An Opportunistic Approach to Retaining Use Cases in Object-Oriented Source Code

Jan Greppel and Valentino Vranié¢
Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava
Bratislava, Slovakia
E-mail: jangreppel @ gmail.com, vranic @stuba.sk

Abstract—Use cases are widely used to express what software
systems are supposed to provide in terms of an interaction
between the users and the system. Without a particular effort
to preserve them, use cases dissolve in source code turning the
task of locating their implementation into a major problem
of change request realization. While aspect-oriented program-
ming offers one solution to retaining use cases, there are also
opportunities in the mainstream object-oriented programming
languages that have no reliable support for aspect-oriented
programming. This paper brings an approach to retaining use
cases in source code by object-oriented means that employs
three techniques: traits, the Event pattern (extracted from
the Zend’s framework EventManager component), and the
Front Controller pattern. By these techniques, all possible
kinds of use cases with the exception of specialization use
cases are addressed: peer use cases, extension use cases, and
inclusion use cases. Use cases are not fully modularized as
in aspect-oriented software development with use cases, but
the approach ensures their parts can be easily traced. The
approach has been evaluated with respect to traceability on an
online shop application demonstrating how a use case can be
added, removed, or altered.

Keywords-use case; design pattern; Front Controller; DCI;
aspect-oriented programming

I. INTRODUCTION

Use cases are widely used to express what software
systems are supposed to provide in terms of an interaction
between the users and the system. Using the natural language
they remain comprehensible virtually to all stakeholders,
while still being very precise. In this, they resemble stepwise
natural language algorithm descriptions (albeit they are not
supposed to cover the actual algorithms) getting close to
source code. In fact, especially in less formal and highly
agile settings use cases may be even directly implemented.

Once implemented, use cases remain useful in testing (as
a basis for so-called test cases), but perhaps even more in
maintenance. Change requests can be easily related to use
cases to understand what has to be adjusted. Eventually, the
changes have to be implemented. Unfortunately, without a
particular effort to preserve them, use cases simply dissolve
in source code with the functionality they specify being
rearranged according to the given programming language
modularization elements (like classes and methods in object-
oriented programming) turning the task of locating places

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

in code that have to be modified into a major problem of
change request realization.

This paper brings an approach to retaining use cases in
source code using typical programming features available
in the mainstream software development to adjust source
code structure to use cases. Section II discusses what can be
retained out of use cases and mentions some approaches that
enable this. Section III presents the core of our approach.
Section IV explains how our approach improves traceability
of use cases in source code. Section V explains how we
evaluated our approach. Section VI puts our approach into
the context of related work. Section VII concludes the paper.

II. USE CASES: WHAT CAN BE RETAINED

Despite some differences in use case modeling nota-
tions [1], use cases are typically expressed as partially
ordered sequences of steps. Each use case is related to one
or more actors that in most case represent users. Also, a use
case may include another use case and may be extended by
another use case. While the include relationship is simply
analogous to an operation call, the extend relationship has a
more complicated semantics that was often misunderstood
until the advent of aspect-oriented programming in terms of
which the extending use case represents an aspect that affects
the base use case, which is unaware of being affected [2].
One more relationship that may appear between use cases
is generalization/specialization, which is not used that often
and which in terms of object-oriented programming has its
counterpart in inheritance.

Object-oriented programming can clearly modularize
fragments of use cases as methods and can directly ex-
press the include relationship. These methods are being
organized into classes that are in turn common to several
use cases. Thus, object-orientated programming—without
specific efforts—falls short not even in preserving the extend
relationship, but also in preserving peer use cases (use cases
that are not in any kind of relationship).

This is where aspect-oriented programming can help,
as proposed by Jacobson and Ng in their aspect-oriented
software development with use cases [2]. Speaking of the
Aspect] style of aspect-oriented programming, aspects are
not only able to affect methods, but they also can introduce

vranic
IEEE (C) 2015

new methods into classes using a construct called inter-
type declaration. Classes remain shared by use cases, but
they contain act merely as placeholders possibly containing
some basic elements and functionality. An aspect joins all
fragments of a use case introducing each of them into the
corresponding class. By this, an aspect actually represents a
source code model counter part for a use case.

Aspect-oriented constructs spread throughout many pro-
gramming languages. However, language extensions and
frameworks through which are these constructs provided
are often not capable of following the base, object-oriented
language development and soon become obsolete, so the
question remains how to retain as much as possible of use
cases using the standard features of the base programming
language.

