Developing a Product-Line Based Architecture
in a Domain Under Research

Valentino Vrani¢ and Vladimir Marko

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technology
Slovak University of Technology
Ilkovicova 3, 84216 Bratislava 4, Slovakia
{vranic | marko}@fiit.stuba.sk
WWW home page: http://fiit.stuba.sk/~vranic/

Abstract. Development of software product lines as families of systems
in a domain requires a stable and well understood domain. This may pre-
vent many projects from gaining a benefit of the organized development
for reuse enabled by domain engineering techniques. In this paper, we
present our approach to developing the architecture for a family of sys-
tems belonging to a changing domain and its application to a project on
tools for acquisition, organization, and maintenance of knowledge in an
environment of heterogeneous information resources whose development
part is performed concurrently with the ongoing research activities. The
approach employs use cases to capture requirements and feature mod-
eling to capture configurability among the requirements. Based on the
feature and use case model, the structure of the products in the domain
is evolved in the form of subsystem and component views.

1 Introduction

Domain engineering approaches to software development are based on organized
and planned reuse in which reusable assets applicability is limited to the set
of products denoted as a software product family. Such reuse does not aim at
providing fully generic components as envisaged by some approaches, but has
proved to work in practice [1].

The concept of product lines is related to the concept of product families.
While product families are driven primarily by the similarities among products,
product lines are market driven [5]. Domain engineering represents a basis for
building both product families and product lines. Here we speak of product lines
rather than product families because products are grouped mainly by the need
of the specific project, which is an analogue of the market demand in industrial
projects.

Domain in the sense of domain engineering represents an area of knowl-
edge scoped to the needs of its stakeholders; it includes a set of concepts and
terminology of the respective area and the knowledge how to build software sys-
tems in that area [5]. This means that a domain is expected to be stable and

well-understood, which is not always achievable. This is particularly a problem
in research projects which almost always embrace a development component
(mostly for evaluation purposes).

In this paper we present our approach to developing a product-line architec-
ture in a research project. The approach has been developed for the needs of the
project on tools for acquisition, organization, and maintenance of knowledge in
an environment of heterogeneous information resources. The development part
of this project is performed concurrently with the ongoing research activities,
which represents the source of instability.

The rest of the paper is structured as follows. Section 2 explains the essentials
of our research project and gives an overview of the approach we employed. Sec-
tion 3 describes a coarse examination of commonality and variability using fea-
ture modeling in the context of creating a partial domain model. Section 4 shows
how to express the expected functionality of the one special product in greater
detail in a use case model. Section 5 describes the identification of archetype
entities as the first step towards the generalization of the partial domain model.
Sections 6 and 7 show how to refine the initial feature model and generalize the
use case model, respectively. Section 8 is devoted to evolving the structure of
the systems in the domain based on the feature and use case model. Section 9
discusses the proposed approach in the context of related approaches. Section 10
concludes the paper.

2 An Unstable Domain and How to Approach It

The NAZOU project is related to the domain of tools for acquisition, orga-
nization, and maintenance of knowledge in an environment of heterogeneous
information resources. The project is spanned over four organizations and it
encompasses a significant development component whose objective is to create
a knowledge portal based on the sophisticated methods that are a subject of
research in this project [6].

The portal is being developed in parallel with the research of the methods
which causes the instability of the domain of tools for acquisition, organization,
and maintenance of knowledge in an environment of heterogeneous information
resources: the domain is under a change due to new research results. However, a
part of the domain that represents a portal related to the specific area of job offers
is known and well understood. This portal represents a specific application and
our main idea was to start with this application and try to generalize it taking
into account the upcoming research results.

Figure 1 gives an overview of our approach to developing product-line ar-
chitecture in an unstable domain [10].} It shows the main artifacts and their
dependencies. The whole process starts by exploring a limited portion of the
domain in order to obtain a partial domain model. Typically, this part of a do-
main should represent one possible product in the domain. First, commonality

! Foundations of the approach have been presented in an earlier paper [10].

and variability in the domain has to be explored at least at a coarse level. A
useful technique to do this is feature modeling. Functionality of this domain part
is captured by use cases. Each use case should be linked to related features in
order to document functionality variants.

General Domain Model

‘ Archetypal Entities ‘ ****************************

Partial Domain Model Structure

‘ Coarse Feature Model } % Refined Feature Model ‘ 4‘ Subsystems ‘

‘ Partial Use Case Model }»—»{ Generalized Use Case Model ‘

Fig. 1. Overview of the approach [10].

