
Patterns for Improving User Contribution
Mohammad Daud Haiderzai

Valentino Vranić
haiderzai@gmail.com

vranic@stuba.sk
Institute of Informatics, Information Systems and Software Engineering

Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava

Slovakia

ABSTRACT
User contributions is an important part in software development,
the pursuit of identifying effective means of user contributions
in software development is a crucial area of interest for software
companies and their development teams. Determining the most
opportune moments, locations, and methods for such contributions
presents a significant challenge for organizations, which necessi-
tates the exploration of generic and proven solutions. Applying
patterns, established and observed solutions may provide the an-
swers to such challenges and similar ones. This paper offers insights
into the practical implementation of seven newly discovered or-
ganizational patterns in a real-life environment. The patterns are
comprehensively described, accompanied by illustrative examples,
and subsequently applied in actual practices.

CCS CONCEPTS
• Software and its engineering→ Patterns.

KEYWORDS
organizational patterns, software development, software engineer-
ing

ACM Reference Format:
MohammadDaudHaiderzai and Valentino Vranić. 2023. Patterns for Improv-
ing User Contribution. In 28th European Conference on Pattern Languages of
Programs (EuroPLoP 2023), July 5–9, 2023, Irsee, Germany. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3628034.3628064

1 INTRODUCTION
User contribution is widely acknowledged as an essential compo-
nent of software development by software companies, researchers,
and practitioners. It is crucial to comprehend the areas in which
users can contribute and how to determine their contributions
in software development, which necessitates attention from both
software developers and researchers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP 2023, July 5–9, 2023, Irsee, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0040-8/23/07. . . $15.00
https://doi.org/10.1145/3628034.3628064

Users can contribute at various stages of software development,
ranging from conception to final implementation. However, it is
crucial to identify the user contributions that can be efficient and
effective in specific development processes. Providing solutions
to problems through proven strategies in a particular context is
referred to as patterns [1]. Patterns are an effective means of im-
proving user contributions and resolving related issues. The pattern
community has established patterns as the best solutions to such
types of problems in real-life practice [7].

Although problems can occur in different contexts, organizing
and applying the best strategies as solutions can be facilitated
through patterns. These multiple solutions can be transferred from
real-life experience and recurring solution strategies. Patterns are
documented and written based on real-life practices, experiences,
and proven strategies described by many authors and published
in conferences or books. Observing and documenting prominent,
recurring, generic, and proven approaches [1, 6, 8, 11, 12] are con-
sidered essential in documenting and writing these patterns.

The contributions of users in business requirements and soft-
ware development efficiency have been studied, and patterns have
been proposed that can help organizations identify users’ main
contributions and improve the software development process. Pro-
viding opportunities to efficiently utilize users in the development
process is vital.

Due to the scarcity of user contributions in previous research,
a closer assessment of their importance in both practical and the-
oretical contexts is required. Identifying unstructured difficulties
in software development resulting from user interaction is crit-
ical for understanding and increasing user participation. In this
paper, the best practices of improving user contribution in software
development are explained and documented in the form of patterns.

The rest of the paper is structured as follows. Section 2 explains
the importance of user contribution and their impact on software
development team. Sections 3 to 9 describe all the discovered and
documented patterns. Section 10 draws the final conclusions.

2 IMPORTANCE OF USER CONTRIBUTION
The role of user contributions in software development has been
recognized as crucial from the very inception of software product
development. Software companies have long involved users in all
phases of software engineering and considered their participation
a key success factor for product development. User contributions
in software development are commonly acknowledged by software

https://orcid.org/0000-0003-1060-2972
https://orcid.org/0000-0001-9044-4593
https://doi.org/10.1145/3628034.3628064
https://doi.org/10.1145/3628034.3628064

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Mohammad Daud Haiderzai and Valentino Vranić

companies and developers during the business requirements gather-
ing process, and are viewed as an important factor that can benefit
all parties involved.

