often we can found a term programming paradigm or even
just programming (e.g. object oriented programming, OOP). On the other hand, in order
to be more explicit, expression OO analysis and design (OOA/D) can be used to refer
to the analysis and design phases, and OOP to refer specifically to the implementation
phase. Discussion on various programming paradigms can be found e.g. in [9].

Some recent software development paradigms include: agent-oriented programming,
aspect-oriented programming and generative programming. In this short analysis, the
principles of these paradigms and also of multi-paradigm approaches are presented.

2.1 Agent-Oriented Programming

There is a lot of confusion about the meaning of the term agent. Shoham [10] proposes
agent-oriented programming paradigm based on the original sense of the word agent, which
is “someone acting on behalf of someone else”. Speaking more precisely, agent is an entity
whose state is viewed as consisting of mental components such as beliefs, capabilities,
choices and commitments. Thus, agents are not supposed to be intelligent entities in the
sense of human intelligence, but they are supposed to have such a behavior, that we could
view agents as intelligent in order to interact with them like we are used to interact with
real persons.

As Shoham points out, agent-oriented programming can be viewed as a specialization
of the OOP paradigm. Table 1 summarizes the relationship between AOP and OOP.

010) Agent-Oriented Programming
Basic unit object agent
Parameters defining state| unconstrained beliefs, commitments, capabil-
of basic unit ities, choices. ..
Process of computation |message passing and response message passing and response
methods methods
Type of message unconstrained inform, request, offer, promise,
decline. ..
Constraints on methods |none honesty, consistency. . .

Tab. 1: OOP versus AOP (from [10])

Agent-oriented programming makes a move towards higher intentionality, which is
a general trend in recently developed paradigms, such as intentional programming (see
section 3.2).

2.2 Aspect-Oriented Programming and Related Paradigms

Human perception of the world is to a great extent based on objects. From our earliest
days we encounter objects around ourselves, we find out their behavior, i.e. their properties



and what we can do with them. Object-oriented paradigm is based precisely on this very
natural view of the world.

What can be wrong then with OOP? In OOP, we are taught to see everything as
an object, but not everything is an object neither in a real world, nor in programming
itself. For example, synchronization is certainly not an object. It is usually perceived
as something that can be marked as an aspect. The aspects crosscut the objects (i.e.
functional components, in general), which makes the code tangled. The pieces of code are
either repeated throughout different objects or unnatural inheritance (often multiple one)
must be involved.

Aspect-oriented programming (AOP), as proposed by Xerox PARC AOP group, is
a new programming methodology that enables the modularization of crosscutting con-
cerns [6].

Another three independently developed paradigms can be viewed as aspect-oriented
decomposition approaches, which extend the OOP model to allow us the encapsulation
of aspects [5]: subject-oriented programming (SOP), composition filters (CF) and Deme-
ter/adaptive programming (AP). Although these approaches build upon OOP, the very
idea of the AOP is not limited to it.

We define a certain object, or more generally a concept, by its properties. This is
sufficient to precisely define and identify mathematical concepts, but the same does not
apply to natural concepts at all because their definitions are subjective and thus never
complete (more details about conceptual modelling can be found in [5]).

Subject oriented programming (developed at IBM) reflects this subjectivity of concepts.
It is based on subjective views, so-called subjects. It was proposed as an extension of the
OOP and thus subject is a collection of classes or class fragments whose hierarchy models
its domain in its own, subjective way. A complete software system is then composed
out of subjects by writing the composition rules, which specify the correspondence of the
subjects (i.e. namespaces), classes and members to be composed and how to combine them.
As Czarnecki [5] observes, this is close to GenVoca approach [2], where the systems are
composed out of layers according to design rules: GenVoca layers can be easily simulated
as subjects.

SOP can be viewed as a special case of AOP where the aspects according to which the
system is being decomposed are chosen in such a manner that they represent different,
subjective views of the system.

Composition filters is another paradigm closely related to the AOP. From the AOP
point of view, CF is an aspect-oriented programming technique where different aspects
are expressed as declarative and orthogonal message transformation specifications called
filters [1].

A message sent to an object is evaluated and manipulated by the filters of that object,
which are defined in an ordered set. Filters are fully separated from the class and thus
can be reused separately.

