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Abstract

Multi-paradigm software development is a spontaneous answer to attempts of finding
the best paradigm. It was present in software development at the level of intuition and
practiced as the “implementation detail” without even mentioning it in the design. Its
breakthrough is twofold: several recent programming paradigms are encouraging it, while
explicit multi-paradigm approaches aim at its full-scale support.

However, to reach this goal, multi-paradigm approach must be improved and refined.
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Chapter 1

Introduction

The way of software development is changing. Enforced by the need for mass production of
quality software and enabled by the grown-up experience of the field, it is moving towards
the industrialization.

This report maps the state-of-the-art in the field of post-object-oriented software en-
gineering; most notably, it is dedicated to the promising concepts of aspect-oriented pro-
gramming, generative programming and, particularly, multi-paradigm software develop-
ment.

This tendency can be felt not only in the new software development paradigms, i.e.
aspect-oriented programming, which is bound to the existing paradigms; it is present
already in the object-oriented programming. It is even more notable at language level.
It’s hard to find a language that is pure in the sense of prohibiting any other than its
proclaimed (main) paradigm from being used in it. This is the implicit form of what is
called multi-paradigm.

There are several approaches, which make this idea of multi-paradigm explicit by
enabling the developer not only to combine multiple paradigms, but also to choose the
most appropriate one for the given feature. This paradigm of paradigms is sometimes
denoted as metaparadigm.

The structure of the rest of this report is as follows.

Chapter 2 explores the concept of paradigm in computer science and software engineer-
ing.

Chapter 3 is an overview of some recent post-object-oriented paradigms, namely aspect-
oriented programming approaches and generative programming.

Chapter 4 proceeds with further recent post-object-oriented approaches. These are pre-
sented in a separate chapter because they exhibit an explicit multi-paradigm char-
acter.

Chapter 5 closes this report. It includes conclusions and proposals for further work.
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Chapter 2

The Concept of Paradigm in
Software Development

The paradigm is a very often used (but even more often abused) word in computer science
and software engineering today. Its importance arose especially with appearance of so-
called multi-paradigm approaches (which are discussed in Chapter 4). Before discussing
them, the concept of paradigm in software development requires a deeper examination.

However, before we go into this specific analysis, it would be useful to consider a
paradigm in a general sense; that is, the word paradigm itself. The meaning of the word
paradigm is analyzed in Section 2.1. In Section 2.2 its common usage to denote a software
development process as a whole is discussed. Section 2.3 explores further the concept
of paradigm in software development revealing another level at which paradigms can be
considered.

2.1 The Meaning of Paradigm

The term paradigm in science generally is strongly related to Kuhn and his work [Kuh97].
Although not explicitly defined in this essay, it leaves reader with understanding of
paradigm similar to this quoted from [BN97]:

A paradigm in general is a body of ways of formulating problems, methodolog-
ical tools of their solution, standard methodologies of their elaboration. It is
opinions, theories, methods, methodologies etc., which are accepted in a given
field.

As Kuhn discloses in the supplementary material published as a part of the book in later
editions, a certain reader after analyzing Kuhn’s essay, concluded that the term paradigm
is used there in at least twenty two different ways. Fortunately, most of the differences were
stylistic and could be resolved. But, even so, the two incompatible meanings remained:
paradigm as a constellation of groups’ belief and paradigm as a shared model example.
We will later see that this duality is not accidental and that it has its roots in the meaning
of the word paradigm.

Probably no science has accepted this term with such enthusiasm as computer science
did. In computer science (and software engineering) the term paradigm is used to denote
the essence of the software development process (often reduced to just programming),
which appears to be one of its key issues. Unfortunately, the term paradigm is used so
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often that hardly you can find a methodology or a method (or even just an improvement
of the method) today that has resisted the temptation to “become” a paradigm. This
abusing of the word paradigm introduces a confusion about its real meaning. This is why
we’ll take a brief look at the meaning of the word paradigm.

The Merriam-Webster Dictionary gives a following definition of the word paradigm:

1. example, pattern; especially: an outstandingly clear or typical example
or archetype

2. an example of conjugation or declension showing a word in all its inflec-
tional forms

3. a philosophical and theoretical framework of scientific school or discipline
within which theories, laws, and generalizations and the experiments per-
formed in support of them are formulated.

Etymologically, paradigm comes from Late Latin paradigma, which comes form Greek
paradeigma; this comes from paradeiknynai meaning “to show side by side”. Closest to
this original meaning is the first meaning, i.e. example or pattern. This is the most general
meaning of the three meanings from the dictionary. It makes no restriction regarding the
size of the example or the pattern denoted by the word paradigm.

The second meaning shows how the word paradigm found its realization in the micro-
context—at language construct level. The third meaning obviously denotes something
big and complex; this the realization of the word paradigm in the macro-context—as a
framework of a discipline (this is actually a kind of Kuhn’s definition of the term).

This duality of the term paradigm is present in the software development, too, as it
will be shown in the next two sections.

2.2 Large-Scale Paradigms

The notion of paradigm in software development is used at two levels of granularity, and
this comes as no surprise after the previous section. The first one, large-scale! level, is the
one we usually mean when speaking of software development paradigms in a traditional
sense.

This large-scale meaning of the term software development paradigm (or, more often,
simply paradigm), denotes the essence of certain software development process. The name
of a paradigm reveals the most significant characteristic of the paradigm. Sometimes, it is
derived from a central abstraction the paradigm deals with, as it is a function to functional
paradigm, an object to object-oriented paradigm? etc.

In spite of the fact that software development paradigm refers to all the phases of
the software development process, not only to implementation, in place of a term soft-
ware development paradigm often we can find a term programming paradigm or even just
programming (e.g. object oriented programming, OOP). On the other hand, in order to
be more explicit, expression OO0 analysis and design (OOA/D) can be used to refer to
the analysis and design phases of OO software development process, and OOP to refer
specifically to its implementation phase.

!Coplien used this term to denote programming paradigms in, as he said, a “popular” sense of the
term [Cop99b].