The next step is generalization. The feature model should be further refined
as its purpose is to control the configuration of individual products. However,
the use case model will undergo more significant changes as we have to switch
from the specialized viewpoint to a general one based on archetypal entities
(explained in Sect. 5) and their interactions.

Finally, the structure of the products in the domain based on the feature and
use case model is evolved in the form of subsystem and component views. In this
step, an opportunity to apply architecture styles or patterns should be sought.

3 Feature Model

Feature modeling is a conceptual domain modeling technique in which concepts
in a domain, understood broadly as an area of interest [4], are being expressed
by their features taking into account feature interdependencies and variability
in order to capture concept configurability [9]. In feature modeling, a concept
represents an understanding of a class or category of elements in a domain. A
feature is an important property of a concept [5]. Any feature may be isolated and
modeled further as a concept, therefore being a feature is actually a relationship
between two concepts, but the concepts identified only in the context of other
concepts, i.e. as their features, are usually referred to as features [9]. In general,
a feature may be common, which means it is present in all concept instances, or
variable, which means it is present only in some concept instances.

The most important part of the information in feature models is presented
graphically by feature diagrams.? Figure 2 shows the Knowledge Acquisition
concept feature diagram from the domain of tools for acquisition, organization,
and maintenance of knowledge in an environment of heterogeneous information

2 We employ the notation proposed by Czarnecki and Eisenecker [5].

resources. The Knowledge Acquisition concept represents approaches to knowl-
edge acquisition. We identified several such approaches ranging from the direct
user input to semantic annotation. Multiple approaches can be employed in the
final product, but at least one has to be present. This is expressed by grouping
features that represent approaches to knowledge acquisition into an or-feature
group (indicated by a filled arc).

Knowledge Acquisition

Information Source

Clustering

Semantic Annotation

Emails

HTML Documents

Relational Databases
XML Documents

Indexing

Fig. 2. Knowledge acquisition concept.

Information Source is another important feature of the Knowledge Acquisi-
tion concept. This feature is mandatory, i.e. it has to be present in all products
(indicated by a filled circle). Several types of information sources are possible
and they also constitute a group of or-features.

Other concepts identified in the domain include, for example, information
domain and presentation options. These two concepts along with Knowledge Ac-
quisition actually represent mandatory features of the Knowledge Portal, which
represents the main concept in the domain. User adaptability is another concept
that appears as an optional feature of the Knowledge Portal.

4 Use Case Model

Use case modeling has been used to capture stakeholders and functional require-
ments imposed onto system under development. The objective is to achieve a
grasp of core functions while abstracting from realization details to avoid pre-
mature breakage into functional blocks misregarded for functional development
units before all of the functionality has been understood.

More specifically, variations in functionality, such as support of various input
methods and output formats, are not reflected as use cases of their own. Internal
working and methods employed to achieve required functionality hidden from
the standpoint of an stakeholder is also omitted from the description of use
cases. Stakeholders are modeled as actors of the use case model. Some internal
mechanisms are modeled as worker actors as well, as is the case of Job tracker
internal process which represents proactive behavior on behalf of the system.
An example of such an exploration level use case diagram from our project is
presented in Fig. 3.

Find job offer

Job seeker

Publish job offer in
own information
space

Employer

\ Acquire job offer
= \
Offer job

— S

Job tracker

Check validity

Submit job offer

Active employer

Fig. 3. A domain exploration level use case diagram.

Each use case has to be provided with description, possibly specified by a set
of scenarios, and a list of related concepts and features. By the list of related
concepts and features we capture the variations in functional requirements and
map concepts and features to corresponding use cases which rely on them. A
use case annotation sample is shown in Fig. 4. Thanks to this mapping there is
no need to describe the variations in functional requirements further in the use
case model, be it in the form of specialized use cases or variants of a scenario.
The general rule is not to expose the realization of a functionality as Optional
Use Case or Use Case Sequence pattern [7].

Name Offer job

Description Abstract use case representing an offering by an employer
in a manner that can be supported by the system
Concepts and Features|Information source

Name Find job offer

Description User formulates a query constraining stored set of job
offers according to his needs. The system replies with an
ordered list of suitable offers

Concepts and Features|Knowledge acquisition

Fig. 4. Use case annotations.

