Reflecting Pattern Relationships in a Pattern Format

Waheedullah Sulaiman Khail

0000-0003-1494-2499 Institute of Informatics, Information
Systems and Software Engineering, Faculty of Informatics

and Information Technologies, Slovak University of
Technology in Bratislava

ABSTRACT

Patterns can be applied in isolation. However, the power of patterns
lies in using them in sequences. Identifying pattern relationships
with other patterns is difficult. The existing pattern formats reflect
the relationships with other patterns in a very informal way. We
are proposing changes to the pattern format so that it reflects the
relationships with other patterns in a more sophisticated way. These
relationships can be used in pattern composition. We demonstrate
the new pattern format on organizational patterns of agile software
development.

CCS CONCEPTS

« Software and its engineering — Patterns.

KEYWORDS
Patterns, Pattern Relationship, Organizational Patterns

ACM Reference Format:

Waheedullah Sulaiman Khail and Valentino Vrani¢. 2019. Reflecting Pattern
Relationships in a Pattern Format. In 24th European Conference on Pattern
Languages of Programs (EuroPLoP °19), July 3-7, 2019, Irsee, Germany. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3361149.3361180

Christopher Alexander defines a pattern as [3]:

Each pattern describes a problem which occurs
over and over again in our environment, and
then describes the core of the solution to that
problem, in such a way that you can use this so-
lution a million times over, without ever doing
it the same way twice.

In the last twenty years, patterns have become an integral part
of software development [10, 17]. Patterns have been published
in different domains of software development, e.g., as design pat-
terns [15], architecture patterns [4, 13], analysis patterns [8] and
organizational patterns of agile software development [6]. The ex-
amples used in this paper are focused on organizational patterns of
agile software development as defined by Coplien and Harrison [6].

Organizational patterns can be applied to create new organi-
zations from scratch or they can be applied to already existing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6206-1/19/07...$15.00
https://doi.org/10.1145/3361149.3361180

Valentino Vrani¢

0000-0001-9044-4593 Institute of Informatics, Information
Systems and Software Engineering, Faculty of Informatics

and Information Technologies, Slovak University of
Technology in Bratislava

organizations [6]. Organizational patterns play a crucial role in
agile software development. They are not limited only to software
development.

Even though patterns are known from late 70s [3], there are still
difficulties in selecting the right pattern for the problem in hand [9].
To fully utilize and employ an appropriate organizational pattern,
one must thoroughly understand not only the pattern itself, but
also the pattern language it belongs to [2?]. Furthermore, pattern
languages in general do not always reveal every plausible connec-
tion with other patterns. Understanding organizational patterns
and their connections is a difficult task by itself. Application of
appropriate patterns might therefore be challenging.

Patterns are organized in pattern languages. Pattern languages
provide means to connect patterns together, which assist in solving
bigger problems that occur together. However, pattern languages
do not reveal all the information on how the patterns they consist
of are connected to each other.

Even though it is not uncommon to employ a single pattern,
the power of patterns lies in applying them in combination with
each other. The nature of patterns is such that multiple patterns
will be applied together. A pattern application generates a resulting
context which matches the context of some other patterns. This
way more patterns are composed together and progress is made
towards a whole or bigger solution. But patterns can be composed
at varying levels.

The order in which to apply patterns is critical to a useful pattern
composition. Patterns connected with each other form a network,
where patterns are typically applied in combination with each
other [2—-4, 17]. These connection means are used to select the
right patterns for the problem in hand and navigate to the next
pattern to create a sequence of patterns. Sequences represents the
orders in which the patterns should be applied in order to solve a
specific problem in hand [5, 12]. Sequences are gradually emerging
from successive application of patterns in an appropriate order.
Pattern sequences demonstrate the proper use of a pattern language.
Various sequences of a pattern language show different solution to
many problems that these patterns can resolve.