III. TECHNIQUES TO RETAIN USE CASES

The overall approach we propose here to support retaining
use cases by object-oriented means consists of three tech-
niques: traits, the Event pattern, and the Front Controller
pattern. The process is depicted in Figure 1. The techniques
are applied to each use case that is to be implemented. Which
techniques apply depend on the position of the use in the
model, i.e. whether it is a base use case (peer), include use
case, or extension use case. As use case may be a peer use
case with respect to some use cases, while at the same time
being included by another use case, several—or even all—
techniques may apply to the same use case.

A. Peer Use Cases and Traits

A trait is a mechanism for code reuse which is imple-
mented in various object-oriented languages. It is intended
to break some limitations of single inheritance and to reuse
sets of methods independently of class hierarchies. A trait is
similar to a class, but its intention is to group functionality
rather then to inherit it. PHP, which is currently very popular
programming language in the development of web applica-
tions, supports traits [3]. Peer use cases can be retained as
traits. Assume the following example that could be a part
of an online shop application:

trait RegisterUC {
public function createUser () {
VYA
}
}
trait EditProfileUC {
public function updateUser () {
/).
}
}
class User ({
use RegisterUC;
use EditProfileUC;

With this definition, the User class becomes equivalent
to a class containing the register (), createUser (),

editProfile (), and updateUser () methods. This
is similar to inter-type declarations in the aspect-oriented
software development with use cases, albeit the composition
is specified the opposite way: within the affected class, and
not in use cases.

B. Extension Use Case and The Event Pattern

Extension use cases affect other use cases in extension
points that are exposed by them. Extension points are usually
just labels of particular use case steps or ranges of use case
steps. Once these points are defined in the code as one-
liners (one line of code), extension use case can be attached
to them. This can be emulated by the object-oriented design
pattern with one object holding mappings of defined points
and attached behavior that we call the Event pattern. The
pattern represents the essence of the Zend framework’s
EventManager component, which is akin to the Observer
pattern and applied in the broader context of event-driven
architectures [4] (essential to complex event processing [5]).
Figure 2 shows the structure of the Event pattern. Here’s an
example implementation:

// Define triggers in client class
class App {
em = EventManager ()

function foo () {
print ”Something 1 ...”
this.em.trigger (new Event (E1))
print ”Something 2 L
this.em.trigger (new Event (E2))

}

// Attach behavior to triggers

app = new App ()

app.attach(El, function() {
print ”Attached on E1!”

1)

// Run triggers in client object
app.foo ()

// Results of app.foo():
// Something 1

// Attached on E1!

// Something 2 ...

Figure 3 depicts a situation where the Event pattern can
be applied. Suppose that in an online shop application a
kind of access control has to be provided to check whether
users are not just guests in order to limit their rights as
some functionality is reserved only to logged users. This is
not the core business of the Administer Products and Edit
Profile use cases, so an extension use case called Access
Control is applied.

C. Use Cases and Repeated Functionality

A use case captures interaction between a user and a
system. Obviously, we cannot write code to define what

[specification

design I implementation :

for every use case

use cases use case

Peer use case
fragments

Extension use case
fragments

epeated use case Classic
\ fragments OOP design
\\
\
\
___u_sf_cff‘i___» The Front

Traits

The Event
Pattern

source
code

I
I
|
Controller :
|
I

Figure 1. The process of retaining use cases at source code level.

EventManagerAwareInterface |

getName()

getParams()
getTarget()

getEventManager()

4

/
/

setEventManager() ’

ClientEvent | Client
const EVENT_ 1 |~ |method()
const EVENT N

EventManager em = new EventManager(); AN
em.attach(ClientEvent::EVENT_1, function(Event e) {
// alternate flow of method() here ...

1)

| | EventManager

trigger()
attach()

Figure 2. The Event pattern class diagram.

Administer
products <-__<<extend>>
Edit £-="lextend>>
profile

Figure 3. An extension use case.

Access
control

User

users do: we can only write code to define what the system
does. Therefore, to retain use cases in source code literally
is not possible. However, a use case can be refined into a set
of functionality pieces that respond to user actions described
in the use case. These functionality pieces can repeat, but we
would like each one implemented only once in accordance

with the DRY principle (Don’t Repeat Yourself): “Every
piece of knowledge must have a single, unambiguous, au-
thoritative representation within a system” [6].