2This is not so clear. For example, according to [Mey97] it is not object but class that is a central
abstraction in the OOP.
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‘ Paradigm ‘ Main abstraction
Imperative command
Procedural procedure
Object-oriented | object/class
Functional function
Logic expression

Table 2.1: Paradigms and their main abstractions

When speaking of software development paradigms, it must be distinguished between
the concept of paradigm and the means that are used to support its realization. Any
paradigm can be visualized by means of a visual environment and thus it makes no sense
to speak of a visual paradigm as an independent paradigm. Otherwise we should consider
syntax highlighting as a paradigm, too. Unfortunately, as it was already pointed out,
this abuse of the word appears to be a source of confusion. So, for example, in [Bud95]
the visual paradigm is mentioned with the observation that it is actually “a family of
paradigms”. This is correct only if we accept that all the paradigms are members of one
(big) family. Well, yes, they are, but does this classification makes sense? Of course, this
is not to say that it is not useful to group paradigms according to common features.

Making a complete classification and comparison of the software development paradigms
is beyond the scope of this text; Navrat in [Nav96] compares selected programming
paradigms regarding abstraction and generalization. Thus, Table 2.1 shows only five
(well-known) paradigms and the main abstraction of each.

Programming language is often classified according to the paradigm it supports; so,
among others, procedural, object-oriented and functional languages exist. However, this
does not mean that language is incapable of supporting some other paradigm (e.g. C++).
A programming language must not be confused with the paradigm it supports. Program-
ming language can be seen as a vehicle for the application of a paradigm.

Software development paradigm is constantly changing, improving, or better to say
refining. Basic principles it lays on must be preserved; otherwise it would change into
another paradigm. So, it can be said that paradigms are at different levels of maturity.

As this report is concerned with post-object-oriented software development, let’s con-
sider the object-oriented paradigm and its predecessors depicted in Fig. 2.1. The arrows
represent “evolved into” relationship. This is what makes these paradigms closer to each
other than, say, object-oriented and logic paradigm. A simplified view of this paradigm
evolution goes like this. First, there were commands (imperative programming). Then,
named groups of commands appeared: procedures (procedural programming). Finally,
procedures were put together with the data it operated on: classes/objects (object-oriented
programming).

However, according to Kuhn, paradigms do not evolve, although it can seem so. He
speaks of the scientific revolution which ends up the old and starts a new paradigm [Kuh97].
A paradigm is dominant by definition and thus there can be only one paradigm at a time
in a given field. This is a contradiction with the existence of five or more software de-
velopment paradigms indicating that the field is either in the unstable state, either all
these paradigms are part of one big, but unrecognized paradigm standing above them:
metaparadigm.

A software development paradigm, or a large-scale paradigm, as denoted in this chap-
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Imperative programming
Procedural programming

Object-oriented programming

Figure 2.1: The evolution line of OOP.

ter, seem to be somehow an elusive concept, in the sense that it’s hard to define it precisely.
Another look at paradigms is offered in the next section.

2.3 Small-Scale Paradigms

There is another possibility to define programming paradigm. It comes out from its use to
denote mechanisms of the programming languages. This is similar to paradigms in natural
languages where (as we saw in Section 2.1) paradigm denotes an example of conjugation
or declension showing a word in all its inflectional forms. These paradigms seem to be
somehow “smaller”, so we will refer to them as small-scale paradigms.

This perception of paradigm is apparent in Coplien’s multi-paradigm design [Cop99c|
(which is discussed in Section 4.2). According to Coplien et al. [CHW9S8], we can factor
out paradigms such as procedures, inheritance and class templates. We can identify a
common and a variable part, which together constitute a paradigm. This is analogous to
conjugation or declension in natural languages, where the common is the root of the word
and variability is expressed through the suffixes or prefixes (or even infixes), which must
be added to obtain different forms of the word.

Scope, commonality and variability (SCV) analysis can be used to describe paradigms
at language level, as it is presented in [CHW98]. Keywords of SCV analysis have the
following meanings:

Scope (S): a set of entities®
Commonality (C): an assumption held uniformly across a given set of entities S
Variability (V): an assumption true of only some elements of S.

For example, procedures paradigm according to SCV analysis looks like this (an exam-
ple adapted from [CHW98]):

e S: a collection of similar code fragments, each to be replaced by a call to some new
procedure P

e C: the code common to all fragments in S

e V:the “uncommon” code in S; variabilities are handled by parameters to P or custom
code before or after each call to P.

*Instead of entities in [CHW98] the word objects was used. This could lead to misunderstanding because
of OOP.
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SCV analysis is not limited to description of the paradigms—it is of wider usability
and importance, especially in the context of the multi-paradigm design (see Section 4.2).

If we take paradigms the way they are described in this section, then programming
language that supports only one paradigm is more an exception than a rule. So, pro-
gramming language can support, by the means of the language constructs, one or more
programming paradigms. On the other hand, programming paradigm can, of course, be
supported by several programming languages.

The relationship between small- and large-scale paradigms is similar to that between
small-scale paradigms and programming languages; large-scale paradigms consist of small-
scale ones. The name of the large-scale paradigm sometimes comes from the most signifi-
cant small-scale paradigm it contains. For example, object-oriented (large-scale) paradigm
consists of the several (small-scale) paradigms:* object paradigm, procedure paradigm,’
virtual functions, polymorphism, overloading, inheritance etc.

Having a richly expressive programming language that supports multiple paradigms
introduces another issue: a decision must be made which paradigm is appropriate for
which feature to be implemented. That means we need a method for choosing paradigms
that is above them, i.e. metaparadigm (a particular metaparadigm—multiparadigm design
for C++—is described in Section 4.2).

2.4 Summary

In this chapter, starting from the general meaning of the word paradigm, we came to its
specific use regarding software development. Two levels of its use were identified and
briefly described: large-scale and small-scale.

Regarding the relationship between these two concepts, one more thing requires to be
clarified. One could understand small-scale paradigms as a programming language issue
only, while large-scale programming paradigms seem to be broader in scope as they are
affecting all the phases of the software development. Actually, the small-scale paradigms
have an impact on all the phases of the software development as well; either without formal
support in the development process, or with it (as it is the case in Coplien’s multi-paradigm
design for C++, see 4.2).