The adaptive programming (proposed by the Demeter group) deals mainly with traver-
sal strategies of class diagrams as partial specifications of a graph pointing out a few cor-
nerstone nodes and edges and thus crosscut the graphs they are intended for while only
mentioning a few isolated nodes and edges [8].



2.3 Generative Programming

In his Ph.D. thesis, Czarnecki [5] proposes a comprehensive software development para-
digm, which brings together the object-oriented analysis and design methods with domain
engineering methods that enable development of the families of systems: generative pro-
gramming (GP).

GP is a unifying paradigm—it is closely related to three other paradigms (see Figure 1):
generic programming (which can be summarized as “reuse through parameterization”),
domain-specific languages (which increase the abstraction level for a particular domain
and are highly intentional) and AOP (which was discussed in section 2.2).

GP first has to be tailored to a particular domain in order to be used. This process will
give us a methodology for the families of systems to be developed, which can be viewed
as a paradigm itself. This gives a certain metaparadigm flavor to GP.

In the implementation field, GP requires metaprogramming for so-called weaving (i.e.
joining the aspect part of the code with the functional one) and automatic configuration.
To support domain-specific notations, it needs syntactic extensions. Czarnecki proposes
active libraries as appropriate notions to cover these requirements. Active libraries, which
can be viewed as knowledgeable agents (it would be useful to consider some agent-oriented
programming techniques here, see section 2.1) interacting with each other to produce
concrete components, require appropriate programming environment.

Generic Generative
Programming / Programming
Composition Domain-Specific
Filters Languages
Demeter/Adaptive Aspect-Oriented
Programming / Programming
Subject-Oriented
Programming

Fig. 1: Generative programming and related paradigms. The arrows represent “is incor-
porated into” relationship.

3 ...and Multi-Paradigm Software Development

Up to this point it should be clear that there has been made a great effort in order to
integrate the software development paradigms (see Figure 1). The integration of two or
more paradigms can result into a new paradigm. However, if the paradigms, which are to
be integrated, are not so close to each other, we gain something that is beyond a single
paradigm concept. This is known as a multi-paradigm approach.

Closely related to the multi-paradigm approach is a metaparadigm as a method for
choosing the appropriate features among a particular set of paradigms (ideally, it would
be among all the paradigms).



3.1 Multi-Paradigm Design

Multi-paradigm design (and implementation) (MPD), proposed by Coplien, has its roots in
multi-paradigm characteristics of C++. C++ is a kind of language, which could be speci-
fied as a multi-paradigm language, although it is often reduced to be only an OO language.
As such, C++ is used to implement the systems designed according to OO methodology.
In spite of that, non-object features of C++ are widely used, but without their “legaliza-
tion” in design.

Coplien proposes a particular metaparadigm intended for developing families of sys-
tems, which enables choosing the appropriate paradigm for the feature that has to be
designed and implemented. This is achieved through two parallel analyses, commonality
and variability, performed on both application and solution domain independently.

Commonality analysis concentrates on common attributes while the aim of the vari-
ability analysis is to parameterize the variation. Any commonality/variability pairing
represents a paradigm in Coplien’s MPD terminology.

The last step is to line up the commonalities and variabilities of the application and
solution domain analysis, which leads us to use the “right” language features for the
corresponding analysis abstractions. Coplien claims this mapping is often straightforward.

Coplien points out the need for solution domain (i.e. implementation environment)
analysis, which is often underestimated. This results into a gap between design and im-
plementation. Multi-paradigm design makes this gap smaller, but introduces another issue.
The implementation in a different programming language would probably require a new
design; i.e. previous design would not make sense if the system was to be implemented in
a different language.

Main idea of MPD is presented in [4]. More details with examples can be found in [3].

3.2 Intentional Programming

Programming languages with fixed syntax are limiting otherwise unlimited number of
programming abstractions. Intentional programming group at Microsoft Research (led
by Simonyi, the original developer of the MS Word and Excel) offers a solution to this
problem as a new software development paradigm called intentional programming.