Such a functionality piece can represent a completely new
code, code similar to the existing functionality, or an existing
(repeated) code. Consider again our online shop example.
One of its use cases is Register:

User: guest

1. The user selects to register.

2. The system asks for login and credentials.

3. The user fills in the information and submits it.
4. The system

a) validates the information

b) creates the new account

c) logs in user

5. The use case ends.

Alternative scenario 1:

(if the filled in information is empty or in a wrong
format)

4. The system

a) validates the information

b) displays error message

c) (step 2 again)

The other use case we’re going to consider is Edit Profile:

User: buyer, seller

Precondition: User is logged in.

1. The user selects to edit their profile.

2. The system shows the user’s information.

3. The user changes the information and submits
it.

4. The system

a) validates the information
b) saves the changes

5. The use case ends.
Alternative scenario 1:

(if the filled in information is empty or in wrong
format)

4. The system

a) validates the information
b) displays error message
c) (step 2 again)

We can see that both use cases are rendering the form in
their step 2: in the Register use case in order to acquire login
credentials, in the Edit Form use case in order to provide
the user profile information ready for editing. Validation of
the sent data in step 4a is another repeated functionality
piece that is found in both use cases. Yet another repeated
functionality piece is displaying the error message.

In general, identifying repeated functionality often in-
cludes looking at each use case from the technical perspec-
tive and identifying the similar functionality pieces that can
be implemented in a generic way that can substitute them
all. Here is the Register use case implementation that uses
a generic form to be rendered in a custom way using its
methods define (), isvValid(), and addMessage ():

use \\App\\Form;
use \\App\\Messenger;

trait RegisterUC {
public function register() {
\$f = new Form();

\$f->define ([
"name’ => [
"type’ => ’text’,
"text’ => ’Your login name or email:’,
1,
"passwd’ => [
"type’ => ’text’,
"text’ => ’Password:’,
]!
fsubmit’ => [
"type’ => ’submit’,
"text’ => 'OK’,
1,
1)

if (\$f->isvalid()) {
// Creates a new account
/S
} else {
\$m = Messenger::getInstance();
\$m->addMessage (\$f->gerErrors());

It should be noted that functionality pieces can only be
identified as repeated if the use case part is on the side of

the system. One could assume that filling the information
in and submitting it, as it happens in step 3 in both use
cases) is a repeated functionality piece, too. However, this
step is “executed” on the user side and therefore cannot be
implemented in code and thereof cannot be retained at the
source code level.

With just two use cases it is easy to spot repeated
functionality pieces. However, with the increasing number
of use cases, a table with all functionality pieces that are
refined from use cases becomes necessary (see Table I as an
exempla).

Table I
THE LIST OF FUNCTIONALITY PIECES REFINED FROM USE CASES.
Functionality Repeated
ask for login and credentials 1x
show the user’s information 1x
create a new account 1x
log the user in 1x
render the information 2X
validate the information 2X
display an error message 2X

D. Organizing Use Cases with the Front Controller Pattern

In addition to retaining the parts of use cases (i.e., pieces
of functionality), the Front Controller pattern [7] can be
used to organize whole use cases (or at least larger blocks
of use cases) into controllers. This pattern, as is shown in
Figure 4, provides a centralized way of handling requests.
Each request made by a user will be caught by Front
Controller and (based on the actual request) dispatched to the
corresponding controller capable of handling it. Therefore,
upon a user action, use cases as controllers will be the first
classes in the application to be executed.

IV. TRACEABILITY OF USE CASES IN SOURCE CODE

An important purpose of retaining use cases in source
code is to provide an easy way of tracing the parts of
the actual use cases in source code. To be able to do
this effectively, some additional means are necessary in our
approach.

Each use case has the main actor and name, both of which
can serve as pivot points for finding its implementation.
The basic concept is shown in Figure 5. A matrix of actors
and entities points to use case. For a given use case, the
corresponding controller method is the central point towards
all use case parts.