Programming paradigm, as a concept, requires further investigation in order to gather
a more precise understanding of both large- and small-scale paradigms. However, since
this is beyond the scope of this report, and since a substantial level of understanding of
the concept has already been achieved, we shall proceed with the analysis of some recent
post-object-oriented paradigms.

*Lack of a common agreement what are the exact characteristics of the object-oriented paradigm makes
impossible to introduce an exact list of the small-scale paradigms out of which object-oriented paradigm
consists.

SProcedure paradigm is present through class methods.
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Chapter 3

Recent Software Development
Paradigms

Among the recent software development paradigms there is a significant group of those
that appeared as a reaction to the issues tackled but not satisfactorily solved by the
object-oriented programming.

Many of these paradigms actually build upon object-oriented paradigm. In spite of
that some of them are claimed not to be bound to object-oriented paradigm (and in
deed they are more generally applicable), they are still widely applied in connection with
object-oriented programming (not accidentally, as we shall see).

In this chapter, several such post-object-oriented software development paradigms are
discussed. However, the first section is a short excursion to the object-oriented program-
ming because of its importance for the paradigms presented briefly in the following three
sections.

3.1 Beyond Object-Oriented Programming

Human perception of the world is to a great extent based on objects. From our earliest days
we encounter objects around ourselves, we find out their behavior, i.e. their properties and
what we can do with them. Object-oriented paradigm is based precisely on this perception
of the world natural to humans.

What exactly is the object-oriented programming? This question seems to be an
answered one. Actually, there is a plenty of answers to this question, but the trouble is
that they are all different (for possible reasons why is it so see [Cop96]).

The object-oriented programming (OOP) has passed a very long way of changes to
reach the form in which it is known today. Yet, there is no general agreement on the
definition of the essential properties of the object-oriented paradigm (to some, even inher-
itance is not an essential part of the object-orientation, or it is being denoted as a minor
feature [Bud95]).

Booch, for example, makes difference between major and minor elements of the object
model, which is “the conceptual framework for all things object-oriented” [Boo94]. The
major elements are: abstraction, encapsulation, modularity and hierarchy. The minor
elements, i.e. those not essential, are: typing, concurrency and persistence.

Meyer is more specific. He identifies a few dozens of criteria for object-orientation
grouped in the three categories [Mey97]: method and language, implementation and en-
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vironment, and libraries.

Booch’s elements of object-orientation cover the first Meyer’s category, method and
language, and they are not in contradiction with any Meyer’s criterion from this category,
but they are not so restrictive. For example, according to Meyer’s criterion classes as types,
the type is modeled by a class, while Booch does not make such an explicit restriction. On
the other hand, as Meyer says, “‘object-oriented’ is not a boolean condition”; something
can be object-oriented only to some extent.

OOP is not always the best choice among all the paradigms. This is recognized even
in the OOP literature. Thus Booch points out that there is no single paradigm best for all
kinds of applications. But OOP has another important feature: it can serve well as “the
architectural framework in which other paradigms are employed” [Boo94]. This reveals
that OOP is multi-paradigmatic in its very nature and doesn’t leave much space for the
object-oriented purism.

This object-oriented purism comes from the dogma that everything should be modeled
as an object. Thus, in the “pure” OOP we are taught to see everything as an object, but
not everything is an object; neither in a real world, nor in programming. Synchronization
is a well-known example of a non-object concept. In natural language, we would probably
refer to it as an aspect. The aspects crosscut the structure of objects, or (i.e. functional
components, in general), which makes the code tangled. The pieces of code are either
repeated throughout different objects or unnatural inheritance (often multiple one)! must
be involved. Among other, this “code scattering” has a bad impact on reuse.

There are other problems with OOP, concerning issues it was proposed to solve, mainly
in the areas of reuse,? adaptability, management of complexity and performance [Cza98].

There is one more reason against the OOP as the best paradigm regarding the concept
of paradigm (as discussed in Chapter 2). A paradigm must be universal in its field (or,
at least, to be seen as such). Is OOP a universal paradigm in software engineering? To
simplify the problem, let’s consider just C++ as a part of the field of software engineer-
ing. So, is OOP a universal paradigm in C++7 The answer that it’s not because C++
provides non-object-oriented features and, moreover, enables to program in a completely
non-object-oriented fashion. So, if OOP isn’t the universal paradigm in C++4, which is
just a part of software engineering field, how can it be universal in the software engineering
as a whole?

3.2 Aspect-Oriented Programming and Related Approaches

According to one of those who stood upon the birth of the aspect-oriented programming,
Gregor Kiczales [KLM™97], aspect-oriented programming (AOP) is a new programming
paradigm® that enables the modularization of crosscutting concerns.

Xerox PARC AOP group [Xer] is the integrating force in AOP. The name aspect-
oriented programming was actually invented by them. Of course, the other groups doing
AOP research are of no less importance. In fact, AOP ideas materialized in several places
independently and, as soon as this was discovered, the collaboration among various groups
and individuals working on AOP begun. Yet it is not clear will this process lead us towards
unification of AOP approaches or will these AOP techniques grow up to loosely coupled,
yet different, paradigms and thus preserving AOP’s multi-paradigm character.

!This is not to claim that multiple inheritance is unnatural in general.
2Software reuse not only in the context of OOP is discussed in [SN97].
3Kiczales denotes it as methodology.
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A list of groups and individuals doing AOP research is maintained by Xerox PARC
AOP group and it is growing (a complete list is available at Xerox PARC AOP home
page [Xer]). We'll take a closer look at four AOP techniques, which constitute the basis of
AOP research until now and thus are of great importance for further AOP development:

e Kiczales et al. at Xerox PARC: AOP, Aspect] [Xer]

Lieberherr et al. at Northeastern University: adaptive programming (AP) [Dem]

Aksit et al. at the University of Twente: composition filters (CF) [TRE]
e Ossher et al. at IBM Research: subject-oriented programming (SOP) [IBM]

As it is usual with industrial methodologies (as opposed to formal ones), the focus
in AOP research has been on the implementation phase. Thus all of the approaches
mentioned are actually AOP implementation techniques. This means that there is an
open field of establishing the AO analysis and design methodology in order to complete
aspect-oriented development process.