Users play a significant role in product development, providing
contributions as project leaders, active designers, generalists, com-
municators, passive designers, and observers [9], all of which help
to achieve product quality. Knowledge sharing and the provision
of resources in the development process are often linked to user
involvement, which in turn leads to software quality [5]. Differ-
ent users may contribute at varying levels based on their abilities.
While there are different types of users in computer science, the
user we propose is an individual who is engaged in the software
development cycle and serves as a resource for information sharing,
data access, and as the final software user.

User contributions may differ in software development and can
vary in terms of their level of impact. Users may be involved in
information sharing, product design, system acceptance, testing,
and software quality assurance, among other aspects of the develop-
ment process. User involvement can enhance efficiency in software
development, and their representation is an essential part of ensur-
ing acceptable satisfaction throughout the software development
process [3].

The company wanted to identify the potential users to be the
most required part of the software development process who can
be beneficial to the software development team and use their skills
in the development phase. We were responsible for identifying the
users contributions in the entire project cycle and utilization’s of the
required business requirements. Knowing the facts, it was required
to understand the patterns and identify their forces as solutions
to the domain problems. Our role was to involve the specified and
skilled users and determine their roles, during this stage,e we felt a
user who could be an expert amongst all others and documented this
as Selective User Specifications. The software development team was
responsible for collecting data and understanding the requirements
so they documented their experience as Requirements Collections.
There were lots of data and business requirements, but were not
clear to the software development team, they felt to have clear and
readable data so needed Understandable Requirements. In business
requirements collections users were not able to provide sufficient
information to the development team, it was necessary to Build User
Capacity and understand where to involve them, in which part of
the software development, they need Process Identification. We were
also responsible for software quality control, improvement and user
satisfactions so we need User Feedback. However, there were extra
and different types of business requirements which were not the
part of the business requirements, than we prefer to implement the
pattern to Remove Unnecessary Requirements. Writing a pattern is
an iterative and creative process that takes time to document the
proven experience. There are many methods for pattern mining and
writing proposed by several authors. Pattern mining and writing
has been described in several methods as best solutions to problems
in context. Enaggine the users with agile team through patterns
are described in various reserach by authors such as organizational
patterns, Scrum patterns and other instructive guidelines [7, 15, 16].
for the user contributions and these observed and documented
patterns are structured using Coplien’s form [7]. These patterns
are described through a flow diagram highlighted in italic way for

effective user contribution in and possibilities of engaging them
with software development team. In Figure 1, the organization starts
with an initial goal and setup the user through a specific flow of
contributions as pattern sequence.

The initial goal of the project startup is to involve the user in
the initial plan and go through their specific business requirements
and specifications Selective User Specifications. The next step is to
collect requirements from the user and store them as Storage of
Information Access, then analyze the requirements which can be
effective and useful in the development process Understandable
Requirements. To determine which process of the software need the
user to contribute Process Identification. Sometime user is not skilled
and inexpert in business requirement specification and process
flow then it’s required to Building User capacity for effective. The
process can be improve if user is concerned with all process and
activities through their feedback User Activity Feedback and to
avoid the consumption of extra resource, reduce cost and time its
important to go through the end of the development process of
Remove Unnecessary Requirements. Considering these patterns from
the initial goal of project and involving the user whenever required
to contributes for any part of the software development leads a
smart goal which is the success and acceptance of the project for
both company and customer.

In this paper, we present seven newly discovered patterns that
were documented based on our practical experience as software
developers and software development team leaders. We have suc-
cessfully applied these patterns in various real projects, including
those in the public sector and market-oriented software develop-
ment.

3 SELECTIVE USER SPECIFICATIONS
In software development process, developers are limited to the
business requirements and their accessibility to understand user
needs, and other software development required activities. The
pattern is illustrated in Figure 2.

Context: User requirements specification (URS) is a written and
a planning document that specifies the software performance and
what the user needs and expect? It is proposed and written from the
end user points of view and they may be technical/ nontechnical
or complicated, but are required activities. The URS are usually
from the part of business requirements. Business requirements are
all process and documents of an organization that are required to
identify their objectives and solutions to their business. It is neces-
sary to understand the user views about the system and important
to translate the business owner’s views into a structure of archi-
tects views and determine the fundamental structure and functions
of the organizations [10]. It is the responsibility of the software
development team to identify the user specification, analysis the
requirements and make accountability of the user to provide them
sufficient resources.

