Modularizing Code by Use Cases and Tests for Better
Maintainability

Michal Bystricky and Valentino Vrani¢
Institute of Informatics, Information Systems and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava
Ilkovicova 2, Bratislava, Slovakia
michal.bystricky@stuba.sk,vranic@stuba.sk

CCS CONCEPTS

« Software and its engineering — Abstraction, modeling and
modularity; Object oriented development; Use cases; Accep-
tance testing; Object oriented architectures; Object oriented lan-
guages;

KEYWORDS

use case; modularization; user acceptance tests; test driven devel-
opment; Cucumber

ACM Reference format:

Michal Bystricky and Valentino Vrani¢. 2017. Modularizing Code by Use
Cases and Tests for Better Maintainability. In Proceedings of Programming
’17, Brussels, Belgium, April 03-06, 2017, 1 pages.

DOI: http://dx.doi.org/10.1145/3079368.3079379

1 BACKGROUND

In common object-oriented code, user acceptance tests, which play
a very important role in any kind of software development pro-
cess and which follow procedural modularization, would be scat-
tered and, consequently, hard to maintain. This is of particular
importance, since it is known that user acceptance tests immensely
improve code comprehension, as can be seen in the Cucumber
approach [4].

Use case driven modularization, which has gained some attention
so far via various approaches, and which enables to preserve use
cases in code, ranging from their structural preserving using aspect-
oriented means [5], preserving them at the level of roles [3], up
to preserving them literally [2], provides a very good basis for
modularizing code according to user acceptance tests.

2 ENVIRONMENT

We developed a modularization environment that enables to work
with both use case and test driven code modularization.! The envi-
ronment, which enables to organize code according to use cases and
tests simultaneously, and enforces their representations in code,
is based on our previous work on literal inter-language use case

!The environment and all results are available at useion.com.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Programming 17, Brussels, Belgium

© 2017 Copyright held by the owner/author(s). 978-1-4503-4836-2/17/04...$15.00
DOI http://dx.doi.org/10.1145/3079368.3079379

driven modularization [1]. To achieve this, the environment uses
static file processing.

Both use case and test driven modularizations remain compatible
while at the same time open new capabilities of having different
views on software based on use cases and various tests simultane-
ously. The environment synchronizes changes in multiple modular-
izations at the level of static file processing and enforces use case
and test representations in code by displaying a percentage of how
well use cases and tests are covered by code.

3 EXPERIENCE

In applying our environment to a real world application of 55 use
cases built on the OpenCart e-commerce platform, we observed
how use case and test driven modularization supported by our
environment simplify development and maintenance. Moreover,
the environment helps developers respond effectively to common
change requests using object-oriented, use case driven, and test
driven modularization interchangeably.

ACKNOWLEDGMENTS

This work was supported by the Scientific Grant Agency of Slovak
Republic (VEGA) under the grant No. VG 1/0752/14, Research &
Development Operational Programme for the project Research of
Methods for Acquisition, Analysis and Personalized Conveying of
Information and Knowledge, ITMS 26240220039, co-funded by the
ERDF, and STU Grant scheme for Support of Young Researchers
(M. Bystricky).

REFERENCES

[1] Michal Bystricky and Valentino Vrani¢. 2016. Development Environment for
Literal Inter-Language Use Case Driven Modularization. In MODULARITY Com-
panion 2016, Companion Proceedings of the 15th International Conference on Mod-
ularity, Modularity 2016, Modularity 2016 Demos & Posters. ACM, Malaga, Spain.

[2] Michal Bystricky and Valentino Vrani¢. 2016. Literal Inter-Language Use Case
Driven Modularization. In Proceedings of LaMOD’16: Language Modularity A La
Mode, workshop, Modularity 2016. ACM, Malaga, Spain.

[3] James Coplien and Gertrud Bjernvig. 2010. Lean Architecture for Agile Software
Development. Wiley.

[4] Shankar Garg. 2015. Cucumber Cookbook. Packt Publishing.

[5] Ivar Jacobson and Pan-Wei Ng. 2004. Aspect-Oriented Software Development with
Use Cases. Addison-Wesley.

http://useion.com/

	1 Background
	2 Environment
	3 Experience
	Acknowledgments
	References