AP and CF have been recently redefined by their inventors with respect to AOP as
special cases of it (see Sections 3.2.2 and 3.2.3). This is not the case with SOP and there
is no common agreement whether SOP is AOP or not (see Section 3.2.4).

Yet another questionable issue is whether AOP is OOP bound or not. A paradox
is that although AOP techniques listed build upon OOP, the very idea of the AOP is
not limited to it. This is because aspects tend to crosscut functional units of the system
(referred to as generalized procedures in AOP papers [KLM™97]), i.e. this problem arises
in non-object-oriented systems as well.

3.2.1 Aspect-Oriented Programming

As mentioned before, Xerox PARC group gave name to AOP. Actually, most of the AOP
terminology (like aspect, crosscutting, tangling, weaving) adopted later by others was in-
vented by them. Most of research effort is being concentrated on AspectJ, a general
purpose AOP extension to Java [LK98].

The idea of Xerox PARC AOP is best presented by an example. In Fig. 3.1 two classes
are presented, Point and Line, with three kinds of methods: creating, writing and reading
(implementations are not shown). Suppose we want to be warned by a text on the screen
what kind of access to these classes has been performed. In ordinary Java we would have
to modify each method of both Point and Line. This would result in what is known as
tangled code. To avoid this, in AspectJ we can use aspects. In our example it is the aspect
ShowAccesses that solves the problem. Note that the original code remains unchanged.
Before running the ordinary Java compiler, so-called weaver must be used, which would
weave the aspect into the code.

The solution incorporating aspects is undoubtedly more elegant than the tangled one,
but consider again the Fig. 3.1. The information of where aspect is to be woven, known
as join-points, is included in the aspect itself, which complicates the reuse of aspects.

3.2.2 Adaptive Programming

The adaptive programming (AP) proposed by Demeter group [Dem] at Northeastern Uni-
versity in Boston deals mainly with traversal strategies of class diagrams.
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class Point {
Point (int x, int y);
void set(int x, int y);
void setX(int x);
void setY(int y);
int getX();
int getY();

}

class Line {
Line(int x1, int y1, int x2, int y2);
void set(int x1, int yl, int x2, int y2);
int getX1();
int get¥1();
int getX2();
int get¥2();

}

aspect ShowAccesses {

static before void Point.set(*), void Line.set(*), void Line.set(){
System.out.println("Write");

}

static before int Point.getX(), int Point.getY(),
int Line.getX1(), int Line.getY1(), int Line.getX2(), int Line.get¥Y2() {
System.out.println("Read");

}

static before Point(*), Line(*) {
System.out.println("Create");

}
}

Figure 3.1: An Aspect]J example (based on example from [LK98])

The Demeter group has used AOP ideas for several years before the name aspect-
oriented programming was coined. The collaboration with the Xerox PARC AOP group
then begun and Demeter group redefined the AP as the special case of AOP where one of
the aspects is expressible in terms of graphs and where the other aspects or components
refer to the graphs using traversal strategies. The traversal strategies are partial specifi-
cations of a graph pointing out a few cornerstone nodes and edges and thus crosscut the
graphs they are intended for while only mentioning a few isolated nodes and edges.

For example, assume we have a UML class diagram of a system as presented in the left
part of Fig. 3.2. Assume we would like to count on the people waiting at the bus stations all
along the bus route. Clearly, in ordinary OOP, this would require either implementation
of small methods in all of the affected classes (shaded ones) or rough breaking of the
encapsulation principle by exposing some of the private data of the classes.

If we use a traversal strategy, as it is proposed in AP, there is no need for a change in
the existing classes. In this case, the traversal strategy:

from BusRoute through BusStop to Person

solves the problem of getting to Person objects along the bus route, which is sufficient to
count them.

The right part of Fig. 3.2 demonstrates the robustness of this technique—the traversal
strategy mentioned above applies in this case without any change although a class diagram
it was constructed for changed.
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busSt ops

BusRout e BusSt oplLi st BusRout e vi |l ages BusSt oplLi st
buses 0..* buses |Villageli st busStops|g. =
0..*
BusLi st Bus St op BusLi st BusSt op
Vill age
0..* wai ting 0..* wai ting
Bus passsengers Per sonLi st Bus passsengers Per sonLi st

Per son Person

Figure 3.2: Traversal strategies (from [Lie97])

3.2.3 Composition Filters

Composition filters is an aspect-oriented programming technique where different aspects
are expressed as declarative and orthogonal message transformation specifications called
filters [AT98].

A message sent to an object is evaluated and manipulated by the filters of that object,
which are defined in an ordered set, until it is discarded or dispatched (i.e. activated or
delegated to another object).

The filter behavior is simple: each filter can either accept or reject the received mes-
sage, but the semantics associated with these depend on the filter type; e.g. if an Error
type filter accepts the received message, it is forwarded to the next filter, but if it was a
Dispatch type filter, the message would be executed. Detailed description of the compo-
sition filters can be found in [AWB'93, Koo95].

In Fig. 3.3 two sets of filters (written in Sina language [Koo095], which directly adopts
the CF model [AT98, AWB"93]) attached to the Point and Line classes from Fig. 3.1
respectively are shown. We assume the existence of the class ShowAccess with three
methods: WriteAccess, ReadAccess and CreateAccess (the instance acc of this class is
used in filters). These methods simply write out one of three possible messages about the
type of the access. They are called by three corresponding Dispatch filters, in case the
message was accepted. Afterwards, the method of the inner object, which has been called,
is executed (inner.x*).

If we consider this example in the AOP terminology, then the class ShowAccess actually
implements the aspect, while filters represent the join points. Thus, the join points in this
case are separated from the aspect, which is better regarding the aspect reuse.

3.2.4 Subject-Oriented Programming

We define a certain object, or more generally a concept, by its properties. This is sufficient
to precisely define and identify mathematical concepts, but the same does not apply to
natural concepts because their definitions are subjective and thus never complete (more
details about conceptual modeling can be found in [Cza98]).