Problem: User specifications have several different meaning or
interpretations whenever requirements engineers are identifying
the user needs and collecting the business requirements. software
engineers collecting the business requirements, but they are often
traced as incomplete, incorrect, irrelevant and requirements are
written by the developer without clear understanding of what the

Patterns for Improving User Contribution EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

Figure 1: Organization of user contribution patterns.

Figure 2: Selective user specifications.

user needs. These requirements are technical which is not inline
with user language that creates misunderstanding and faults. These
requirements do not capture the functionality from the user, and
company. When the user specifications are often written poor and
ambiguous, unverified and invalidated will creates risk, if the user
requirements are not fully understood and process are not clear in
the first stage of the process. When software development process
and requirements are not clear then it is very difficult to identify
the key persons to get the business requirements and involve them
in the process.

Solution: Establish a better way to identify the target users spec-
ifications and business requirements as the most important parts of

software development process. Focus more on those users who has
skills, potential, and understanding the objective of the software.
as an example the selective user specification are shown a Figure 2.
The users requirements are shown as user persona for business re-
quirements collecting by the agile teams. Time should not be wasted
on all other users for feedback or business requirements. Possible
way of identifying the selective users can be communications with
users and selecting those who are interested to participate in the
development process. User selection can be done by observing their
skills, interest, responsibilities and provide them workshop and
the essence of software benefits. Requirements engineers must be
trained well to get the right resources and understand the necessary

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Mohammad Daud Haiderzai and Valentino Vranić

information. User requirements specifications should be written
clear, understandable, complete and clear. User should be involved
from the beginning in all process. Try to clarify the ambiguity, de-
velopers should not be allowed to act and assume he understands
the user’s requirements. Organize a committee to review, verify
and validate all the requirements.

Satisfying the users by adopting their requirments we consid-
ered theSelective User Specifications pattern to software develop-
ment team for business requirements which would help them to
understand the user needs, and all the requirements of the project.

Discussion: This patterns has a close relationship with other
observed patterns,Storage of Information Access and Understandable
Requirements when requirements engineers are collecting the user
requirement. Software development team need to engage users
with developers and consider Selective User Specifications patterns
to understand the user expectations and all other functions. The
pattern Engage Customers from Coplien suggest to involve customer
in a domain view to avoid blind-sided by a single customer [7].

4 STORAGE OF INFORMATION ACCESS:
Business requirements are the most important part of software de-
velopment process, but mostly software development team are not
considering this fact as initial requirements in the business process.
The data storage and access to user data is not fully granted to soft-
ware development team or not understandable without involving
the users in requirement gathering. Developing a software requires
sufficient information, access to user data and users engagement
with software development team. It is a challenge to identify data
and the users needs to build their confidence to provide you access
to all information. Setting up aData Storage Accessibility is a good
way to overcome the unavailability of data accessibility and user
needs. Data should be accessible to the software development team
to support the development process and this can be possible to have
Data Accessibility Storage available to the agile team. The pattern
of Storage of Information Access is illustrated in Figure 3.

Context: Software companies have different projects and several
teams, it’s required to have accessibility to all data required for the
software development process. If there are multiple teams working
on different projects it’s crucial for them to have accessibility to
all the required business data that can be very easy when needed.
Problem: Working on business requirements for any project with-
out information storage and understanding the user needs it is hard
to understand the development process criteria. Mostly concerned
problems are below. Development Processes are not clear and un-
documented, there are Conflicting requirements in projects, there
is a Lack of user requirements access. User, software development
communication problems, and No success criteria set up.

Solution: Establish a Storage of Information Access so that ev-
ery software development team can access the required data and
understand the user needs. This pattern Storage of Information Ac-
cessibility will be a place for the software development team to
business requirements and to identify user specifications that can
be accessed by developers based on their needs.