The use case diagram in Fig. 3 represents only a part of the functionality
required for acquisition and presentation of job offers. Make offer abstract use
case is specialized into two concrete ways of publishing job offers for use in
our system. However these two use cases do not differ only in their realization,
but in their mode of operation in the first place. They are activated by different
stakeholders: by an employer who is not aware of our system and by an employer
who actively uses the system. Acquire a job offer, Check validity, and Find a job
offer use cases do not form a use case sequence as they can exist independently

apart from a possible interdependency ensuing from their mutual dependence
on Offer job use case.

Find job offer use case represents a query of a Job seeker on the accumulated
job offer store. A variety of realizations were to be considered for this function,
which has been modeled by mapping the use case to the Knowledge acquisition
concept (recall Fig. 2).

5 Archetypal Entities

The partial domain model gives us a good starting point for a major transi-
tion our domain model must undergo: we have to identify archetype roles and
determine how they interact with each other. The level of abstraction we are
looking for lies in between the abstract feature model and concrete use cases
that constitute our domain model presented so far.

A good starting point is to analyze the important concepts from the feature
model and corresponding use cases. In our project, knowledge acquisition is
such a concept. Use cases that correspond to this concept are about job offer
acquisition in a special case of knowledge acquisition or, more precisely, a special
case of offer acquisition. Thus, we actually may narrow our domain to offer
acquisition as such.

In a domain of offer acquisition, we speak of an abstract offer which will,
with the development of concrete components, become a job offer, travel offer,
apartment renting offer, etc. Each offer has two faces: the one is of the offer
source—a producer—and the other of the offer target—a consumer. Thus, our
archetypal entities include an offer, producer, and consumer.

It is important to note the relativity of these archetypal entities. A job offer
can be perceived as an offer of a job to potential employees. In this case employers
are producers, while employees are consumers of the offer. However, it is also
possible that an employee will seek the job by exposing his offer which will turn
him into a producer, and employers into consumers.

6 Feature Model Refinement

Identification of archetypal entities represents a major shift in domain under-
standing. This requires the feature model refinement. One of the consequences
for the Knowledge Acquisition concept in our feature model is the separation of
the information content independent acquisition (denoted as Data Acquisition)
from the dependent one based on the identified archetypal entities (denoted as
Offer Acquisition). Figure 5 shows the refined feature diagram of the Knowledge
Acquisition concept.

7 Generalizing Use Cases

Based on archetypal entities, we may generalize the initial use case model. In
addition to introduction of archetypal roles, the use case model has to be evolved

Knowledge Acquisition
Data Acquisition

Data Search
Offer Acquisition

N Document Identification
Document Retrieval
Offer Source Annotation

Fulltext Index Search Multifeature querying
o Ly
HTML Documents ‘ Document Cluster Providing ‘ Offer Search Offer Downloading
XML Documents

Similarity Search Offer Identification
Relational Databases
Criteria Search Offer Separation
User Preference Search

Fig. 5. Knowledge acquisition concept refinement.

further using the refined feature model. The identified features should be used to
split the functionality into more manageable units. The objective of this process
is to obtain a use case model which can be mapped to structural view of the
software. Therefore, each use case has to be considered as a collaboration of
several actors, some of which represent users of the system, while others are
internal system components. The use case itself then represents a concrete usage
of a subsystem by another actor.

Figure 6 shows a view derived from the specialized use case presented in
Sect. 4. The Active producer user role collaborates with the Offer database sub-
system actor to facilitate the Enter offer use case. The directionality of the usage
relation is not established at this stage as it needs to be addressed only after
overall requirements are analyzed in order to select suitable architectural style
(discussed in Sect. 8).

Again, it is advisable to avoid unnecessary functional decomposition at this
stage that can be carried out later within subsystem and/or component view
of the system. Now it would lead to proliferation of actors and single-actor
collaborations which are not bearing significant information on the subject of
identification of components of the system.

Representing variations of requirements as separate use cases should also be
avoided where possible. This should captured by mapping concepts and features
to corresponding use cases in use case annotations as with the initial use case
model. The only exception from this rule is the case when variations in function-
ality require different collaboration or different collaborating actors constitutes
(see in Fig. 7). Specializations of the Acquire offer use case are performed as
collaborations of different subsystem actors.

Offer entry portal

Make offer Acquire offer

Offer acquisition

«toplevel»
Publish offer within
own information
space

«toplevel»
Enter offer

Otter database

Passive producer Active producer

Fig. 6. Generalizing use cases.