Subject-oriented programming is based on subjective views, so-called subjects. SOP is
being developed at IBM (see [IBM]). It was proposed as an extension of the OOP and
thus subject is a collection of classes or class fragments whose hierarchy models its domain
in its own, subjective way. A complete software system is then composed out of subjects
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Point
acc: ShowAccess;
inputfilters
WriteAccess: Dispatch = {set, acc.WriteAccess, inner.*};
ReadAccess: Dispatch = {getX, getY, acc.ReadAccess, inner.*};
CreateAccess: Dispatch = {Point, acc.CreateAccess, inner.*};
Execute: Dispatch = {true => inner.*};

Line
acc: ShowAccess;
inputfilters
WriteAccess: Dispatch = {set, acc.WriteAccess, inner.*};
ReadAccess: Dispatch = {getX, getY, getX1l, getY1l, acc.ReadAccess, inner.*};
CreateAccess: Dispatch = {Line, acc.CreateAccess, inner.*};
Execute: Dispatch = {true => inner.*};

Figure 3.3: A filter attaching example

by writing the composition rules, which specify the correspondence of the subjects (i.e.
namespaces), classes and members to be composed and how to combine them.

As a result of the research effort in SOP, the Watson Subject Compiler was devel-
oped [KOHK96], which allows partial (subjective) definitions of C++ program elements
and automates the composition required to produce a running program. There are also
other platforms SOP support was built for, such as IBM VisualAge for C++ Version 4,
HyperJ and Smalltalk [IBM].

The example from Fig. 3.1 reimplemented in Watson Subject Compiler-like syntax*
is presented in Fig. 3.4. We assume that class ShowAccess is implemented in Access
namespace and that classes Point and Line are implemented in Graphics namespace.
In this case the join-points, represented by the composition rules, are separated from the
aspect, which is represented by the separate class, as it was the case in CF approach, too.
Composition rules for the classes getY, getX1, getY1 and getX2 are omitted in Fig. 3.3
(indicated by ellipsis) since they are analogous to the rule for getX.

This is not a characteristic case of the application of SOP (such as can be found
in [OHBS94, KOHK96, IBM]); it is presented here in order to show how a well-known
AOP example can be easily transformed into its SOP version. Nevertheless, there is no
general agreement whether SOP is AOP. Czarnecki [Cza98] views SOP as a special case of
AOP where the aspects according to which the system is being decomposed are chosen in
such a manner that they represent different, subjective views of the system. On the other
hand, Kiczales et al. [KLM™97] reject the very idea that SOP (which they call subjective
programming) could be AOP, arguing that the methods involved in automatic combination
of methods for a given message from different subjects supported in SOP are components
in the AOP sense since they can be well localized in a generalized procedure (routine).
But this seem to be a more general issue, since it applies to AspectJ too, named aspectual
paradoz by Liebrherr et al. [LLM99]: “an aspect described in AspectJ, the Xerox PARC’s
AOP language, which has a construct for specifying aspects, is by definition no longer an
aspect, as it has just been captured in a (new kind of) generalized routine”.

It is worth mentioning, as Czarnecki [Cza98] observed, that SOP is close to GenVoca
approach [Bat99, BG97], where the systems are composed out of layers according to the
design rules (for further information on this topic see [PLA]): GenVoca layers can be easily

*According to the information available in the papers regarding SOP, a composition presented is regular,
although the actual syntax could by slightly different.
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namespace GraphicsWithAccess{
class Point;
class Line;}

GraphicsWithAccess.Point.Point :=

Merge [Graphics.Point.Point, Access.ShowAccess.CreateAccess];
GraphicsWithAccess.Line.Line :=

Merge [Graphics.Point.Line, Access.ShowAccess.CreateAccess];

GraphicsWithAccess.Point.set :=

Merge [Graphics.Point.set, Access.ShowAccess.WritelAccess];
GraphicsWithAccess.Line.set :=

Merge [Graphics.Line.set, Access.ShowAccess.WriteAccess];

GraphicsWithAccess.Point.getX :=
Merge [Graphics.Point.getX, Access.ShowAccess.ReadAccess];

GraphicsWithAccess.Line.getY2 :=
Merge [Graphics.Line.getY2, Access.ShowAccess.ReadAccess];

Figure 3.4: An example of the subject composition

simulated by subjects, which brings into connection AOP with GenVoca as a successful
approach to reusability [Bat99]. Of course, this does not mean that we can assume that
AOP is a practically proven technology; however, it speaks in favor of AOP.

3.3 Generative Programming

In his Ph.D. thesis, Czarnecki [Cza98] (and recently also in the book, which he wrote to-
gether with Eisenecker [CE00]) proposes a comprehensive software development paradigm,
which brings together the object-oriented analysis and design methods with domain engi-
neering methods that enable development of the families of systems: generative program-
ming.

The definition introduced in [CE00] reads:

Generative programming (GP) is a software engineering paradigm based on
modeling software systems families such that, given a particular requirements
specification, a highly customized and optimized intermediate or end-product
can be automatically manufactured on demand from elementary, reusable im-
plementation components by means of configuration knowledge.

GP is a unifying paradigm—it is closely related to object-oriented programming and
three other paradigms (see Figure 3.5):

e object-oriented programming, providing effective system modeling techniques
e generic programming, which can be summarized as “reuse through parameterization”

e domain-specific languages, which increase the abstraction level for a particular do-
main and are highly intentional, and

e aspect-oriented programming, used to achieve separation of concerns.
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Object-Oriented

Programming
Generic Generative
Programming Programming
Xerox Aspect-Oriented Domain-Specific
Programming Languages

Composition ——  Aspect-Oriented
Filters Programming

Demeter/Adaptive
Programming

Subject-Oriented
Programming

434

Figure 3.5: Generative programming and related paradigms. The arrows represent “is
incorporated into” relationship.

Object-oriented programming is present in GP indirectly as well (not depicted)—
through aspect-oriented programming approaches, which (although not object-oriented
bound) actually build upon OOP (Section 3.2).

GP first has to be tailored to a particular domain in order to be used. This process will
give us a methodology for the families of systems to be developed, which can be viewed
as a paradigm itself. This gives a certain metaparadigm flavor to GP.

