
Slovak University of Te
hnology in Bratislava

Fa
ulty of Ele
tri
al Engineering and Information Te
hnology

Department of Computer S
ien
e and Engineering

Valentino Vrani�

Towards Multi-Paradigm

Software Development

Bratislava, September 2000

Abstra
t

Multi-paradigm software development is a spontaneous answer to attempts of �nding

the best paradigm. It was present in software development at the level of intuition and

pra
ti
ed as the \implementation detail" without even mentioning it in the design. Its

breakthrough is twofold: several re
ent programming paradigms are en
ouraging it, while

expli
it multi-paradigm approa
hes aim at its full-s
ale support.

However, to rea
h this goal, multi-paradigm approa
h must be improved and re�ned.

Contents

1 Introdu
tion 1

2 The Con
ept of Paradigm in Software Development 3

2.1 The Meaning of Paradigm . 3

2.2 Large-S
ale Paradigms . 4

2.3 Small-S
ale Paradigms . 6

2.4 Summary . 7

3 Re
ent Software Development Paradigms 9

3.1 Beyond Obje
t-Oriented Programming . 9

3.2 Aspe
t-Oriented Programming and Related Approa
hes 10

3.2.1 Aspe
t-Oriented Programming . 11

3.2.2 Adaptive Programming . 11

3.2.3 Composition Filters . 13

3.2.4 Subje
t-Oriented Programming . 13

3.3 Generative Programming . 15

3.4 Summary . 16

4 Multi-Paradigm Approa
hes 19

4.1 Multi-Paradigm Programming in Leda . 19

4.2 Multi-Paradigm Design for C++ . 20

4.3 Intentional Programming . 23

4.4 Summary . 25

5 Con
lusions and Further Work 27

i

Chapter 1

Introdu
tion

The way of software development is
hanging. Enfor
ed by the need for mass produ
tion of

quality software and enabled by the grown-up experien
e of the �eld, it is moving towards

the industrialization.

This report maps the state-of-the-art in the �eld of post-obje
t-oriented software en-

gineering; most notably, it is dedi
ated to the promising
on
epts of aspe
t-oriented pro-

gramming, generative programming and, parti
ularly, multi-paradigm software develop-

ment.

This tenden
y
an be felt not only in the new software development paradigms, i.e.

aspe
t-oriented programming, whi
h is bound to the existing paradigms; it is present

already in the obje
t-oriented programming. It is even more notable at language level.

It's hard to �nd a language that is pure in the sense of prohibiting any other than its

pro
laimed (main) paradigm from being used in it. This is the impli
it form of what is

alled multi-paradigm.

There are several approa
hes, whi
h make this idea of multi-paradigm expli
it by

enabling the developer not only to
ombine multiple paradigms, but also to
hoose the

most appropriate one for the given feature. This paradigm of paradigms is sometimes

denoted as metaparadigm.

The stru
ture of the rest of this report is as follows.

Chapter 2 explores the
on
ept of paradigm in
omputer s
ien
e and software engineer-

ing.

Chapter 3 is an overview of some re
ent post-obje
t-oriented paradigms, namely aspe
t-

oriented programming approa
hes and generative programming.

Chapter 4 pro
eeds with further re
ent post-obje
t-oriented approa
hes. These are pre-

sented in a separate
hapter be
ause they exhibit an expli
it multi-paradigm
har-

a
ter.

Chapter 5
loses this report. It in
ludes
on
lusions and proposals for further work.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

The Con
ept of Paradigm in

Software Development

The paradigm is a very often used (but even more often abused) word in
omputer s
ien
e

and software engineering today. Its importan
e arose espe
ially with appearan
e of so-

alled multi-paradigm approa
hes (whi
h are dis
ussed in Chapter 4). Before dis
ussing

them, the
on
ept of paradigm in software development requires a deeper examination.

However, before we go into this spe
i�
 analysis, it would be useful to
onsider a

paradigm in a general sense; that is, the word paradigm itself. The meaning of the word

paradigm is analyzed in Se
tion 2.1. In Se
tion 2.2 its
ommon usage to denote a software

development pro
ess as a whole is dis
ussed. Se
tion 2.3 explores further the
on
ept

of paradigm in software development revealing another level at whi
h paradigms
an be

onsidered.

2.1 The Meaning of Paradigm

The term paradigm in s
ien
e generally is strongly related to Kuhn and his work [Kuh97℄.

Although not expli
itly de�ned in this essay, it leaves reader with understanding of

paradigm similar to this quoted from [BN97℄:

A paradigm in general is a body of ways of formulating problems, methodolog-

i
al tools of their solution, standard methodologies of their elaboration. It is

opinions, theories, methods, methodologies et
., whi
h are a

epted in a given

�eld.