The relations between patterns in a pattern language are defined
on the semantic level. In order to create useful sequences of patterns,
we need to identify and understand these relationships. There are no
specific sequences or rules identified that would help with deciding
which pattern to apply first and which one next [?]. Doubts in
choosing specific pattern sequences or incorrect decisions might
slow down productivity rate of the organization and slow down
the development process.

Pattern authors put a lot of effort in writing their patterns. How-
ever, if readers do not understand patterns or the links between

https://doi.org/10.1145/3361149.3361180
https://doi.org/10.1145/3361149.3361180

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

them, then it will be difficult to apply them in sequences. Numer-
ous patterns have been documented. However, they are not well
connected [11].

It is important to note that there are direct and indirect relation-
ships between patterns in a pattern language.

However, the existing pattern formats do not clearly reflect this.
Consequently, the relationships between patterns are very difficult
to recognize. This difficulty is creating uncertainty during pattern
application.

In order to recognize the relationship between patterns, we pro-
pose changes the pattern structure that will reflect the relationship
links. We propose adding subsections called "keywords” to the prob-
lem and solution sections of a pattern. The keywords subsection in
the problem section of a pattern includes relationship links (key-
words) to all the patterns that can be applied before this pattern.
While the keywords subsection in the solution section of a pat-
tern includes links to all the patterns that can be applied after this
pattern. These relationship links can be used for creating proper
pattern sequences.

The rest of the paper is structured as follows. In Section 1, we
look into the structure of a pattern in different pattern formats. In
Section 2, we identify relationship links in a pattern language. In
Section 3, we propose our solution. In Section 4 we draw conclusion
and outline our further work.

1 PATTERN FORMS AND PATTERN
STRUCTURE

Many pattern authors tend to write patterns in their own format, but
there are some common pattern formats (often denoted as pattern
forms). Although the pattern formats differ, the core structure is
the same. Most of the patterns formats embrace these essential
elements:

e Pattern name. The name of the pattern is a single word or
short phrase to refer to the pattern.

o Context. The context represents the current situation under
which the problem and its solution seem to happen. It is
a precondition for the pattern’s applicability. It represents
the initial configuration of the system before the pattern is
applied to it.

e Problem statement. The problem statement explains what
is the problem and why the problem needs a sophisticated
solution. The problem statement characterizes the essence of
the pattern. The problem statement also includes description
of the conflicting forces or may be stated solely through
conflicting forces, which is the way Alexander did it, and
which was adopted by Coplien and Harrison [6].

o Solution. The solution part describes the design which will
put the conflicting forces identified in the problem statement
into a balance.

e Discussion/Consequences. The discussion/consequences
section deals with the trade-offs of applying the pattern.

Alexander’s original format (or Alexandrian form) [2, 3] includes
also a picture of the pattern. The GoF format [15] splits the problem
and solution sections into more detailed subsections. Additionally,
the GoF format includes an explicit section for known uses of a
pattern, example code, and related patterns. Coplien’s format (or

Waheedullah Sulaiman Khail and Valentino Vrani¢

Coplien form') includes the related patterns section. In the Portland
format [16], the problem statement is described in a couple of para-
graphs, followed by the word *Therefore,” which is followed by a
couple of paragraphs where the solution is discussed. Patterns writ-
ten in the Portland format are usually short. The POSA format![4]
is quite similar to the GoF form with different headings. Patterns
written in the POSA format tend to be large, spanning over several
pages. They include a summary section at the end.

Table 1 compares the pattern formats. The current structure of a
pattern is very well narrated. However, the relationship with other
patterns are not very well reflected. As mentioned above some
pattern formats include a specific related pattern sections. In the
related patterns section, those patterns are specifically mentioned,
which can be used together in sequences with this pattern. This
helps in identifying the relationship between patterns. However,
the pattern relationships to other patterns should not be limited to
those patterns in related patterns section.

