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1 BACKGROUND

In common object-oriented code, user acceptance tests, which play
a very important role in any kind of software development pro-
cess and which follow procedural modularization, would be scat-
tered and, consequently, hard to maintain. This is of particular
importance, since it is known that user acceptance tests immensely
improve code comprehension, as can be seen in the Cucumber
approach [4].

Use case driven modularization, which has gained some attention
so far via various approaches, and which enables to preserve use
cases in code, ranging from their structural preserving using aspect-
oriented means [5], preserving them at the level of roles [3], up
to preserving them literally [2], provides a very good basis for
modularizing code according to user acceptance tests.

2 ENVIRONMENT

We developed a modularization environment that enables to work
with both use case and test driven code modularization.! The envi-
ronment, which enables to organize code according to use cases and
tests simultaneously, and enforces their representations in code,
is based on our previous work on literal inter-language use case

!The environment and all results are available at useion.com.
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driven modularization [1]. To achieve this, the environment uses
static file processing.

Both use case and test driven modularizations remain compatible
while at the same time open new capabilities of having different
views on software based on use cases and various tests simultane-
ously. The environment synchronizes changes in multiple modular-
izations at the level of static file processing and enforces use case
and test representations in code by displaying a percentage of how
well use cases and tests are covered by code.

3 EXPERIENCE

In applying our environment to a real world application of 55 use
cases built on the OpenCart e-commerce platform, we observed
how use case and test driven modularization supported by our
environment simplify development and maintenance. Moreover,
the environment helps developers respond effectively to common
change requests using object-oriented, use case driven, and test
driven modularization interchangeably.
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