Acquire offer

Offer maintenance

Acquire offer from
offer database

Acquire sources

Acquire offer from Acquire offer from
www

USENET group Identify offer

«toplevel»
Offer source
management

Crawl the network

Offer acquisition Offer database

Source administrator

Fig. 7. Dealing with the different collaboration or different collaborating actors.

8 Structure View

Finally, the system structure can be derived from the functionality captured in
the use case model. Letting the behavior form the structure enables to avoid the
unpleasant consequence of the Conway’s law [3] by which the structure of the
developing organization ultimately shapes the system being developed.

In our approach, two distinct levels of structural decomposition are employed:
the subsystem level and the component level. The subsystem level comprises
decomposition according to logical cohesion among offered functionality. This
view corresponds to the module viewtype style [2] and is derived directly from
the refined use case model of the system. The internal actors from the refined use
case model represent subsystems. In our project, we arrived at the subsystem
decomposition depicted in Fig. 8. Offer acquisition, Offer database, and Offer
maintenance subsystems correspond to subsystem actors in Fig. 7.

Application layer
1

«subsystem»
Offer access portal

«subsystem»
Offer entry portal

| .
1 e ! \ ~
. | K
: L N3 \
\
«subsystem» K «subsystem» ---3 «subsystem» -4 «subsystem» = (-R--------------- «subsystem»
Offer database Offer acquisition Offer maintenance Offer search \\ Offer monitoring
: TN : I
1
Domain specific ; | ! 1 \A ! !
services layer 1 [l i S i
77777777 J,,,,\,,:,,,,,777:,,,7,\,,,,,,¢,,,
| i | N i
| ! — — |
Domain independent | «subsystem» |-3 «subsystem» K--- «subsystem» «subsystem» «subsystem»
services layer Data acquisition Data maintenance Data search User adaptation Notification
T

Fig. 8. The subsystem view.

Each use case involving any subsystem actor should be represented as a usage
relationships among subsystem packages. The directionality of the relationship is
determined according to the chosen architectural style. In our project we decided
for a layered architecture where domain dependence increases from the bottom
to the top layer.

Some subsystems do not collaborate in any functionality specified by use
cases, but merely pose interfaces to the external environment and most notably
user interaction. In our project, this is facilitated by the top layer subsystems
which were derived from the system boundaries introduced in the use case model.

Subsystems can be understood as a foundation for building components.
The component view prefers functional cohesion resulting into packages that
offer the functionality adhering to prescribed interfaces. Often, multiple compo-
nents implement a common interface, and this usually ensues from variations in

functionality identified as variable features in a feature model. Figure 9 shows
components that realize the functionality of the Data Search subsystem.

«interface»IFulltextQuery

+searchDocumentsQuery(in query, out documents, out ranks)
+searchSimilarDocuments(in document, out documents, out ranks)
AN

«component»
___-{Fulltext search | _

«interface» Sl \L N «interface»
Data maintenance::IDocumentindexStorage «interface» Data maintenance::IWordBaseForm
+writelndex({'n document, in ir{dex) Data maintenance::IRelatedTerms +getWordBaseForm(in word, out baseWord)
+readlndex(in document, out index) +addRelatedTerm(in term1, out term2, in idSource)

+getRelatedTerms(in term, out relatedTerms)
+decrementAllRelatedTermsFromSource()

«interface~IDocumentClusters «interface»IMultiFeatureSearch
hD: lusters(i , out do , out ranks) | [+setSearchContext(in instanceType, in attributes, in rules)
rdC (in words, out d ts, out ranks) +searchBestinstances(in objectsNumber, out instancesFound, out ranks)
A
| |
«component» «component»
Document cluster providing Multifeature querying
i i
i ;
«interface» «interface»
Data maintenance::IDocumentClusterStorage External::lOntologyAccess

+writeCluster(in cluster, in documents, in words, in probabilities)
+readCluster(in cluster, out documents, out words, out probabilities)

Fig. 9. The components that realize the functionality of the Data Search subsystem.

The two levels allow for distribution of development among teams by split-
ting system into reasonably sized functional components while preserving clear
insight of the system as a whole through subsystem dependencies. Subsystem
structure can be utilized for source package structuring and dependency man-
agement whereas component view reflects into runtime modules.