The idea behind intentional programming (IP) is that programming abstraction hosted
by programming languages, which are limited in the sense of accepted notations (due to
underlying grammars), could live well (and even better) without their hosts (i.e. program-
ming languages). Such abstractions in IP are called intentions.

The solution proposed in IP is to have program represented by a so-called intentional
tree. The intentional tree is similar to abstract syntax tree, but it would be misleading to
call it by this name since there is no any syntax [11].

It is clear that IP needs (and has) a special and complex integrated programming en-
vironment. This sounds a bit like one of those clicking environments with various wizards,
which are not at will to “real” programmers, but where we would be today if text editors
never replaced punched cards. On the other hand, IP counts on a binary format for the
program files, which is dangerous unless its exact format is made publicly available.

It should be pointed out that IP is not supposed to push out all the existing program-
ming languages from the scene: it is meant to be capable of importing any program in
any programming languages in order to reuse legacy code by a language-specific parser
(IP environment can be extended with new parsers as libraries).



4 Conclusions

It doesn’t seem that software development is at the edge of a revolution, but the evolution
continues. We have tried to reveal some important directions towards which software
development paradigms evolve.

Several new software development paradigms have been briefly presented and certain
unifying tendencies have been identified among them. These unifying tendencies appear
to culminate in multi-paradigm approaches. Two such approaches have been considered.

The need for more intentional programming abstractions (and their coexistence) is
overcoming the capabilities of programming languages as traditional programming ab-
stractions hosts. Intentional programming offers a possible solution to this problem.

I would like to thank Pavol Ndvrat for his valuable suggestions regarding this article.
This work was partially supported by Slovak Science Grant Agency, grant No. G1/7611/20.

Bibliography

1. Mehmet Aksit and Bedir Tekinerdogan. Solving the modeling problems of object-oriented
languages by composing multiple aspects using composition filters. In Proc. of AOP’98
workshop, 1998. Available at http://wwwtrese.cs.utwente.nl.

2. Don Batory and Bart J. Geraci. Composition validation and subjectivity in GenVoca gener-
ators. IEEE Transactions on Software Engineering (special issue on Software Reuse), pages
67-82, February 1997. Available at http://www.cs.utexas.edu/users/schwartz.

3. James O. Coplien. Multi-paradigm design. In Proc. of the GCSE '99 (co-hosted with
the STJA 99), Erfurt, Germany, 1999. Published on CD, available at http://www.bell-
labs.com/~cope.

4. James O. Coplien. Multi-paradigm design and implementation in C++. In Proc. of the
GCSE 99 (co-hosted with the STJA 99), Erfurt, Germany, 1999. Presentation slides and
notes, published on CD, available at see http://www.bell-labs.com/~cope.

5. Krysztof Czarnecki. Generative Programming: Principles and Tecniques of Soft-
ware FEngineering Based on Automated Configuration and Fragment-Based Compo-
nent Models. PhD thesis, Ilmenau Technical University, Germany, 1998. See
http://www.prakinf.tu-ilmenau.de/~czarn.

6. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Christina Vidiera Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Aksit
and Satoshi Matsuoka, editors, Proc. of ECOOP’ 97— Object-Oriented Programming, 11th
European Conference, Jyvaskyla, Finland, June 1997. Springer-Verlag LNCS 1241. Available
at http://www.parc.xerox.com/aop.

7. Timothy Koschmann and Martha Walton Evens. Bridging the gap between object-oriented
and logic programming. [EEE Software, 60:36—42, July 1988.

8. Karl J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with Propaga-
tion Patterns. PWS Publishing Company, Boston, 1996. ISBN 0-534-94602-X, available at
http://www.ccs.neu.edu/research /demeter.

9. Pavol Navrat. A closer look at programming expertise: Critical survey of some methodolog-
ical issues. Information and Software Technology, 38(1):37-46, 1996.

10. Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60:51-92, 1993.

11. Charles Simonyi. Intentional programming—innovation in the legacy age, June 1996. Pre-
sented at IFIP WG 2.1 meeting, available at http://www.research.microsoft.com/ip.

12. Méria Smolérova and Pavol Navrat. Software reuse: Principles, patterns, prospects. Journal
of Computing and Information Technology, 5(1):33-48, 1997.