Discussion: This pattern and Selective User Specifications are
very close to each other where you first identify and select the

user in software development and then try for the business require-
ments accessibility. We observed this pattern when there was no
sufficient information for software development and had a tough
deadline without understanding the requirements. We have ar-
ranged a meeting and use this pattern Storage of Information Access
where software development team first creates information storage
earlier to the requirements gathering stage.

5 BUILDING USER CAPACITY
Software development processes may be different or in different
phases. It is required to identify and arrange them through the team,
but understanding and receiving the actual business requirements
to ensure high quality of data is concerned with organization and
company standards. Illustrated in Figure 4.

Context: Building User Capacity is the process when software
development team is planning to ensure the users inputs, insights
and specifications meet the system requirements. It defines the
procedures how useful the information can help the team and
understand the role and responsibility of users by providing the
business requirements of how a user can do and how he can provide
these requirements and specifications to the team, allowing them
for accountability and consistency through out the process.

Problem: Usually the team is collecting the business require-
ments from users through repeated manner, often understanding
the user skills, requirement’s specifications and needs. Software de-
velopers are trying to automate process, but they forget to analyze
the user skills and capacity based on the accurate business require-
ments delivery. Ignoring the users capacity and understanding the
actual requirements creates risk, if this risk is not resolve in the
early stage of software development than the system won’t meets
the quality, system requirements and acceptance of software.

Solution: Therefore train users and build their capacity in pro-
cess flow, information sharing and requirements collection before
engaging them in business requirements. Analyze users skills and
observe them than involve them in the process so the requirements
can be efficient in software development for software development
team.

Discussion: Some developers prefer to involve users only in
some part of the process and get their feedback on business require-
ments. Even though there are many other people who are willing
to be engaged with the software development team in all processes
for acceptance and missing features. There are different ways to
involve users in different parts of the development process and
get the user activity feedback on specific phases of the system and
some engage them on different parts of the system development.
This pattern is also connected with Storage of Information Access
when the information is being stored from different stockholders in
the project and then illustrating the process by building a prototype
Building Prototype[7] of each work and share with users for quality
work. An example of this pattern is when working in the software
development team and engaging users in the business requirements
and users are not skilled to explain the flow and describe their needs,
it is better to Build User Capacity before getting his feedback and
collecting the requirements.

Patterns for Improving User Contribution EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

Figure 3: Information repository and storage.

Figure 4: Building user capacity.

6 UNDERSTANDABLE REQUIREMENTS
Requirements understanding is a complex phenomena in software
development which often challenge to developers and all stockhold-
ers. Data collection and requirements analysis are one of the most
important part of software development and getting the under-
standable requirements in accordance with user need and company
regulation for effective operations is difficult. The The concept Illus-
trated in Figure 4 provides a visual representation of user capacity
in the context of the project requirement.

Context:
Requirements can be collected any time, the valid and accurate

information can be difficult to gain in first insight. There might be
hug information to analyze and validate the accurate information
from users that can not be easy understandable. Identifying the
requirements for a certain process to fulfill the requirements and
easy understandable for software development team to be access
at ease. These information can be accessible to everyone in team
whenever needed.

Problem:
There are different activities and processes undertaking for soft-

ware development. These processes include conflicting require-
ments, lack of user needs understanding and analyzing the actual
requirements specifications which creates a risk to development
team during implementation. Business requirements collections

is an important part of software development, but it become a
challenge when not fully understood.

These are the common problems when the development team en-
counter during misleading requirements: There are undocumented
and undefined processes, requirements changes every time, user can
not provide actual and accurate information, flow is not well known
to users and developers, different and conflicting requirement spec-
ifications, unskilled users engaged in process, requirements col-
lected, but not analyzed comprehensively and comparatively that
are misunderstanding between users and developers.