2 IDENTIFYING RELATIONSHIP LINKS IN
PATTERNS

In order to apply patterns in sequences, we need to identify relation-
ship between patterns. Existing pattern formats reflects the direct
relationship between patterns. Direct relationships are those refer-
ences to other patterns introduced namely in the pattern description.
In particular, the Solution and Related Patterns sections are intended
to discuss those patterns that can be used in sequences with the
pattern being described. Although these direct references are help-
ful in identifying pattern relationships with other patterns, they
are limited to the patterns known to the pattern author. Another
limitation is the relation with those potentially related patterns,
which will be observed later.

There are other, indirect relationships between patterns. These
indirect relationships can be found in the pattern format. Indirect
relationships are identified by describing areas of interest of pat-
terns in a pattern language. An indirect relationship can help in
identifying related patterns. However, these indirect relationships
are hidden within the pattern description. It is hard to identify them
in a pattern. In the following example pattern Size The Schedule [6]
we first identify indirect relationships, and later we will categorise
these indirect relationships into two types.

We look into the problem section:

Both overly ambitious schedules and overly
generous schedules have their pains, either for
the developers or the customers.

If you make the schedule too generous, devel-
opers become complacent, and you miss market
windows. But if the schedule is too ambitious,
developers become burned out, and you miss
market windows. And if the schedule is too
ambitious, product quality suffers, and compro-
mised architectural principles establish a poor
foundation for future maintenance.

. it’s clear that schedule and functionality
trade off against each other.

!http://wiki.c2.com/?CoplienForm

http://wiki.c2.com/?CoplienForm

Reflecting Pattern Relationships in a Pattern Format

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

Pattern Pattern Diagram | Context | Problem Statement | Solution | Discussion | Consequence | Related Known
Form Name Problem | Forces Patterns Usage
Alexandrian | + N + Y v \f X X

GOF y X I y v v y v y
Coplien Y \ + \ \ N \ X \ X
Portland Y X X + + V X X \ Y
POSA y X V y y V V y V V

Table 1: Pattern formats.

The customer believes you can cut function-
ality, but a promise of having the yet unattained
functionality at some future date leaves the
customer much less comfortable. And projects
without schedule motivation tend to go on for-
ever, or spend too much time polishing details
that are either irrelevant or don’t serve cus-
tomer needs.

There are direct references to other patterns from different pat-
tern languages in this excerpt. At the moment, we ignore them in
order to focus on identifying indirect relationships. For this, we
identify those keywords which can potentially be used as relation-
ship links to other patterns. These keywords (relationship links)
can be called indirect relationship. Size The Schedule is an organi-
zational pattern of agile software development, hence we search
for keywords from agile glossaries [1, 14].

In patterns from a different domain, the selection of keywords
can be different Based on the keyword from agile glossaries we
identify: schedule, market window, product quality, architectural
principles, maintenance, functionality, trade of, and project as indi-
rect relationship keywords.

The same can be done with the solution part of the pattern.
There are direct references to other patterns. The solution part
also indicates terms and keywords, which can be used as indirect
relationship links between this pattern and other patterns. Here’s
the corresponding excerpt [6]:

Reward developers for negotiating a schedule
they prove to meet, with financial bonuses;
see Compensate Success, or with extra time off.
Keep two sets of schedules: one for the market,
and one for the developers.

The external schedule is negotiated with the
customer; the internal schedule, with devel-
opment staff. The internal schedule should be
shorter than the external schedule by two or
three weeks for a moderate project. If the two
schedules can’t be reconciled, customer needs
or the organization’s resources—or the sched-
ule itself-must be re-negotiated Recommitment
Meeting.

Help delineate the schedule with Named Sta-
ble Bases. Grow as needed with Phasing It In.
Define initial targets with Work Queue. Make
sure Someone Always Makes Progress

You don’t need a full schedule—perhaps no
schedule at all-to get started. See Get On With
It and Build Prototypes.

