
A New Basis for Multi-Paradigm Design

Valentino Vrani�


Mar
h 15, 2001

1 Introdu
tion

This is a brief report on the progress in the work on establishing a method for multi-paradigm

design for Aspe
tJ, an aspe
t-oriented extension to Java [7℄. The method builds on Coplien's

multi-paradigm design for C++ [3℄.

The work on establishing the method is being performed in two dimensions: while multi-

paradigm design for C++ is being transformed to �t Aspe
tJ, it is also being improved.

Albeit Coplien's idea of multi-paradigm design seems to be a good one, there are signi�
ant

in
onsisten
es in the multi-paradigm design for C++; this is dis
ussed in Se
tion 2. Se
tion 3


loses the arti
le and presents an idea how to over
ome the problems of multi-paradigm design.

Partial results of the SCV (s
ope, 
ommonality, and variability) analysis [1℄ of Aspe
tJ

is presented in Appendix A. Appendix B proposes some de�nitions of the key 
on
epts in

the MPD's underlying paradigm model (please take everything stated in the appendi
es with

reserve).

2 In
onsisten
ies in MPD for C++

The most signi�
ant in
onsisten
es in MPD for C++ are regarding its paradigm model and so-


alled transformational analysis. The next two se
tions des
ribe the two problems, respe
tively.

2.1 Paradigms

The paradigm model in multi-paradigm design (MPD) for C++ is based upon a 
on
ept of the

small-s
ale paradigm [6℄, whi
h is the 
losest to the 
on
ept of the language me
hanism (see B).

If we per
eive the paradigm as a language me
hanism, than we must ask why are some C++

language me
hanisms missing in this model. For example, 
lasses and methods (pro
edures) are

not even mentioned. On the other hand, inheritan
e is embra
ed in the model. Maybe Coplien


onsidered 
lasses and methods too trivial to mention, but in that 
ase he should have stated

it expli
itly. Anyway, 
lasses does not seem so trivial to me. In my opinion they should be

embra
ed in the paradigm model (see Appendix B).

Another problem with the paradigm model in MPD for C++ is that it does not 
apture

the dependen
ies between paradigms. Some paradigms, build upon other paradigms (
onsider

inheritan
e and 
lasses). The family table is not suÆ
ient to 
apture everything important

about paradigms (see Se
tion 2.2).

2.2 Transformational Analysis

The transformational analysis in MPD for C++ is a
tually a mapping of the appli
ation domain

stru
tures to the solution domain ones, as depi
ted in Fig. 1.

1



The appli
ation domain (SCV) analysis ends in variability tables, one per domain. The

variability tables are 
apable of 
apturing dependen
ies between the parameters of variation. A

simple graphi
al representation 
alled variability dependen
y graphs 
an be used to do that, as

shown in the right upper part of Fig. 1; the arrows mean \depends on". This notation is used

in MPD for C++ to explore dependen
ies between domains, sin
e parameters of variation 
an

be domains in their own right.

The solution domain analysis

1

is being summarized in the family table. As 
an be seen from

Fig. 1, the 4-tuple (Commonality, Variability, Binding, Instantiation) determines the language

me
hanism:

(Commonality, Variability, Binding, Instantiation) ! Me
hanism

The mapping between these two types of tables is performed as follows. First, the main


ommonality of the appli
ation domain is mapped to a 
ommonality in the family table. This

yields a set of rows in whi
h we pro
eed with resolving the individual parameters of variation.

Sin
e parameters of variation (e.g., working set management) are too spe
i�
 to be mapped to

general variabilities (e.g., algorithm) in the family table, ea
h parameter must be �rst general-

ized. The generalized parameter of variation 
an be then mapped to a variability in the family

table.

This should bring us to an appropriate language me
hanism, but it is not suÆ
ient to

unambiguously determine the language me
hanism be
ause variability table has no 
olumn to

map to the family table's instantiation 
olumn (i.e., we are trying to map 3-tuple to 4-tuple).

Parameters of Variation Domain Binding Default

. . .

P1
Generalization of P1

(range
of values)

Variability tables (from application domain SCV analysis)

Domain D1 (main commonality of D1):

VariabilityCommonality InstantiationBinding Language Mechanism

. . .

Family table (from solution domain SCV analysis)

Meaning

D1
P2

Pn

P1

. . .

Variability dependency graph

Figure 1: Transformational analysis in MPD.

3 Con
lusions and Further Work

This arti
le emphasized the in
onsisten
es in the paradigm model of MPD for C++. The

in
onsisten
es have been found both in the solution and appli
ation domain parts of MPD. It

seems that the root of the problems is 
ommon: the oversimpli�ed model based on the SCV

analysis.

1

In the 
ase of MPD for C++, the solution domain is C++, of 
ourse.

2



The problem is not in the SCV analysis itself, but in the assumption that it is suÆ
ient to

des
ribe paradigms as a 
ommonality{variability pairing (with some additional attributes) (i.e.,

a single 
ommonality and a single variability).

I suggest to use the SCV analysis further, but to allow for multiple 
ommonalities and vari-

abilities. Sin
e both 
ommonalities and variabilities are a
tually features, the feature modeling [4℄


ould be applied here.