Solution: Therefore setup a development team to collect the
requirements where every member has to carefully analyze the re-
quirements, identify the conflicting requirements by giving priority
to activities that are mostly in high demand of the users needs. An
example for this problem can be to document the process and sim-
plify them when accessing the information, set timeline for every
requirements to avoid iterative changes and engages the skilled
users to provide you the accurate data and flow of the process.
Analyze requirements and Separate them as valid and invalid docu-
ments. Establish communication between developers and users to
Build Prototype [7] of each activity. Involve users in every process,
meeting, and test every part of the process by them. Discussion:
The patterns Storage of Information Access is used together that
can be a first sequence to access to information and than Build

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Mohammad Daud Haiderzai and Valentino Vranić

Figure 5: Pattern of Understandable Requirements.

User Capacity to design the system based on the actual and right
information by having Understandable Requirements. We have dis-
cussed this pattern during a project with software development
team while working on digitization of public sector in Afghanistan
and Nepal. An example to this pattern from our experience dur-
ing the project implementation Understandable Requirements result
when the developer doesn’t know the need to test requirements or
the level of specificity required information for effective software
development.We analyze the requirements as valid and invalid busi-
ness requirement’s and separate the understandable information
from the unclear, misunderstanding and complex information and
share with software development team to move with the required
process identifications. Establish a bridge between the users and
the developers for requirements information so that a flow can be
smoothly and not be lost in a hole, the user requirements document
has to be in a form that is understandable by both the users and the
developers. It is the first step for efficient software development
[2].

7 PROCESS IDENTIFICATION
In software development users are often unskilled, and unable
to provide sufficient information’s to the development team and
their involvement need to be scheduled and planned as required in
every process. Users involvement in software development process
need to be specified so that user activities can be better utilized.
Illustrated in Figure 6.

Context: A user can be involved in different phases of software
development based on the requirements. This involvement starts
from the concept to the final implementations, users and software
requirements and their activities to perform in the whole software
development process. The software development process phase and
involving the user participation on each phase of the process with
software development team must be specified. The right phase for
user to be involved at each activity in the process is often mislead
by the developers. Problem: Users involvement and identifying
their contributions in the whole software development process is
vague and tedious process that happened through several phases
and has lack of sufficient information. This happened often lack of
understanding by developers for the right place and specific process
where the user contributions can help the software development
team. Users are often involved in business requirements, but there
are other activities to utilize the user participation through several

other process. Most common problems in process identifications
include the following.

• Informal process documentations: the software development
project’s improper and poorly defined procedures, which
can cause confusion and inefficiencies.

• Unclear phase of the software development process:Mismanagement
and delays arise from a lack of clarity on the different stages
and phases of the software development process.

• Users are involved once in project startup: User participa-
tion is restricted to the project’s early stages and might not
continue throughout the development lifetime, which could
result in miscommunications and low expectations.

• Process is not identified to engage the user with developers:
This can happen when a deficiency of well-established tech-
niques to promote efficient user-developer communication
and cooperation.

• User specifications not utilized: This mean that failing to
properly incorporate into the project user requirements and
specifications

• Unskilled developers participation: This could be the lack
of the required knowledge and experience of agile team
member, which could affect the project’s success and quality.

• complex bureaucracy process: Identify any complex and
onerous bureaucratic procedures that may impede the effec-
tiveness of a project or the ability to make decisions.

Solution: Start with the initial process startup, discuss software
process improvement with quality software developers in team
and individual focus groups through several iterations. Analyze
the process phase and assign skilled member from the software
development team to efficiently utilize the resources and work
with users in each activity. Visualize the process flow diagram and
draw the business process mapping(BPM) [14] diagram for devel-
opers and users to understand the whole process startup and end
through steps. Improve the communication with software develop-
ment teammembers, users and make it easier to understand process
documentation. Identify the process stage and areas for process
improvement and Measure the effectiveness of a specific process
for developers to go through next process as solutions. Establish
roles and responsibilities for software development team members
and improve each member performance and productivity through
training and observations.

Patterns for Improving User Contribution EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

Figure 6: Process identification pattern.