As Kuhn dis
loses in the supplementary material published as a part of the book in later

editions, a
ertain reader after analyzing Kuhn's essay,
on
luded that the term paradigm

is used there in at least twenty two di�erent ways. Fortunately, most of the di�eren
es were

stylisti
 and
ould be resolved. But, even so, the two in
ompatible meanings remained:

paradigm as a
onstellation of groups' belief and paradigm as a shared model example.

We will later see that this duality is not a

idental and that it has its roots in the meaning

of the word paradigm.

Probably no s
ien
e has a

epted this term with su
h enthusiasm as
omputer s
ien
e

did. In
omputer s
ien
e (and software engineering) the term paradigm is used to denote

the essen
e of the software development pro
ess (often redu
ed to just programming),

whi
h appears to be one of its key issues. Unfortunately, the term paradigm is used so

3

4 CHAPTER 2. THE CONCEPT OF PARADIGM IN SOFTWARE DEVELOPMENT

often that hardly you
an �nd a methodology or a method (or even just an improvement

of the method) today that has resisted the temptation to \be
ome" a paradigm. This

abusing of the word paradigm introdu
es a
onfusion about its real meaning. This is why

we'll take a brief look at the meaning of the word paradigm.

The Merriam-Webster Di
tionary gives a following de�nition of the word paradigm:

1. example, pattern; espe
ially: an outstandingly
lear or typi
al example

or ar
hetype

2. an example of
onjugation or de
lension showing a word in all its in
e
-

tional forms

3. a philosophi
al and theoreti
al framework of s
ienti�
 s
hool or dis
ipline

within whi
h theories, laws, and generalizations and the experiments per-

formed in support of them are formulated.

Etymologi
ally, paradigm
omes from Late Latin paradigma, whi
h
omes form Greek

paradeigma; this
omes from paradeiknynai meaning \to show side by side". Closest to

this original meaning is the �rst meaning, i.e. example or pattern. This is the most general

meaning of the three meanings from the di
tionary. It makes no restri
tion regarding the

size of the example or the pattern denoted by the word paradigm.

The se
ond meaning shows how the word paradigm found its realization in the mi
ro-

ontext|at language
onstru
t level. The third meaning obviously denotes something

big and
omplex; this the realization of the word paradigm in the ma
ro-
ontext|as a

framework of a dis
ipline (this is a
tually a kind of Kuhn's de�nition of the term).

This duality of the term paradigm is present in the software development, too, as it

will be shown in the next two se
tions.

2.2 Large-S
ale Paradigms

The notion of paradigm in software development is used at two levels of granularity, and

this
omes as no surprise after the previous se
tion. The �rst one, large-s
ale

1

level, is the

one we usually mean when speaking of software development paradigms in a traditional

sense.

This large-s
ale meaning of the term software development paradigm (or, more often,

simply paradigm), denotes the essen
e of
ertain software development pro
ess. The name

of a paradigm reveals the most signi�
ant
hara
teristi
 of the paradigm. Sometimes, it is

derived from a
entral abstra
tion the paradigm deals with, as it is a fun
tion to fun
tional

paradigm, an obje
t to obje
t-oriented paradigm

2

et
.

In spite of the fa
t that software development paradigm refers to all the phases of

the software development pro
ess, not only to implementation, in pla
e of a term soft-

ware development paradigm often we
an �nd a term programming paradigm or even just

programming (e.g. obje
t oriented programming, OOP). On the other hand, in order to

be more expli
it, expression OO analysis and design (OOA/D)
an be used to refer to

the analysis and design phases of OO software development pro
ess, and OOP to refer

spe
i�
ally to its implementation phase.

1

Coplien used this term to denote programming paradigms in, as he said, a \popular" sense of the

term [Cop99b℄.

2

This is not so
lear. For example, a

ording to [Mey97℄ it is not obje
t but
lass that is a
entral

abstra
tion in the OOP.

2.2. LARGE-SCALE PARADIGMS 5

Paradigm Main abstra
tion

Imperative
ommand

Pro
edural pro
edure

Obje
t-oriented obje
t/
lass

Fun
tional fun
tion

Logi
 expression

Table 2.1: Paradigms and their main abstra
tions

When speaking of software development paradigms, it must be distinguished between

the
on
ept of paradigm and the means that are used to support its realization. Any

paradigm
an be visualized by means of a visual environment and thus it makes no sense

to speak of a visual paradigm as an independent paradigm. Otherwise we should
onsider

syntax highlighting as a paradigm, too. Unfortunately, as it was already pointed out,

this abuse of the word appears to be a sour
e of
onfusion. So, for example, in [Bud95℄

the visual paradigm is mentioned with the observation that it is a
tually \a family of

paradigms". This is
orre
t only if we a

ept that all the paradigms are members of one

(big) family. Well, yes, they are, but does this
lassi�
ation makes sense? Of
ourse, this

is not to say that it is not useful to group paradigms a

ording to
ommon features.