In the implementation field, GP requires metaprogramming for so-called weaving (i.e.
joining the aspect part of the code with the functional one) and automatic configuration.
To support domain-specific notations, it needs syntactic extensions. Czarnecki proposes
active libraries as appropriate to cover this requirement. Active libraries, which can be
viewed as knowledgeable agents® interacting with each other to produce concrete compo-
nents, require appropriate programming environment.

3.4 Summary

Post-object-oriented paradigms presented here carry out a latent multi-paradigm idea with
them. This is not strange since this idea can be identified already in their predecessor—
object-oriented paradigm.

These paradigms are not object-oriented bound, but they fit well with object-oriented
programming. Actually, the very fact that they arose in dominance of object-orientation
in software development doesn’t seem to be an accident.

Also, certain unifying tendencies have been identified among the paradigms described.
This is especially apparent with generative programming, but the possibility of unifying
the AOP approaches (probably adapted to suite the common shell), too. In the examples
presented, we saw that some of these techniques can be applied interchangeably, namely

5Tt would be useful to consider some agent-oriented programming [Sho93] techniques here.
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Xerox PARC AOP, CF and SOP, with no substantial difference. Traversal strategies in AP
aim at different issues, but they are not in contradiction with other AOP techniques. How-
ever, the examples presented do not imply the interchangeability of the AOP techniques
in a general case and a further investigation is required.

An important characteristic of the AOP approaches and GP is that they don’t aim at
pushing out any other approach from the scene but, on the contrary, seek for the best way
to incorporate it. A further step from this partially hidden multi-paradigm nature of the
described approaches is to reveal it completely and express it explicitly. Such approaches
will be discussed in the next chapter.
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Chapter 4

Multi-Paradigm Approaches

In the survey of the recent post-object-oriented software development paradigms given in
the previous chapter a spontaneous move towards paradigms’ integration became apparent.
This chapter is a survey of several approaches that make this move towards multi-paradigm
explicit.

One possible approach is to create a new language in such a manner that it would
support multiple paradigms. This approach is demonstrated in section 4.1 on Budd’s
multi-paradigm programming in Leda. The other way is to determine the rules of selecting
the paradigms for solving particular issues when richly expressive (i.e. supporting multiple
paradigms) programming language is available. This is explored in section 4.2, which
describes Coplien’s multi-paradigm design for C++. However, each of the two has its
shortcomes. This makes a place for the third one, Microsoft’s intentional programming,
briefly presented in section 4.3.

4.1 Multi-Paradigm Programming in Leda

The question how to support multi-paradigm programming at language level yields a
simple answer: create a multi-paradigm language. Budd took this route towards multi-
paradigm programming by creating a multi-paradigm language called Leda [Bud95].

According to Budd, Leda language supports four programming paradigms: impera-
tive,! logic, functional and object-oriented. The term paradigm as used by Budd denotes
a large-scale paradigm (with respect to classification of paradigms introduced in Chap-
ter 2). This means that Leda actually supports more than four small-scale paradigms.
This is clear if we remember that, for example, object-oriented paradigm breaks down
into several small-scale paradigms (Section 4.2). Nevertheless, for simplicity, we will dis-
cuss just the mechanisms by which each of the four proclaimed paradigms is supported.

Leda has a Pascal-like (i.e. Algol-like) syntax and, moreover, the mechanism upon
which all four supported paradigms realization is based in Leda are functions.? This
makes a good background for the imperative (procedural) paradigm.

Logic paradigm is supported by a stereotypical type of function that returns a rela-
tion datatype and a special assignment operator <-. These indicate when an inference
mechanism, inherent to logic programming, is to be activated.

! Actually procedural, to be more precise.
?Meaning procedures returning values.
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The functional paradigm requires no special mechanism than that provided by func-
tions, i.e. procedures returning a value, since Leda permits a function to be an argument
to the other function or to return a function as a result. Thus, when programming in
Leda, a functional paradigm is achieved using the functions in a recursive fashion while
refraining from assignments.

The object-oriented paradigm is supported similarly like in the C++ or Object Pascal.
In addition to basic mechanisms of object-oriented paradigm, such as classes, inheritance,
encapsulation etc., Leda supports parameterized types (by some authors also considered
as a part of object-oriented paradigm, e.g. [Mey97]).

In spite of its limited use, Leda language is interesting because it demonstrates the
combination of paradigms. For example, the inference mechanism of logic programming
can be used inside of a procedure.

Of course, creating a language that supports multiple paradigms and expecting it
would be the best language to program in is similar to a hunt on the best programming
paradigm. Despite the number of supported paradigms in a programming language, that
number is finite; the paradigms that would appear after the establishment of that language
would not be included. One can argue that it is possible to extend the language with new
programming mechanisms in order to support new paradigms. This is, indeed, possible and
often practiced. Unfortunately, programming languages cannot be extended indefinitely
due to limitations set by parsing methods.

Leda is an example of a language created (from scratch) in order to support multiple
paradigms. However, we can consider interconnecting existing languages that support
different paradigms through an interface instead of making a completely new language (a
sort of language reuse). There is also a possibility of implementing one language on top
of the other, but this leads to a certain degradation of performance. More on this topic
and also an example of interconnecting object-oriented and logic programming (Loops and
Xerox Quintus Prolog) can be found in [KE88].

4.2 Multi-Paradigm Design for C++

Multi-paradigm design for C++ (MPD), as proposed by Coplien [Cop99b, Cop99a, Cop99c],
has its roots in multi-paradigm characteristics of C++. Despite these multi-paradigm
characteristics, C++ is often considered to be only an object-oriented language. As such,
C++ is used to implement the systems designed according to object-oriented paradigm.
However, non-object-oriented features of C++ are widely used, but without their “legal-
ization” in design.

Coplien proposes a particular metaparadigm intended for developing families of sys-
tems, which enables choosing the appropriate paradigm for the feature that has to be
designed and implemented. It is based on the SCV (scope, commonality and variability)
analysis mentioned in Section 2.3.