It should be pointed out that sometimes entities cannot
be easily classified and therefore tracing down the use case
can become ambiguous. As an example consider the Check
Shipped Orders use case. It can be assigned either to the
Checks or Orders entity. In such a case, the current most
prevalent entity should be chosen. In our example, there are
more use cases related to the Orders than to the Checks

:FrontController

<<creates>> R :
o Controller is chosen by dispatcher
> :Dispatcher based on the route ET

N\

————————— E% :Controller | |:ProductController|

init() init()

action() showAllAction()

the Libs directory contains all third-party application
interfaces and tools which are used in the system; they
are mostly general-purpose libraries, not dependent on
system that is developed in any way, such as MVC
frameworks, ORM libraries, logging libraries, libraries
communicating with online services, etc.

the UseCase directory is divided into actors with each
use cases implemented as a method in a given class that
groups similar use cases (i.e., similar methods) together
the Utils directory contains implementation of repeated
functionality pieces that are used several times in

request !
bootstrap()
route()
o run()

]

—[Fl preDispatch()
<<creates
lc__Tesponse

postDispatch()
response
response
B st s
Figure 4. The Front Controller pattern.
Entity 1 Entity 2
.
T Actor 1 Use Cases
+ Actor 2 ———— @
4
7 ! AN
) [\
/ I \,
,/’<<use>> | <<use>> M<<use>>
| \
I
I

& — YV 13

Utils View Data Model

Figure 5. Locating a use case and its parts in source code.

entity, and therefore the Check Shipped Orders use case will
be assigned to the Orders entity.

In the directory structure of our online shop application
each directory serves a specific purpose related to retaining
use cases:

o the DataModel directory contains classes that are re-
sponsible for inserting, updating, deleting and selecting
of persistent data in relational-databases, text files, etc.

o the ExtUseCase directory contains extensions which
are attached to base use cases, defined as classes with
attach () method

the UseCase section; examples include forms, bank
connection wrappers, flash messages, etc.

View directory contains classes which render graphical
interface.

Assume we have to identify the Add Product use case:

User: seller

Precondition: The user is logged in as a seller.

1. The user selects to add a new product.

2. The system prompts the user to fill necessary
information.

3. The user fills in the information and submits it.
4. The system

a) validates the information

b) creates the new product

¢) notifies user about the creation of a new
product

d) shows list of all products added by the current

user
5. The use case ends.

Alternative scenario:

(if the filled in information is empty or in a wrong
format)

4. The system

a) validates the information

b) displays error message

¢) (step 3 again)

Since the user is a seller and title of the use
case is Add Product, we may expect the use case
to be implemented in the add() method in the
/UseCase/Seller/Product .php file. The actual im-
plementation of this method might look as follows:

class Products {
function show () {
\$form = new ProductForm() ;
\$form->setData (\$this->getPost ());

// Validate the information

if (\Sform->isValid()) {
// Create the new product
ProductsDM: :insert (\$this->getPost ());

// Notify the user about

// the creation of a new product

Messenger: :getInstance () —>
addMessage (' Product added’);

// Show the list of all products
// added by the current user
\$this->dispatch (’Products’,
’"showListOfCurrentUser’) ;

return;

}

// Show the form (prompts the user

// to fill the necessary information)

\Sthis->view = \$form->render();
}
function showListOfCurrentUser () {
V2R

}

Rendering, validating and retrieving user data from a form
is all implemented in the Form class, which is in the Utils
directory as a repeated functionality piece (since it’s used in
several use cases). The same is true for user notification by
the Messenger singleton instance.

New product creation is handled by the ProductDM
class, which inserts the provided data into a relational
database. A part of the use case is also another use case:
showListOfCurrentUser (), which is called using the
dispatch () method. Figure 6 shows all different parts of
the Add Product use case that are retained at source code
level.

=1 DataModel
i@ Products.php
Lo insert(
— L UseCase
=) seller
o Products.php
Q add()
—}.. r| Utils
=B 1 Forms

------ b ProductForm.php

$values)

Figure 6. Parts of the Add Product use case.

V. EVALUATION

We have evaluated our approach with respect to use
case traceability on an online shop application mentioned
throughout this paper. The full set of use cases and the actual
application have been developed in the PHP programming
language.

The most frequent actions with respect to retaining use
cases are:

« to find the use case implementation or its relevant part
in source code

« to add another use case to the existing set of use cases

e to remove a given use case from a software product
(its source code)

« to alter or change one use case in a particular way

Since the first action is included in the other three (e.g.,
to delete a use case, it has to be located first), we focused
on the last three actions.

A. Adding Another Use Case

When listing products in the online shop, there is no
information about users’ opinions to the products and there-
fore new functionality to add review and list reviews to a
product could be useful. This functionality forms another
use case (though a smaller one) that should be implemented
separately for easier maintenance. The following artifacts
have to be added:

e form /Utils/Forms/ReviewForm.php with the
rating, description, and hidden fields for the user ID

e method showReviewForProduct () in view
/View/Product.php to show the existing
comments and to display the form

o datamodel /DataModel/ProductReviewsDM.php
to insert, delete and select reviews from the persistent
storage

In addition, the showReviewForProduct () method
call in the /View/Product.php view has to be added
in /View/Product .php to provide a list of reviews and
the form for providing the product review details.