Use Process mapping tools 1 to visualize or model processes and
workflows to understand the current and existing business flow of
the system. The Process mapping tools can support the software de-
velopment team and users to identify the workflow and information
visibility. And can help both users and developers to understand
the relationships between stockholders including people, processes,
and systems flow. When process phase is identified than engage the
user in each process with software development team to effectively
utilize the users preferences. Software process improvement is an
important factor for a systematic and continuous improvement
of producing organization’s ability to produce and deliver quality
software within time and budget constraints[4].

7.0.1 Discussion: This pattern and Understandable Requirements
are tightly connected where first the requirements are analyzed
and validating for accuracy than process is identifying from the
concept through end of implementations. This pattern is always
supportive in software companies and it’s commonly considered
to be as most important part of the software development. More
examples of this pattern would be software developers sitting the
initial plan for software implementations startup and business re-
quirements collections. Roles and responsibilities were assigned to
each developer based on their skills and interest in communicating
with users and involving them for resource sharing in each process
identified. The software development team was collaborating with
all team members using the Process Identification effectively, these
members were punctual, collaborative, and accountable for efficient
working.

8 USER ACTIVITY FEEDBACK
Software requirements from the user perspective are their input,
likes, dislikes, insights, services, and all their request and process in-
volvement activities. It is critical to understand their specifications
and the relevant business requirement collection. It is important for
the software development team to analyze their feedback to create
prioritized tasks that can fit into their software development plan.
During the project implementations, we discuss this pattern with
1GitMind, Edraw, LucidChart, Microsoft Viseo, Visual Paradigm, and Google

other development team members to setup goals for process identi-
fications at different stages and engage the user with developers so
the process can be documented formally and effectively. Illustrated
in Figure 7.

Context: Mostly software developers engage users for business
requirements and set the plan to receive their feedback, but to
make sure their feedback is useful and based on their insights and
expectations, analyze all issues from their activities and provide
iterative feedback in the right directions.

Problem: Receiving user activity feedback is important for the
software development team in work environments. The interac-
tions between users and developers can improve productivity, and
software quality and keep the software development team with
users updated about their product activities. Understanding the
requirements and ideas is difficult for all users because the software
development team can not get the actual service feedback from all
user’s activities. There may be users with positive and negative
feedback and incorporating them takes more time and repeat the
process more iterative. Users’ ideas are not constant, they can be
change any time, it is important to get the main idea and get their
main objectives that affects productivity positively.

Solution: Prioritize user activities and classify the user types to
get their meaningful insights. Analyse the users expectations for
missing features and identify to collect user feedback for process
improvement and provide a constructive output. Collect all those
users information that are understandable and feasible for business
requirements and software development. Conduct interviews and
survey with users, analyze the user requirements and make an
iterative approach to understand what are users expecting and
what developers gain understanding of them. Another solutions for
this problem is to design space for users and developers to interact
and share their insights. Build a testing case, arrange software
development teamwith users to test every process by user andmove
forward for next step. For example arrange meeting between users
and software developers to change dialogues during their business
requirements collection and whatever activities are undertaking in
the development process. These interactions between them can be
happened based on the user skills and knowledge.

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Mohammad Daud Haiderzai and Valentino Vranić

Figure 7: User feedback.

Discussion: Getting the user feedback in every process is key
for the process improvement in software development and under-
standing the needs of users. Feedback from users activities allows
developers to provide suggestions and improvement of their pro-
cess identifications and helps in software quality assurances. User
feedback in software developments plays a crucial role for mod-
ern software organizations and increase the product quality [13], it
helps developers to understand user needs, filter and aggregate user
feedback to get the actual requirements and understand the usage
and context of data. The efficiency can be determined by how the de-
velopers quickly understand the user’s activities and their feedback.
This can be achieved through user involvement for example engag-
ing developers with users in each phase and discussing workflow
and user needs in an iterative manner. The Process Identification
pattern is followed by a supporting pattern named User Activity
Feedback, where the user is put in an identified process rather than
getting their insights from each activity. Another example from
a practical work is when a software development team engaged
the user in software development for business requirements where
users and developers exchange views and talk about their needs
and system features.