In his work regarding multi-paradigm design (cited above), Coplien abbreviates the
name scope, commonality and variability analysis to just commonality and variability
analysis and separates the two thus achieving two distinct analyses—commonality analy-
sis and variability analysis. Despite this formal distinction, the two analyses are performed
in parallel. Commonality analysis concentrates on common attributes while the aim of
the variability analysis is to parameterize the variation. This process yields commonal-
ity /variability pairings. Any such commonality/variability pairing represents a program-
ming paradigm—in the sense of the small-scale paradigms (discussed in Section 2.3).
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The two analyses are performed on both application and solution domain indepen-
dently and then the commonalities and variabilities of the application and solution domain
analyses are lined up, leading to use of the “right” paradigms supported by the language
for the corresponding analysis abstractions.

Although, in Coplien’s own words, “MPD is a craft that is neither fully an art nor fully
a rigorous discipline” [Cop99c, p. xv|, and to great extent relies on designer’s intuition
and experience, it is a move towards greater regularization of the application of multiple
paradigms in software development. Also, it has to be pointed out that despite it is called
just design, MPD is a complete software development process resulting into a program
implementation.

The major steps performed during the MPD are:

e commonality and variability analysis of the application domain
e commonality and variability analysis of the solution domain

e transformational analysis

e translation from the transformational analysis to the code.

These steps need not to be performed sequentially.? They can be performed in parallel
and revisited as needed. Before starting the actual MPD, it is recommended to evaluate
a possibility of the existing designs’ reuse. Also, it is recommended to consider the use of
the application-oriented languages. Coplien proposes this paradoxically as the last step.
However, there is no point in doing an analysis of the solution domain that is not going to
be used. Logically, the best time to choose the implementation language is after (possibly
during) the commonality and variability analysis of the application domain (if we are not
limited to a specific programming language according to requirements).

Commonality analysis of the application domain begins with finding commonality do-
mains and creating domain dictionary. It then proceeds in parallel with the variability
analysis. The results of the analysis —the parameters of variation for a given commonality
domain and their characteristics— are summarized in the variability tables consisting of
the following columns:

e parameters of variation

meaning (the decision being made)

domain

binding (binding time)*

default.

A parameter of variation can be a domain itself. To capture this relationship vari-
ability dependency graphs® are used. The notation of variability dependency graphs is
quite simple: the domains are depicted as ellipses, and the arrows point from the domain

3However, it is not possible to perform the transformational analysis without having finished at least a
part of the commonality and variability analyses of the application and solution domain.

“Describes how early the value of the parameter of variation is to be selected. The alternatives for C++
(in ascending order) are: source, compile, link (and load) and run.

Coplien sometimes calls them domain dependency graphs.
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to its parameters of variation. The variability dependency graphs are used to identify
overlapping domains (which can be merged). Also, they help to identify codependent
domains—domains with circular dependency (which must be resolved).

Commonality and variability analysis of the solution domain begins with the identifica-
tion of supported paradigms, which is actually a kind of the SCV analysis (see Section 2.3).
It results into an informal description of the identified paradigms structured as follows:

e commonality
e variability

e binding

e example.

It proceeds with exploring the negative variability—such a variability that violates the rule
of variation by attacking the underlying commonality. A positive variability, as opposed to
the negative one, is such a variability that can be parameterized. The negative variability
has to be kept small. If it becomes larger than the commonality, the design should be
refactored to reverse the commonality and variability.

The results of the commonality and variability analysis of the solution domain are
being summarized in the two types of tables. One type is used to express features for
negative variability and consists of the following columns:

e kind of commonality

e kind of variability

e language feature for positive variability

e language feature for corresponding negative variability.

The other type of the table, denoted as family table, expresses commonality and positive
variability pairings in the domain of the programming language (that is being used) and
contains the following columns:

e commonality

e variability

e binding

e instantiation

e language mechanism.

The tables obtained in the preceding analysis are used during the transformational
analysis. The variability table is aligned with the family table to see which language
feature is suitable for which part of design. This results into an annotated version of the
variability table including the additional column representing the language paradigm to
be used (denoted as technique).

Regarding the number of subdomains in the application domain and the number of
paradigms used, several types of MPD can be distinguished:
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e single domain—single paradigm

e multiple decoupled domains—single paradigm

e multiple decoupled domains—single paradigm for each subdomain

e multiple decoupled domains—multiple paradigms for each subdomain
e multiple subdomains in a directed acyclic graph—multiple paradigms.

With increasing number of domains and paradigms, the transformational analysis becomes
more complicated. Two last categories require a combination of paradigms (see Fig. 4.1).

template <class T>
bool sort(T elements[], int nElements){

}
Figure 4.1: A combination of the procedural and template paradigm (from [Cop99c]).

Multi-paradigm design as proposed by Coplien regularizes the use of multiple paradigms
by first making the concept of paradigm more formal. To achieve this,

Coplien points out the need for solution domain (i.e. implementation environment)
analysis, which is often underestimated. This results into a gap between design and
implementation. Multi-paradigm design makes this gap smaller. It enforces reusability
of design: both application and solution domain analyses can be reused independently
(however, the transformational analysis is not reusable).

Aiming at reusability of design brings MPD close to design patterns [GHIV95].5 The
two approaches are not unrelated. Rather, they seem to be complementary; the design
patterns capture the experience of designers by documenting the recommended solutions
for the common problems in software development, while MPD relies on designer’s expe-
rience.

The application of design patterns alone doesn’t lead to a complete system imple-
mentation [GHJV95], and that is a case with MPD, too. Translation of the results of
transformational analysis into code yields a code skeleton, but certainly not a full imple-
mentation.

MPD lacks a more sophisticated notation. The one proposed by Coplien encompasses
only few types of tables and variability diagrams, which doesn’t seem to be sufficient to
capture all the relevant details of the MPD (mostly expressed just as informal text).

4.3 Intentional Programming

Programming languages with fixed syntax are limiting otherwise unlimited number of
programming abstractions. Intentional programming group at Microsoft Research” offers
a solution to this problem as a new software development paradigm called intentional
programming [Sim96a, Sim96b, Sim99].