B. Removing a Use Case

Let’s suppose that the way users register has to change
substantially. Instead of altering the Register use case, the
developers decide to remove it completely and to imple-
ment the new registration from scratch. For this case, the
following artifacts have to be removed:

e form /Utils/Forms/LoginForm.php

e method register () in the /UseCase/Guest/
Users.php file

o few lines of source code in the /View/Layout/
Main.php file rendering the link to the registration

page
C. Altering a Use Case

Originally, the Add Product use case supported attaching
only one picture to one product. Suppose that after the
product release users demanded at least three pictures per a
product resulting in a change request: to be able to attach
five pictures to one product and to show the gallery of these
pictures in the details of the product.

This change request affects parts of two use cases: Add
Product and Create Order. In these use cases, the following
artifacts have to be changed:

o form /Utils/Forms/ProductForm.php—to
add four more buttons for image upload and the
validation for each one

« method showOne () in view
/View/Product .php—to create four thumbnail
pictures under the large one and to link them to the
JavaScript slideshow

D. Discussion

What is critical in applying this approach is the ability
to discern different parts of the use case and implement
it in appropriate places of source code. For example, the
validation of the date format should be performed within
the form validation, and not in the data model. Or the
functionality that is very often changed in one place should
be captured in an extension use case. When wrong decisions
about “what to implement where” are made, source code will
not be compendious. Therefore, a strong understanding of
the presented concepts and their role is crucial to sound use
case implementation.

The approach proposed here is based on the needs of
systems that are built on client—server architecture with the
focus on complex enterprise demands. In such systems,
data models, forms, views, and control blocks are very
easy to find and therefore easy to implement at source
code level. On the other hand, some back-end systems, for
example, that have almost no presentation layer and get only
a minimal input from the user, might not be appropriate
for this approach. This is not because this approach is not
capable of handling this type of systems, but because its
main advantage of making use case code comprehensible

and traceable despite their parts are implemented in different
places will be lost.

From the software process point of view, after the release
of an application to production (or after a shippable product
increment in agile approaches), new functionality will be
added and existing will be improved. Each software artifact
being added increases the probability that refactoring will be
needed. For example, some functionality pieces may become
repeated or perhaps some use cases will get merged making
new extensions apparent. That being said, refactoring of
existing source code with each use case implementation is
an important implicit part of the approach proposed here;
otherwise source code will not be compendious.

VI. RELATED WORK

Aspect-oriented development with use cases [2] relies
fully on the capabilities of aspect-oriented programming to
implement use cases. As has been discussed in Section II,
this approach is successful in modularizing both peer and ex-
tension use cases. In the approach proposed in this paper, this
is achieved purely by object-oriented means fully supported
by the mainstream programming languages independently
of aspect-oriented programming language extensions, which
are often available only at the prototype level or are obsolete
with respect to the host language development. The proposed
here in this paper involves traits, which can be viewed as
an aspect-oriented mechanism in a broader sense of aspect-
orientation [8].

The DCI (Data-Context-Interaction) architecture is a vi-
sion to capture system-wide actions in the object-oriented
paradigm [9], [10]. Its promise is to align perspective of the
programmer and the end user in source code. This is done by
separation of data (domain classes) and roles that are played
in a given context. DCI approaches the problem with the
intention to discern between the model domain and the more
complex interactions of objects but offers rather brief case
study with only few examples of use cases retained in source
code. It does not deal with managing added complexity when
dozens of use case implementation will be present in one
system. Annotations can map certain methods to use cases,
but the whole project structure remains the same and is not
implicitly organized by use case as in the approach proposed
in this paper. In addition, no refactoring solution are offered
as part of the approach.