9 REMOVE UNNECESSARY REQUIREMENTS
During the project implementations users and developers are in-
teracting for business requirements and the developers received
huge information’s and expectations from users. All expectations
and extra requirements incorporating into project will increase
the project delivery time and complexity.Illustrated in Figure 8.
Context: The software development team is working to collect re-
quirements, receive user insights, input and feedback to make their
work easier, but what user really need. The project goal specific
and the unnecessary requirements needs to be removed to deliver
project on time and reduce the project complexity. Problem: There
are huge business requirements collecting for software develop-
ment and users has a huge list of things to be incorporated that
the system should perform. This is often against the project scope
and waste of time because it can increase the delivery time, and
cost and slowing the performance of adding more functionality.
Incorporating unnecessary requirements received from users often
blooms and slows down the system, more consideration needs to
be undertaken for the actual specifications to avoid the lowering of
system performance and complexity of understanding the system
usage. Solution: Collect the necessary business requirements and
identify the users needs, and distinguish between what the users

expected and what is necessary needed. Collect the business re-
quirements and consider the project goal and the mandatory data.
Try to focus on the project goal to avoid the recreating of existing
work, and make things clear and understandable.

• What would you do with these requirements and informa-
tion: It describe to understand the purpose and actions that
need to be considered with the collected software require-
ments and information.

• What members/software development teams use this col-
lected information and for what purpose they want to use it:
Finding the precise groups or people who will make use of
the information acquired and the intended uses for which
they will put it to use are the goals of this.

• Who are taking decision for information sharing, usage and
analysis: The purpose of this item is to make clear who has
the power to make decisions about the sharing, using, and
analyzing of project information.

• what is the scope of the project: It outlines what is included
and what is outside of the project’s scope and discusses the
project’s boundaries.

• what type of requirements need to be Incorporated in the
project taken from users: Here, you’re asking about the par-
ticular specifications that users have given that need to be
incorporated into the project.

If you want to make things easier and keep the project simple avoid
users hug listed functionalities out of project scope, than you can
implement the software/project quicker and on time. The best so-
lution for this type of problem would be to remove many trivial
business requirements, and user expectations from the project be-
cause it will take more time and increase cost. Avoid extra list of
information, and removing unnecessary requirements can helps
to deliver on time and complete project on budget. Discussion:
Business requirements are crucial for software development. In
some cases incorporating unnecessary features and functionalities
increase the delivery time and budget. This unnecessary require-
ments are often a hug list of users needs, extra functionalities and
out of project scope information. Long lists of requirements are
common in projects; these might contain a variety of items, such
as all of the user’s demands, extra features not initially envisaged,
and data unrelated to the project’s objectives. An effective method
for addressing this problem is to implement Remove Unnecessary
Requirements The ’Remove Unnecessary Requirements’ pattern
seeks to get rid of these extraneous components. with Process Iden-
tification and User Activity Feedback patterns are more connected

Patterns for Improving User Contribution EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

Figure 8: Remove Unnecessary Information.

and the goal is to implement the project on time and on the fixed
budget. This problem is observed mostly with software develop-
ers/software development teams in several software companies and
it is common with every user whenever engaged with software
development team. The users always expect several features and
functionalities to be in the system, but it is the responsibility of the
software development team to pickup the actual, what is necessary
needed in the system. The real work experience example would be
users involved during business requirements collection and they
propose a huge list of expectations from the system functionalities.

10 CONCLUSIONS
In this study, we have presented seven newly documented patterns
for enhancing user contributions in software development, based
on our own experience and observation. By documenting these
patterns, we aim to help organizations recognize the significance
of user engagement in defining business requirements and enhanc-
ing the efficiency of software development teams. The identified
patterns have been presented in a sequential manner and analyzed
in detail in the discussion section, highlighting their interrelation-
ships and efficacy as effective solutions to commonly encountered
problems. The integration of these patterns can potentially con-
tribute to the success of software development projects and further
improve the overall user experience. We aim to identify additional
patterns in user contributions that can provide insights into user
engagement, specific user behaviors, and domain-related patterns.
These patterns will be valuable for organizations seeking to better
understand user involvement in the software development process.
We also intend to create a pattern language to effectively visualize
and articulate these patterns.