Subsystem and component models were developed concurrently to enable
interaction among the both views. In general, the component model cannot be
taken as a further decomposition of a subsystem view: each component may be
built using building blocks from one or more subsystems. In our project, however,
we managed to map each component to exactly one subsystem.

9 Related Work

The risks of developing product lines in immature domains have been analyzed
by Voget and Becker [8]. More specifically, they deal with the risks of uncertain
technological evolutions, which actually correspond to the domain instability
in projects with ongoing research addressed in our approach, and propose to
resolve them by employing light-weight domain engineering, stable subdomains
start-up, commonality-oriented assets, and sound variability treatment support.
While Voget and Becker’s stable subdomains start-up strategy is merely about
isolating unstable subdomains and excluding them from the product line, we
focus on stabilizing such subdomains in order to preserve them as a part of the
product line.

The notion of an archetypal entity in the context of the approach proposed
in this paper is related to Bosch’s archetypes, the core abstractions on which the
system will be structured [1]. These are further described as highly abstract and
stable, which are the properties of our archetypal entities, too. However, while
Bosch warns of deriving archetypes from the concrete instances in the domain
and proposes to rely on the good understanding of the domain and developer’s
insight, our experience is that in an unstable domain one has to take the concrete
(and specific) instances into account along with the abstract domain view.

Furthermore, Bosch’s archetypes are more structural in their nature; concrete
systems are populated by instantiation of archetypes. Our archetypal entities do
not necessarily represent abstract structure of systems and may include external
entities such as users.

10 Conclusions

In this paper, we presented our experience of dealing with product line archi-
tecture design in a research project on tools for acquisition, organization, and
maintenance of knowledge in an environment of heterogeneous information re-
sources whose development part is performed concurrently with the ongoing
research activities. This makes the underlying domain unstable and inappro-
priate for direct development of a product line architecture. This experience is
sublimated in the form of an approach to product line architecture design in
unstable domains.

The approach shows that improved understanding of a specific, but impor-
tant part of a domain in terms of its functionality and configurability can be
translated to the whole domain. This process is intrinsically functionality driven;
structural decomposition is postponed until the behavior of the systems in the
domain is sufficiently explored.

The most critical step of the approach—identification of archetypal enti-
ties and their interactions—is principally highly dependent on the insight of
developers. However, it is our experience that the very existence of a partial do-
main model significantly improves the communication with domain stakeholders,
which is inevitable for the process of generalization.

Acknowledgments

This work was supported by the Slovak State Programme of Research and Devel-
opment ”Establishing of Information Society” under the contract No. 1025/04.

References

1. Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. Addison-Wesley, 2000.

10.

. Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,

Robert Nord, and Judith Stafford. Documenting Software Architectures: Views and
Beyond. Addison Wesley, 2002.

James Coplien. A development process generative pattern language. AT&T, 1995.
Available at http://users.rcn.com/jcoplien/Patterns/Process/ (accessed in
August 2005).

James O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.
Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programing: Methods,
Tools, and Applications. Addison-Wesley, 2000.

Pavol Navrat, Maria Bielikova, and Viera Rozinajovid. Methods and tools for
acquiring and presenting information and knowledge in the web. In Boris Rachev
and Angel Smrikarov, editors, Proceedings of CompSysTech 2005, pages 111B.7.1—
ITIB.7.6, Varna, Bulgaria, June 2005.

Gunnar Overgaard and Karin Palmkvist. Use Cases Patterns and Blueprints.
Addison Wesley, 2004.

Stefan Voget and Martin Becker. Establishing a software product line in an imma-
ture domain. In Gary J. Chastek, editor, Proceedings of 2nd International Software
Product Line Conference (SPLC2), LNCS 2379, pages 62—77, San Diego, USA, Au-
gust 2002. Springer.

Valentino Vranié. Reconciling feature modeling: A feature modeling metamodel. In
Matias Weske and Peter Liggsmeyer, editors, Proceedings of 5th Annual Interna-
tional Conference on Object-Oriented and Internet-Based Technologies, Concepts,
and Applications for a Networked World (Net.ObjectDays 2004), LNCS 3263, pages
122-137, Erfurt, Germany, September 2004. Springer.

Valentino Vrani¢ and Vladimir Marko. Dealing with unstable domains in product-
line architecture development. In Proc. of 9th International Conference on Infor-
mation Systems Implementation and Modelling (ISIM 2006), pages 57—64, Prerov,
Czech Republic, April 2006.