Making a
omplete
lassi�
ation and
omparison of the software development paradigms

is beyond the s
ope of this text; N�avrat in [N�av96℄
ompares sele
ted programming

paradigms regarding abstra
tion and generalization. Thus, Table 2.1 shows only �ve

(well-known) paradigms and the main abstra
tion of ea
h.

Programming language is often
lassi�ed a

ording to the paradigm it supports; so,

among others, pro
edural, obje
t-oriented and fun
tional languages exist. However, this

does not mean that language is in
apable of supporting some other paradigm (e.g. C++).

A programming language must not be
onfused with the paradigm it supports. Program-

ming language
an be seen as a vehi
le for the appli
ation of a paradigm.

Software development paradigm is
onstantly
hanging, improving, or better to say

re�ning. Basi
 prin
iples it lays on must be preserved; otherwise it would
hange into

another paradigm. So, it
an be said that paradigms are at di�erent levels of maturity.

As this report is
on
erned with post-obje
t-oriented software development, let's
on-

sider the obje
t-oriented paradigm and its prede
essors depi
ted in Fig. 2.1. The arrows

represent \evolved into" relationship. This is what makes these paradigms
loser to ea
h

other than, say, obje
t-oriented and logi
 paradigm. A simpli�ed view of this paradigm

evolution goes like this. First, there were
ommands (imperative programming). Then,

named groups of
ommands appeared: pro
edures (pro
edural programming). Finally,

pro
edures were put together with the data it operated on:
lasses/obje
ts (obje
t-oriented

programming).

However, a

ording to Kuhn, paradigms do not evolve, although it
an seem so. He

speaks of the s
ienti�
 revolution whi
h ends up the old and starts a new paradigm [Kuh97℄.

A paradigm is dominant by de�nition and thus there
an be only one paradigm at a time

in a given �eld. This is a
ontradi
tion with the existen
e of �ve or more software de-

velopment paradigms indi
ating that the �eld is either in the unstable state, either all

these paradigms are part of one big, but unre
ognized paradigm standing above them:

metaparadigm.

A software development paradigm, or a large-s
ale paradigm, as denoted in this
hap-

6 CHAPTER 2. THE CONCEPT OF PARADIGM IN SOFTWARE DEVELOPMENT

Imperative programming

A

AU

Pro
edural programming

A

AU

Obje
t-oriented programming

Figure 2.1: The evolution line of OOP.

ter, seem to be somehow an elusive
on
ept, in the sense that it's hard to de�ne it pre
isely.

Another look at paradigms is o�ered in the next se
tion.

2.3 Small-S
ale Paradigms

There is another possibility to de�ne programming paradigm. It
omes out from its use to

denote me
hanisms of the programming languages. This is similar to paradigms in natural

languages where (as we saw in Se
tion 2.1) paradigm denotes an example of
onjugation

or de
lension showing a word in all its in
e
tional forms. These paradigms seem to be

somehow \smaller", so we will refer to them as small-s
ale paradigms.

This per
eption of paradigm is apparent in Coplien's multi-paradigm design [Cop99
℄

(whi
h is dis
ussed in Se
tion 4.2). A

ording to Coplien et al. [CHW98℄, we
an fa
tor

out paradigms su
h as pro
edures, inheritan
e and
lass templates. We
an identify a

ommon and a variable part, whi
h together
onstitute a paradigm. This is analogous to

onjugation or de
lension in natural languages, where the
ommon is the root of the word

and variability is expressed through the suÆxes or pre�xes (or even in�xes), whi
h must

be added to obtain di�erent forms of the word.

S
ope,
ommonality and variability (SCV) analysis
an be used to des
ribe paradigms

at language level, as it is presented in [CHW98℄. Keywords of SCV analysis have the

following meanings:

S
ope (S): a set of entities

3

Commonality (C): an assumption held uniformly a
ross a given set of entities S

Variability (V): an assumption true of only some elements of S.