The feature modeling should be applied to the appli
ation domain analysis as well. A
tually,

it is being applied already through the variability dependen
y graphs, but it is not used in the

transformational analysis (at least not expli
itly). The mapping between the appli
ation and

solution domain is being performed using the tables.

Obviously, this new paradigm model 
an no longer rely on the table mapping. My further

work is to provide an answer to the question how to do the mapping. Of 
ourse, before that, I

must provide a new paradigm model of MPD for Aspe
tJ by applying the feature modeling on

Aspe
tJ solution domain.

Referen
es

[1℄ James Coplien, Daniel Ho�man, and David Weiss. Commonality and variability in software

engineering. IEEE Software, 15(6), November 1998. Available at [2℄.

[2℄ James O. Coplien. Home page. http://www.bell-labs.
om/people/
ope. A

essed on

February 5, 2000.

[3℄ James O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.

[4℄ Krysztof Czarne
ki. Generative Programming: Prin
iples and Te
hniques of Software Engi-

neering Based on Automated Con�guration and Fragment-Based Component Models. PhD

thesis, Te
hni
al University of Ilmenau, Germany, 1998. See [5℄.

[5℄ Krzysztof Czarne
ki. Home page. http:/www.prakinf.tu-ilmenau.de/~
zarn. A

essed

on August 15, 2000.

[6℄ Valentino Vrani�
. Towards multi-pradigm software development. Written part of the PhD

examination., September 2000.

[7℄ Xerox PARC. Aspe
tJ home page. http://aspe
tj.org. A

essed on January 2, 2001.

A Aspe
tJ solution domain analysis

This is an attempt to apply SCV analysis to Aspe
tJ solution domain (without applying the

feature modeling). The results are in
omplete.

S: o a 
olle
tion of obje
ts of kind o

C: 
_1; the list of 
ommonalities that hold for obje
ts in S


_2;

...


_m

V: v_1; the list of variabilities among the obje
ts in S

v_2;

...

v_m

B: binding

I: instantiation

3



Java:

Methods

S: 
ode fragments

C: the 
ommon 
ode (pla
ed in the pro
edure)

V: the "un
ommon" 
ode (regulated by parameters or pla
ed before or after a spe
ifi
 method 
all)

Classes

S: data stru
tures, pro
edures

C: 
ommon data stru
ture;

pro
edure signatures;

pro
edures that operate on the same data stru
tures (methods)

V: the state of data stru
tures

Interfa
es

S: data stru
ture de
larations, pro
edure signatures

C: 
ommon data stru
ture de
larations;

signatures of pro
edures that operate on the same data stru
tures (methods)

V: the implementation

Class Inheritan
e

S: 
lasses

C: the 
ommon 
ode (pla
ed in the base 
lass)

V: the "un
ommon" 
ode (pla
ed in the sub
lasses)

Interfa
e Inheritan
e

S: interfa
es

C: the 
ommon de
larations and method signatures (pla
ed in the base interfa
e)

V: the "un
ommon" de
larations and method signatures (pla
ed in the subinterfa
es)

Overloading

S: methods of a 
lass or 
lasses in an inheritan
e hierar
hy

C: name and return type

V: algorithm and signature

Aspe
tJ:

Introdu
tions

S: 
ode fragments repeated throughout a set of 
lasses

C: 
ommon 
ode fragments (to be lexi
ally introdu
ed into 
lasses)

V: affe
ted 
lasses

B: 
ompile time

Stati
 Advi
es

S: similar a
tions performed with respe
t to some other a
tions

4



C: the 
ommon 
ode among the similar a
tions

V: the "un
ommon" 
ode

B: sour
e time

Dynami
 Advi
es

S: similar a
tions performed with respe
t to some other a
tions

C: the 
ommon 
ode among the similar a
tions

V: the "un
ommon" 
ode

B: run time

B Paradigms

De�nition 1 Language 
onstru
t (language me
hanism). A language 
onstru
t (language me
h-

anism) is the smallest semanti
ally indivisible synta
ti
 element of the language.

De�nition 2 Abstra
t small-s
ale paradigm. An abstra
t small-s
ale paradigm is a 
ommonality-

variability pairing.

De�nition 3 Small-s
ale paradigm. A (
on
rete) small-s
ale paradigm is a pair of a language

me
hanism and the 
orresponding abstra
t small-s
ale paradigm.

De�nition 4 Large-s
ale paradigm. A large-s
ale paradigm is a 
onsistent set of the small-s
ale

paradigms.

De�nition 5 Constitutive small-s
ale paradigms. A large-s
ale paradigm is 
hara
terized by a

set of the small-s
ale paradigms. These small-s
ale paradigms are 
alled 
onstitutive small-s
ale

paradigms of a given large-s
ale paradigm and the set is 
alled a 
onstitutive set.

The 
onstitutive set of a given large-s
ale paradigm 
an be enri
hed with other small-s
ale

paradigms while preserving its 
hara
ter. On the other hand, dropping out any of the 
onstitu-

tive small-s
ale paradigms leads to a prin
ipal 
hange of the large-s
ale paradigm.

Some small-s
ale paradigms are 
onsidered as very simple (trivial). Therefore they 
an be

omitted from the MPD.

5