The keywords that can be observed in this excerpt are: reward
developer, negotiate schedule, extra time off, external schedule,
internal schedule, schedule reconciliation, customer needs, initial
target, and grow as needed.

Direct references to other patterns are not complete. This means
not all linked or related patterns are referred to directly. In other
words, the directly referred patterns are not the only related pat-
terns that can be used in sequences with a pattern. Otherwise this
will limit usage of the pattern in sequences with other patterns.
These keywords extracted from the problem statement and solution
part can be termed as indirect relationship links between patterns.
They help in creating sequences in a pattern language and across
pattern languages.

By analyzing Coplien and Harrison’s organizational patterns [6],
we categorize the identified keywords. If we look into the forces
in the problem statement they discusses the burning issues, and
who caused these issues. We look again into the Size The Schedule
pattern:

If you make the schedule too generous, develop-
ers become complacent, and you miss market
windows. But if the schedule is too ambitious,
developers become burned out, and you miss
market windows.

There are two conflicting forces: too generous schedule versus
too ambitious schedule. The forces indicate that there is a depen-
dency between this pattern and other related patterns[4]. We will
come back to this dependency shortly.

According to the context of the Size The Schedule pattern, it is
most often used at the start of a project. However, the dependen-
cies in the problem statement indicates that the Size The Schedule
pattern can be applied at any stage of the project. There are three
closely related issues being debated in the forces section of the
pattern Size The Schedule. First a “missed market window” or per-
haps a delay in the project. Second the developer is involved in the
forces by either “developers burned out” or “developers become
complacent” Third the subject in this case the (schedule) is either
“too ambitious” or “too generous”.

Now we look into dependencies.

The problem section explains what is the problem and why the
problem needs a sophisticated solution. Hence we look into the
reasons that why this problem has happened, by analyzing the
problem section from Size The Schedule pattern.

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

The first two issues debated in the forces section, “missed mar-
ket window”, and “developers become complacent” vs developers
burned out” indicates that these problems can be caused by either
changes in the developers schedule, or changes in developers priori-
ties or tasks. This means some other patterns have potentially been
applied which was related to developers schedule, or developers
tasks. At the same time the two variants of a schedule “too ambi-
tious“ vs “too generous®, indicates that any other pattern related to
project schedule can caused this problem.

The above mentioned dependency and other such dependencies
are revealing that the Size The Schedule pattern might not always be
the first pattern in the sequence. There can be many other patterns
before this one. This implies that the indirect relationships men-
tioned in the problem statement are links to those related patterns
that can be applied before this pattern in a pattern sequence.

Now we look into the solution section of the Size The Schedule
pattern:

Reward developers for negotiating a schedule
they prove to meet, with financial bonuses; see
Compensate Success, or with extra time off.

The solution section always speaks about things to be performed.
This indicates that indirect relationships mentioned in the solution
section, identifies those related patterns which can be used after this
pattern in a pattern sequence. For example rewarding successful
developers with financial bonus or extra time off. The terms reward
developers, financial bonus, extra time off are all pointing to other
related patterns. The solution section often mention directly related
patterns. However in order not to limit the usage of this pattern,
these indirect relationships can be used as relationship links with
other patterns.

3 REFLECTING RELATIONSHIP LINKS IN
PATTERNS

Identifying these relational links is difficult because one have to
understand the pattern completely. Only by then we will understand
why a specific terms was used. However, the pattern authors know
exactly why a specific term is used. At the same time, the author
can identify which terms are linking a pattern to other patterns. We
propose that the authors add a subsection entitled Keywords both
to the problem statement and solution section. In these subsections,
all those relationship links can be explicitly mentioned.

When applying a pattern, developers or pattern users will easily
find other related patterns through these relationship links. These
relationship links help pattern users to create pattern sequences
across pattern languages in the relevant domain.

For example, the keywords subsection in the problem statement
of the Size The Schedule pattern would look like this:

Keywords: developer, customer, schedule, market win-
dow, product quality, architectural principles, mainte-
nance, functionality, trade off.