For example, pro
edures paradigm a

ording to SCV analysis looks like this (an exam-

ple adapted from [CHW98℄):

� S: a
olle
tion of similar
ode fragments, ea
h to be repla
ed by a
all to some new

pro
edure P

� C: the
ode
ommon to all fragments in S

� V: the \un
ommon"
ode in S; variabilities are handled by parameters to P or
ustom

ode before or after ea
h
all to P.

3

Instead of entities in [CHW98℄ the word obje
ts was used. This
ould lead to misunderstanding be
ause

of OOP.

2.4. SUMMARY 7

SCV analysis is not limited to des
ription of the paradigms|it is of wider usability

and importan
e, espe
ially in the
ontext of the multi-paradigm design (see Se
tion 4.2).

If we take paradigms the way they are des
ribed in this se
tion, then programming

language that supports only one paradigm is more an ex
eption than a rule. So, pro-

gramming language
an support, by the means of the language
onstru
ts, one or more

programming paradigms. On the other hand, programming paradigm
an, of
ourse, be

supported by several programming languages.

The relationship between small- and large-s
ale paradigms is similar to that between

small-s
ale paradigms and programming languages; large-s
ale paradigms
onsist of small-

s
ale ones. The name of the large-s
ale paradigm sometimes
omes from the most signi�-

ant small-s
ale paradigm it
ontains. For example, obje
t-oriented (large-s
ale) paradigm

onsists of the several (small-s
ale) paradigms:

4

obje
t paradigm, pro
edure paradigm,

5

virtual fun
tions, polymorphism, overloading, inheritan
e et
.

Having a ri
hly expressive programming language that supports multiple paradigms

introdu
es another issue: a de
ision must be made whi
h paradigm is appropriate for

whi
h feature to be implemented. That means we need a method for
hoosing paradigms

that is above them, i.e. metaparadigm (a parti
ular metaparadigm|multiparadigm design

for C++|is des
ribed in Se
tion 4.2).

2.4 Summary

In this
hapter, starting from the general meaning of the word paradigm, we
ame to its

spe
i�
 use regarding software development. Two levels of its use were identi�ed and

brie
y des
ribed: large-s
ale and small-s
ale.

Regarding the relationship between these two
on
epts, one more thing requires to be

lari�ed. One
ould understand small-s
ale paradigms as a programming language issue

only, while large-s
ale programming paradigms seem to be broader in s
ope as they are

a�e
ting all the phases of the software development. A
tually, the small-s
ale paradigms

have an impa
t on all the phases of the software development as well; either without formal

support in the development pro
ess, or with it (as it is the
ase in Coplien's multi-paradigm

design for C++, see 4.2).

Programming paradigm, as a
on
ept, requires further investigation in order to gather

a more pre
ise understanding of both large- and small-s
ale paradigms. However, sin
e

this is beyond the s
ope of this report, and sin
e a substantial level of understanding of

the
on
ept has already been a
hieved, we shall pro
eed with the analysis of some re
ent

post-obje
t-oriented paradigms.

4

La
k of a
ommon agreement what are the exa
t
hara
teristi
s of the obje
t-oriented paradigm makes

impossible to introdu
e an exa
t list of the small-s
ale paradigms out of whi
h obje
t-oriented paradigm

onsists.

5

Pro
edure paradigm is present through
lass methods.

8 CHAPTER 2. THE CONCEPT OF PARADIGM IN SOFTWARE DEVELOPMENT

Chapter 3

Re
ent Software Development

Paradigms

Among the re
ent software development paradigms there is a signi�
ant group of those

that appeared as a rea
tion to the issues ta
kled but not satisfa
torily solved by the

obje
t-oriented programming.

Many of these paradigms a
tually build upon obje
t-oriented paradigm. In spite of

that some of them are
laimed not to be bound to obje
t-oriented paradigm (and in

deed they are more generally appli
able), they are still widely applied in
onne
tion with

obje
t-oriented programming (not a

identally, as we shall see).

In this
hapter, several su
h post-obje
t-oriented software development paradigms are

dis
ussed. However, the �rst se
tion is a short ex
ursion to the obje
t-oriented program-

ming be
ause of its importan
e for the paradigms presented brie
y in the following three

se
tions.

3.1 Beyond Obje
t-Oriented Programming

Human per
eption of the world is to a great extent based on obje
ts. From our earliest days

we en
ounter obje
ts around ourselves, we �nd out their behavior, i.e. their properties and

what we
an do with them. Obje
t-oriented paradigm is based pre
isely on this per
eption

of the world natural to humans.

What exa
tly is the obje
t-oriented programming? This question seems to be an

answered one. A
tually, there is a plenty of answers to this question, but the trouble is

that they are all di�erent (for possible reasons why is it so see [Cop96℄).

