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1 Introduction

This is a brief report on the progress in the work on establishing a method for multi-paradigm
design for AspectJ, an aspect-oriented extension to Java [7]. The method builds on Coplien’s
multi-paradigm design for C++ [3].

The work on establishing the method is being performed in two dimensions: while multi-
paradigm design for C++ is being transformed to fit AspectJ, it is also being improved.

Albeit Coplien’s idea of multi-paradigm design seems to be a good one, there are significant
inconsistences in the multi-paradigm design for C++; this is discussed in Section 2. Section 3
closes the article and presents an idea how to overcome the problems of multi-paradigm design.

Partial results of the SCV (scope, commonality, and variability) analysis [1] of AspectJ
is presented in Appendix A. Appendix B proposes some definitions of the key concepts in
the MPD’s underlying paradigm model (please take everything stated in the appendices with
reserve).

2 Inconsistencies in MPD for C++4

The most significant inconsistences in MPD for C++ are regarding its paradigm model and so-
called transformational analysis. The next two sections describe the two problems, respectively.

2.1 Paradigms

The paradigm model in multi-paradigm design (MPD) for C++ is based upon a concept of the
small-scale paradigm [6], which is the closest to the concept of the language mechanism (see B).

If we perceive the paradigm as a language mechanism, than we must ask why are some C++
language mechanisms missing in this model. For example, classes and methods (procedures) are
not even mentioned. On the other hand, inheritance is embraced in the model. Maybe Coplien
considered classes and methods too trivial to mention, but in that case he should have stated
it explicitly. Anyway, classes does not seem so trivial to me. In my opinion they should be
embraced in the paradigm model (see Appendix B).

Another problem with the paradigm model in MPD for C++ is that it does not capture
the dependencies between paradigms. Some paradigms, build upon other paradigms (consider
inheritance and classes). The family table is not sufficient to capture everything important
about paradigms (see Section 2.2).

2.2 Transformational Analysis

The transformational analysis in MPD for C++ is actually a mapping of the application domain
structures to the solution domain ones, as depicted in Fig. 1.



The application domain (SCV) analysis ends in variability tables, one per domain. The
variability tables are capable of capturing dependencies between the parameters of variation. A
simple graphical representation called variability dependency graphs can be used to do that, as
shown in the right upper part of Fig. 1; the arrows mean “depends on”. This notation is used
in MPD for C++ to explore dependencies between domains, since parameters of variation can
be domains in their own right.

The solution domain analysis' is being summarized in the family table. As can be seen from
Fig. 1, the 4-tuple (Commonality, Variability, Binding, Instantiation) determines the language
mechanism:

(Commonality, Variability, Binding, Instantiation) — Mechanism

The mapping between these two types of tables is performed as follows. First, the main
commonality of the application domain is mapped to a commonality in the family table. This
yields a set of rows in which we proceed with resolving the individual parameters of variation.
Since parameters of variation (e.g., working set management) are too specific to be mapped to
general variabilities (e.g., algorithm) in the family table, each parameter must be first general-
ized. The generalized parameter of variation can be then mapped to a variability in the family
table.

This should bring us to an appropriate language mechanism, but it is not sufficient to
unambiguously determine the language mechanism because variability table has no column to
map to the family table’s instantiation column (i.e., we are trying to map 3-tuple to 4-tuple).
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Figure 1: Transformational analysis in MPD.

3 Conclusions and Further Work

This article emphasized the inconsistences in the paradigm model of MPD for C++4. The
inconsistences have been found both in the solution and application domain parts of MPD. It
seems that the root of the problems is common: the oversimplified model based on the SCV
analysis.

'In the case of MPD for C++, the solution domain is C++, of course.



The problem is not in the SCV analysis itself, but in the assumption that it is sufficient to
describe paradigms as a commonality—variability pairing (with some additional attributes) (i.e.,
a single commonality and a single variability).

I suggest to use the SCV analysis further, but to allow for multiple commonalities and vari-
abilities. Since both commonalities and variabilities are actually features, the feature modeling [4]
could be applied here.

The feature modeling should be applied to the application domain analysis as well. Actually,
it is being applied already through the variability dependency graphs, but it is not used in the
transformational analysis (at least not explicitly). The mapping between the application and
solution domain is being performed using the tables.

Obviously, this new paradigm model can no longer rely on the table mapping. My further
work is to provide an answer to the question how to do the mapping. Of course, before that, 1
must provide a new paradigm model of MPD for AspectJ by applying the feature modeling on
AspectJ solution domain.
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A AspectdJ solution domain analysis

This is an attempt to apply SCV analysis to AspectJ solution domain (without applying the
feature modeling). The results are incomplete.

S: o a collection of objects of kind o

C: c_1; the list of commonalities that hold for objects in S
c_2;
c_m

V: v_1; the list of variabilities among the objects in S
v_2;
v_m

B: binding

I: instantiation



Java:
Methods

S: code fragments
C: the common code (placed in the procedure)
V: the "uncommon" code (regulated by parameters or placed before or after a specific method call)

Classes

S: data structures, procedures
C: common data structure;
procedure signatures;
procedures that operate on the same data structures (methods)
V: the state of data structures

Interfaces
S: data structure declarations, procedure signatures
C: common data structure declarations;
signatures of procedures that operate on the same data structures (methods)
V: the implementation
Class Inheritance
S: classes
C: the common code (placed in the base class)
V: the "uncommon" code (placed in the subclasses)
Interface Inheritance
S: interfaces
C: the common declarations and method signatures (placed in the base interface)
V: the "uncommon" declarations and method signatures (placed in the subinterfaces)
Overloading
S: methods of a class or classes in an inheritance hierarchy

C: name and return type
V: algorithm and signature

AspectJ:
Introductions
code fragments repeated throughout a set of classes

common code fragments (to be lexically introduced into classes)
affected classes

< QQwn

compile time

Static Advices

S: similar actions performed with respect to some other actions



C: the common code among the similar actions

<

: the "uncommon" code
B: source time

Dynamic Advices
similar actions performed with respect to some other actions

the common code among the similar actions
the "uncommon" code

o< QQwun

run time

B Paradigms

Definition 1 Language construct (language mechanism). A language construct (language mech-
anism) is the smallest semantically indivisible syntactic element of the language.

Definition 2 Abstract small-scale paradigm. An abstract small-scale paradigm is a commonality-
variability pairing.

Definition 3 Small-scale paradigm. A (concrete) small-scale paradigm is a pair of a language
mechanism and the corresponding abstract small-scale paradigm.

Definition 4 Large-scale paradigm. A large-scale paradigm is a consistent set of the small-scale
paradigms.

Definition 5 Constitutive small-scale paradigms. A large-scale paradigm is characterized by a
set of the small-scale paradigms. These small-scale paradigms are called constitutive small-scale
paradigms of a given large-scale paradigm and the set is called a constitutive set.

The constitutive set of a given large-scale paradigm can be enriched with other small-scale
paradigms while preserving its character. On the other hand, dropping out any of the constitu-
tive small-scale paradigms leads to a principal change of the large-scale paradigm.

Some small-scale paradigms are considered as very simple (trivial). Therefore they can be
omitted from the MPD.