The keywords subsection in the solution section would be:

Keywords: reward developer, negotiate schedule, ex-
tra time off, schedule reconciliation, customer needs,
initial target, grow as needed, make progress.

Waheedullah Sulaiman Khail and Valentino Vrani¢

These are the possible relationship links between this pattern
and other patterns. We extract relationship links for three other
organizational patterns from Coplien and Harrison’s and Cunning-
ham’s catalogs [6, 7].

The keywords subsection in the problem statement of the Com-
pensate Success [6] would look like this:

Keywords: schedule, organization, ego-less team, make
or break projects, reward team, investment in specu-
lative work

The keywords subsection in the solution section would be:

Keywords: comparable rewards, exceptional awards,
celebration, customer satisfaction, systemic success,
food culture, discourage peers, individual contribu-
tions, successful projects.
The keywords subsection in problem statement of Recommitment
Meeting [6] would look like this:
Keywords: schedule, work queue, scheduling prob-
lems, high productivity.
The keywords subsection in the solution section would be:
Keywords: interested management, development team,
plan, commitment to schedule, allocating business re-
sources.
The keywords subsection in the problem statement of the Com-
parable Work pattern [7] would look like this
Keywords: commit to delivery, schedule, work por-
tion, deadline.

The keywords subsection in the solution section would be:

Keywords: work queue, later release, re-commitment,
head-roam.

The diagram in Figure 1 maps the keywords that we have identi-
fied as relationship links. Based on the identified keywords, we can
create sequences of related pattern. There is no limitation on which
pattern can be applied first. Once we apply a pattern, the keywords
in the solution section should be mapped to the keywords in the
problem section of the related patterns. The keyword subsection in
the solution section will definitely have more than one option. This
means more than one patterns can be applied after this pattern. We
can select the one based on the problem in hand.

Problem Solution roblem Solution
Keywords Keywords Keywords Keywords
Developer D;iv‘ggis Reward Team Celebration
Schedule Size The Senedue Compensate oo oarabie work
ustomer Schedule chedule Neg Success Food Culture
Eqo less team Project Success 1—
Maintenance Extra time off
Organization Discourage
Market Work] v \E/
Window |
Prob\er(;w KS°Iu“°3 roblem Solution
Eywords cywords Keywords Keywords
cneduie i an Deadiine Work queue -
K Queve ecommitmen omparable]
High Meeting ~ [[Pevelopmentt | > schedule Work Later release
Producivity Committo
Problem scheaule > Work Portigq, Re-commitment
scheduling Resource Commit to
t\almcatmn aelivery Head roam

Figure 1: Indirect relationship links in four organizational
patterns.

Reflecting Pattern Relationships in a Pattern Format

4 CONCLUSIONS AND FURTHER WORK

To create sequences of patterns, it is important to know how pat-
terns are related with each other. In order to identify pattern re-
lationships we propose to modify the pattern structure. Pattern
authors can include the proposed Keywords subsection in the prob-
lem statement and solution section.

The proposed modification in the pattern format will make pat-
terns more readable. The keywords declared in the Keywords sub-
section can act as relationship links between patterns. With these
terms, we can identify which patterns can be used together in
sequences.

In the future, we would like to formalize the relationship between
patterns. Once pattern relationships have been formalized, we can
create pattern sequences across pattern languages.

ACKNOWLEDGMENTS

We would like to thank Ruslan Batdalov for being our shepherd.
Our sincere thanks also go to our writer’s workshop group mem-
bers namely, Omer Ulludag, James Lear, Frieder Jacobi, Haruka
Iba, Karin Iwata, Hinako Ando, Rei Kono, Aleksandra Vrani¢ and
Kohki Ogawa, The work reported here was supported by the Sci-
entific Grant Agency of Slovak Republic (VEGA) under grant No.
VG 1/0759/19. This contribution/publication is also a partial result
of the Research and Development Operational Programme for the
project Research of Methods for Acquisition, Analysis and Personal-
ized Conveying of Information and Knowledge, ITMS 26240220039,
co-funded by the ERDF.