Requirement traceability aims at ensuring that all require-
ments are tied to business objectives [11]. The goal is to
link stakeholder’s needs to the software product features,
which are linked to use cases, which are in turn linked to
test cases. A change in a requirement has an impact on
the corresponding features, and, consequently, on the corre-
sponding use cases. Respecting requirements is essential for
a software product to meet the business objectives. Without
maintaining traceability links, it is very difficult to achieve
this effectively. The approach proposed in this paper has, to

some degree, a traceability matrix directly in source code in
a form of the UseCase directory, which contains classes
with methods that correspond to use cases. These classes
are distributed into directories based on actor names, which
makes the connection to the corresponding use cases and
their realization in the source code even more apparent.
Use cases are a particularly useful way of modularizing
code that makes its intent more comprehensible, but other
views might be also of interest. Dynamic code structur-
ing [12], [13], [14] may be of help in providing multiple
views without having to actually restructure the code.

VII. CONCLUSIONS

Retaining use cases in the source code is not a trivial
problem. While aspect-oriented programming offers one
solution to retaining use cases, there are also opportunities in
the mainstream object-oriented programming languages that
have no reliable support for aspect-oriented programming.
This paper brings an approach to retaining use cases in
source code by object-oriented means that employs three
techniques: traits, the Event pattern (extracted from the
Zend’s framework EventManager component), and the Front
Controller pattern. By these techniques, all possible kinds
of use cases with the exception of specialization use cases
are addressed: peer use cases, extension use cases, and
inclusion use cases. Use cases are not fully modularized as
in aspect-oriented software development with use cases, but
the approach ensures their parts can be easily traced.

The evaluation of the approach has been performed on
the online shop application demonstrating how the presented
approache can help developers retain parts of the use cases
at the source code level and how a use case can be added,
removed, or altered.

ACKNOWLEDGMENT

The work reported here was supported by the Scientific
Grant Agency of Slovak Republic (VEGA) under the grant
No. VG 1/1221/12. This contribution/publication is also a
partial result of the Research & Development Operational
Programme for the project Research of Methods for Acqui-
sition, Analysis and Personalized Conveying of Information
and Knowledge, ITMS 26240220039, co-funded by the
ERDF.

REFERENCES

[1] V. Vrani¢ and Lubos Zelinka, “A configurable use case mod-
eling metamodel with superimposed variants,” Innovations in
Systems and Software Engineering: A NASA Journal, vol. 9,
no. 3, pp. 163-177, 2013.

[2] I. Jacobson and N. Pan-Wei, Aspect-Oriented Software De-
velopment with Use Cases. Addison-Wesley, 2004.

[3] M. Achour et al., “PHP manual,” PHP Documentation Group,
Jun. 2015, http://php.net/manual/.

[4] Zend Technologies Ltd., “Programmer’s reference guide
of Zend framework 2,” Jan. 2014, release 2.3.4, http://
framework.zend.com/manual/.

[5] J. Lang and J. Janik, “Reactive distributed system modeling
supported by complex event processing,” in Proceedings
of 3rd Eastern European Regional Conference on the En-
gineering of Computer Based Systems, ECBS-EERC 2013.
Budapest, Hungary: IEEE CS, Aug. 2013, pp. 163-164.

[6] A. Hunt and D. Thomas, The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley, 1999.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Wiley, 1996.

[8] J. Bélik and V. Vrani¢, “Symmetric aspect-orientation: Some
practical consequences,” in Proceedings of NEMARA 2012:
International Workshop on Next Generation Modularity Ap-
proaches for Requirements and Architecture, at AOSD 2012.
Potsdam, Germany: ACM, 2012.

[9] T. Reenskaug and J. O. Coplien, “The DCI architecture: A
new vision of object-oriented programming,” OOPSLA ’02
Workshop on Tool Support for Aspect Oriented Software
Development, 2009.

[10] J. O. Coplien and G. Bjogrvig, Lean Architecture: for Agile
Software Development. Addison-Wesley, 2010.

[11] D. Leffingwell and D. Widrig, “The role of requirements
traceability in system development,” The Rational Edge, Sep.
2002.

[12] M. Nosal and J. Porubén, “Supporting multiple configuration
sources using abstraction,” Central European Journal of
Computer Science, vol. 2, no. 3, pp. 283-299, 2012.

[13] M. Nosal, J. Porubin, and M. Nosal, “Concern-oriented
source code projections,” in Proceedings of 2013 Federated
Conference on Computer Science and Information Systems,
FedCSIS 2013. Krakéw, Poland: IEEE, 2013, pp. 1541-
1544.

[14] J. Porubin and M. Nosil, “Leveraging program compre-
hension with concern-oriented source code projections,” in
Proceedings of Slate’14, 3rd Symposium on Languages, Ap-
plications and Technologies, Braganga, Portugal, 2014, pp.
35-50.