ACKNOWLEDGMENTS
We would like to thank Rossana M. C. Andrade for being our shep-
herd and for her constructive remarks. Our sincere thanks also go
to our writers’ workshop group members: Simon Schulte, Andreas
Fießer, Eduardo Guerra, and Diego Moreira Da Rosa.

The work reported here received funding from the Operational
Program Integrated Infrastructure for the project: Support of Re-
search Activities of Excellence Laboratories STU in Bratislava,
project No. 313021BXZ1, co-funded by the European Regional De-
velopment Fund (ERDF) and from the Erasmus+ ICM 2020 program
under the grant agreement No. 2020-1-SK01-KA107-078196.

REFERENCES
[1] Christopher Alexander. 1977. A pattern language: towns, buildings, construction.

Oxford university press.
[2] C.E. Bancroft. 1989. Understandable requirements: the first step for efficient

software development. In Proceedings. IEEE Energy and Information Technologies
in the Southeast’. 68–72 vol.1. https://doi.org/10.1109/SECON.1989.132323

[3] Muneera Bano, Didar Zowghi, and Francesca da Rimini. 2017. User satisfaction
and system success: an empirical exploration of user involvement in software
development. Empirical Software Engineering 22, 5 (2017), 2339–2372.

[4] Sarah Beecham, Tracy Hall, and Austen Rainer. 2003. Software process improve-
ment problems in twelve software companies: An empirical analysis. Empirical
software engineering 8, 1 (2003), 7–42.

[5] Barbara Begier. 2010. Users’ involvement may help respect social and ethical
values and improve software quality. Information Systems Frontiers 12, 4 (2010),
389–397.

[6] Frank Buschmann, Kevlin Henney, and Douglas C Schmidt. 2007. Pattern-oriented
software architecture, on patterns and pattern languages. John wiley & sons.

[7] James O Coplien and Neil B Harrison. 2004. Organizational patterns of agile
software development. Prentice-Hall, Inc.

[8] Erich Gamma, Richard Helm, Ralph Johnson, Ralph E Johnson, John Vlissides,
et al. 1995. Design patterns: elements of reusable object-oriented software. Pearson
Deutschland GmbH.

[9] Wei Guo, Qing Zheng, Weijin An, and Wei Peng. 2017. User roles and contribu-
tions during the new product development process in collaborative innovation
communities. Applied ergonomics 63 (2017), 106–114.

[10] David C Hay. 2003. Requirements analysis: from business views to architecture.
Prentice Hall Professional.

[11] Patrik Honíšek and Valentino Vranić. 2020. Mining drama patterns in dramatic
situations. In 27th Conference on Pattern Languages of Programs, PLoP.

[12] Doble J Meszaros and Jim Doble. 1997. G. A pattern language for pattern writing.
In Proceedings of International Conference on Pattern languages of program design
(1997), Vol. 131. 164.

[13] Dennis Pagano and Walid Maalej. 2013. User feedback in the appstore: An
empirical study. In 2013 21st IEEE international requirements engineering conference
(RE). IEEE, 125–134.

[14] Hajo A Reijers. 2006. Implementing BPM systems: the role of process orientation.
Business Process Management Journal 12, 4 (2006), 389–409.

[15] Kenneth S Rubin. 2012. Essential Scrum: A practical guide to the most popular
Agile process. Addison-Wesley.

[16] TimWellhausen and Andreas Fießer. 2011. How to write a pattern? A rough guide
for first-time pattern authors. In Proceedings of the 16th European Conference on
Pattern Languages of Programs. 1–9.

https://doi.org/10.1109/SECON.1989.132323

	Abstract
	1 Introduction
	2 Importance of User Contribution
	3 Selective User Specifications
	4 Storage of Information Access:
	5 Building User Capacity
	6 Understandable Requirements
	7 Process Identification
	8 User Activity Feedback
	9 Remove Unnecessary Requirements
	10 Conclusions
	Acknowledgments
	References