REFERENCES

[1] Agile Alliance. 2019. Agile Glossary. https://www.agilealliance.org/agile101/agile-

glossary.

Christopher Alexander. 1979. The Timeless Way of Building. Oxford University

Press.

[3] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Joaquim Romaguera
i Ramid, Max Jacobson, and Ingrid Fiksdahl-King. 1977. A Pattern Language.
Gustavo Gili.

[4] Frank Buschmann, Kelvin Henney, and Douglas Schimdt. 2007. Pattern-Oriented
Software Architecture: On Patterns and Pattern Language. Vol. 5. Wiley.

[5] James O Coplien and Gertrud Bjernvig. 2011. Lean Architecture: for Agile Software
Development. Wiley.

[6] James O. Coplien and Neil B. Harrison. 2004. Organizational Patterns of Agile
Software Development. Prentice-Hall.

[7] Ward Cunningham. 1996. Pattern Languages of Program Design 2. Addison-
Wesley, Chapter EPISODES: A Pattern Language of Competitive Development,
371-388.

[8] Martin Fowler. 1997. Analysis Patterns: Reusable Objects Models. Addison-Wesley.

] Tomas Frtala and Valentino Vrani¢. 2015. Animating Organizational Patterns. In

Proceedings of 8th International Workshop on Cooperative and Human Aspects of

Software Engineering, CHASE 2015, ICSE 2015 Workshop. IEEE, Florence, Italy.

Gregor Hohpe, Rebecca Wirfs-Brock, Joseph W. Yoder, and Olaf Zimmermann.

2013. Twenty Years of Patterns’ Impact. IEEE Software 30, 6 (Nov. 2013), 88,

84-87.

Gunter Mussbacher, Michael Weiss, and Daniel Amyot. 2007. Formalizing Ar-

chitectural Patterns with the Goal-Oriented Requirement. In Proceedings of 5th

Nordic Conference on Pattern Languages of Programs, VikingPLoP 2006.

[12] Ronald Porter, James O. Coplien, and Tiffany Winn. 2005. Sequences as a Basis for
Pattern Language Composition. Science of Computer Programming 56, 1 (2005),
231-249.

[13] Mark Richards. 2015. Software Architecture Patterns. O’Reilly.

[14] SolutionsIQ. 2019. Agile Glossary. https://www.solutionsiq.com/agile-glossary.

[15] John Vlissides, Richard Helm, Ralph Johnson, and Erich Gamma. 1995. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley.

Hironori Washizaki, Suthinan Thanintranon, Masashi Kadoya, Yoshiaki

Fukazawa, Takeshi Kawamura, and Joseph W. Yoder. 2014. Analyzing Software

Patterns Network Obtained from Portland Pattern Repository. In Proceedings

[2

[

=
2

[11

[16

[17]

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

of the 21st Conference on Pattern Languages of Programs (PLoP ’14). The Hill-
side Group, USA, Article 8, 6 pages. http://dl.acm.org/citation.cfm?id=2893559.
2893567

Uwe Zdun. 2007. Systematic Pattern Selection Using Pattern Language Grammars
and Design Space Analysis. Software: Practice and Experience 37, 9 (2007), 983—
1016.

https://www.agilealliance.org/agile101/agile-glossary
https://www.agilealliance.org/agile101/agile-glossary
https://www.solutionsiq.com/agile-glossary
http://dl.acm.org/citation.cfm?id=2893559.2893567
http://dl.acm.org/citation.cfm?id=2893559.2893567

	Abstract
	1 Pattern forms and Pattern structure
	2 Identifying Relationship Links in Patterns
	3 Reflecting Relationship Links in Patterns
	4 Conclusions and Further Work
	Acknowledgments
	References