%0One of the comments on the cover of this book (by Steve Vinoski) denotes reusable design as ”the real
key to software reuse”
"Led by Simonyi, the original developer of the MS Word and Excel.
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The idea behind intentional programming (IP) is that programming abstractions—in
IP terminology denoted as intentions—hosted by programming languages limited in the
sense of accepted notations (due to underlying grammars), could live well without their
hosts, (fixed-syntax) programming languages.®

However, one can argue that a programming language can be extended to support
additional programming constructs, but this approach also has its limits because of the
parsing methods. Eventually, such extensions lead to artificial constraints on the notation,
as it is the case with a space that has to be inserted before a closing triangular bracket of
the nested template in C++ [Cza98].

The solution proposed in IP is to have program represented by a so-called intentional
tree, which is similar to abstract syntax tree.’ This intentional tree consists of nodes rep-
resenting intention instances. Each such an instance points to the corresponding intention
declaration node. This node points to an intentional sub-tree, which represents the defi-
nition of the intention. The executable program is obtained in a process called reduction,
in which the intentional tree is traversed and transformed according to the rules defined
by intentions until it consists only of executable nodes. Such a reduced tree is represented
in an intermediate language, which is to be translated into the executable code.

It is clear that IP needs (and has) a special and complex integrated programming
environment, which is equipped with a special graphic editor instead of the usual text
editor. This enables each intention to have its special graphic representation that best
suits it.

Of course, entering a program in such an environment is completely different from
entering it in a classic text editor, but one difference is especially interesting. A program
text, as we are used to it, is a complete and an unambiguous representation of a program.
In IP environment this is not so; it is not sufficient to examine the representation in the
IP editor statically in order to obtain a full information about the program—intentions
must be inspected individually. For example, two distinct variables—even if residing the
same scope—can have the same name. However, there is a complete and unambiguous
representation for a program written in IP: its intentional tree. But it is inconvenient to
maintain intentional tree directly because of its complexity.

A program source representation in the IP programming environment seems strange
at first sight, but it could be something perfectly normal in a near future. This change
is comparable to textual program source representation replacing the punched cards one.
On the other hand, TP counts on a binary format for the program files, which is a bit
dangerous unless the format is made publicly available.

It should be pointed out that IP is not supposed to push out all the existing program-
ming languages from the scene: it is meant to be capable of importing any program in
any programming languages in order to reuse legacy code by a language-specific parser.'®

80ther problems with classical programming languages are analyzed in [Cza98].

%According to Simonyi, it would be misleading to say that intentional tree is an abstract syntax tree
“because there is no syntax an there are no productions” [Sim96a]. In fact, this is a little bit imprecise;
since abstract syntax tree has nothing to do with productions, what he probably had in mind was a concrete
syntax tree.

10TP environment can be extended with new parsers as libraries.
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4.4 Summary

Although approaches discussed in the previous chapter carry a multi-paradigm flavor with
them, they are not explicit about it. As we saw in this chapter, there are also approaches
aiming at the explicit use of multiple paradigms.

Three such multi-paradigm approaches that were presented in this chapter are com-
pared in Table 4.1 according to these criteria (of course, this comparison is not complete):

Paradigm: the concept of paradigm it enforces
Language: a programming language it is bound to

Language extension: a support for the language extension.

‘ Paradigm  Language Language extension

MP in Leda | large-scale Leda no
MPD small-scale any no
P small-scale none yes

Table 4.1: The three multi-paradigm approaches compared

It is important to note that these three approaches are not antagonistic. Multi-
paradigm design arms us with techniques for dealing with multiple paradigms when multi-
paradigm environment is available. Intentional programming enables such an environment
to be created and maintained easier than it is a case with classical programming languages.
Finally, multi-paradigm programming in Leda demonstrates how four specific program-
ming paradigms can be combined.
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Chapter 5

Conclusions and Further Work

This report started with the concept of paradigm, both in general sense and specifically
in the sense of the software development. The analysis revealed two distinct meanings of
the term paradigm according to the level of granularity: large-scale and small-scale.

After brief discussion of each of these two meanings, we focussed on selected post-
object-oriented paradigms (aspect-oriented programming approaches and generative pro-
gramming). Among these, a growing multi-paradigm tendency has been identified.

This multi-paradigm tendency materialized into approaches which articulate it explic-
itly. Three such approaches were discussed and compared: multi-paradigm programming
in Leda, multi-paradigm design and intentional programming.

Multi-paradigm approach to software development makes the question which paradigm
is the best to be a meaningless one—it has a potential of incorporating all the paradigms
at disposal by the solution domain in developing a software system. It is a paradigm of
paradigms—a metaparadigm.

In spite of this enthusiastic conclusion, multi-paradigm design (and multi-paradigm
software development in general) must be further improved and refined if it is to be used
in its full strength. Of multi-paradigm approaches considered, multi-paradigm design seem
to be the most appropriate as the basis for the future form of the multi-paradigm software
development.

There are many open issues regarding multi-paradigm design. MPD as proposed by
Coplien is actually MPD for C++. Although we can speak of MPD in general as applicable
to any programming language, before its actual application it has to be tailored to a given
programming language yielding a method. Designing such a method for AspectJ would
be especially interesting since it would not just enable the use of MPD for AspectJ in
designing software systems, but also it could help to better understand the relationship
between the aspect-oriented programming and multi-paradigm design.! Of course, it would
be useful to tailor MPD to other programming languages as well—particularly Eiffel, for
its proclaimed object-orientation, and Java, for its popularity (and similarity with C++).

Insufficiency of the notation used in MPD (few types of tables and variability diagrams)
indicates the insufficiency in the method itself, which is too much based on the designer’s
intuition and experience. A method that would incorporate traditional analysis and design
approaches into MPD could help to overcome this problem.

Since MPD relies on designer’s experience, and since design patterns capture this

LCoplien denoted aspect-oriented programming as “the most fully general implementation of multi-
paradigm design possible” [Cop00]

27
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experience, the connection of the two should be considered in order to enable the use of
the experience documented by design patterns in MPD.

Finally, translation of the results of transformational analysis into code yields just a
code skeleton, but not a full implementation, which is left to an “experienced designer”.
Thus, a method is required that would make this transition to the actual program code
more deterministic.
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