The obje
t-oriented programming (OOP) has passed a very long way of
hanges to

rea
h the form in whi
h it is known today. Yet, there is no general agreement on the

de�nition of the essential properties of the obje
t-oriented paradigm (to some, even inher-

itan
e is not an essential part of the obje
t-orientation, or it is being denoted as a minor

feature [Bud95℄).

Boo
h, for example, makes di�eren
e between major and minor elements of the obje
t

model, whi
h is \the
on
eptual framework for all things obje
t-oriented" [Boo94℄. The

major elements are: abstra
tion, en
apsulation, modularity and hierar
hy. The minor

elements, i.e. those not essential, are: typing,
on
urren
y and persisten
e.

Meyer is more spe
i�
. He identi�es a few dozens of
riteria for obje
t-orientation

grouped in the three
ategories [Mey97℄: method and language, implementation and en-

9

10 CHAPTER 3. RECENT SOFTWARE DEVELOPMENT PARADIGMS

vironment, and libraries.

Boo
h's elements of obje
t-orientation
over the �rst Meyer's
ategory, method and

language, and they are not in
ontradi
tion with any Meyer's
riterion from this
ategory,

but they are not so restri
tive. For example, a

ording to Meyer's
riterion
lasses as types,

the type is modeled by a
lass, while Boo
h does not make su
h an expli
it restri
tion. On

the other hand, as Meyer says, \`obje
t-oriented' is not a boolean
ondition"; something

an be obje
t-oriented only to some extent.

OOP is not always the best
hoi
e among all the paradigms. This is re
ognized even

in the OOP literature. Thus Boo
h points out that there is no single paradigm best for all

kinds of appli
ations. But OOP has another important feature: it
an serve well as \the

ar
hite
tural framework in whi
h other paradigms are employed" [Boo94℄. This reveals

that OOP is multi-paradigmati
 in its very nature and doesn't leave mu
h spa
e for the

obje
t-oriented purism.

This obje
t-oriented purism
omes from the dogma that everything should be modeled

as an obje
t. Thus, in the \pure" OOP we are taught to see everything as an obje
t, but

not everything is an obje
t; neither in a real world, nor in programming. Syn
hronization

is a well-known example of a non-obje
t
on
ept. In natural language, we would probably

refer to it as an aspe
t. The aspe
ts
ross
ut the stru
ture of obje
ts, or (i.e. fun
tional

omponents, in general), whi
h makes the
ode tangled. The pie
es of
ode are either

repeated throughout di�erent obje
ts or unnatural inheritan
e (often multiple one)

1

must

be involved. Among other, this \
ode s
attering" has a bad impa
t on reuse.

There are other problems with OOP,
on
erning issues it was proposed to solve, mainly

in the areas of reuse,

2

adaptability, management of
omplexity and performan
e [Cza98℄.

There is one more reason against the OOP as the best paradigm regarding the
on
ept

of paradigm (as dis
ussed in Chapter 2). A paradigm must be universal in its �eld (or,

at least, to be seen as su
h). Is OOP a universal paradigm in software engineering? To

simplify the problem, let's
onsider just C++ as a part of the �eld of software engineer-

ing. So, is OOP a universal paradigm in C++? The answer that it's not be
ause C++

provides non-obje
t-oriented features and, moreover, enables to program in a
ompletely

non-obje
t-oriented fashion. So, if OOP isn't the universal paradigm in C++, whi
h is

just a part of software engineering �eld, how
an it be universal in the software engineering

as a whole?

3.2 Aspe
t-Oriented Programming and Related Approa
hes

A

ording to one of those who stood upon the birth of the aspe
t-oriented programming,

Gregor Ki
zales [KLM

+

97℄, aspe
t-oriented programming (AOP) is a new programming

paradigm

3

that enables the modularization of
ross
utting
on
erns.

Xerox PARC AOP group [Xer℄ is the integrating for
e in AOP. The name aspe
t-

oriented programming was a
tually invented by them. Of
ourse, the other groups doing

AOP resear
h are of no less importan
e. In fa
t, AOP ideas materialized in several pla
es

independently and, as soon as this was dis
overed, the
ollaboration among various groups

and individuals working on AOP begun. Yet it is not
lear will this pro
ess lead us towards

uni�
ation of AOP approa
hes or will these AOP te
hniques grow up to loosely
oupled,

yet di�erent, paradigms and thus preserving AOP's multi-paradigm
hara
ter.

1

This is not to
laim that multiple inheritan
e is unnatural in general.

2

Software reuse not only in the
ontext of OOP is dis
ussed in [SN97℄.

3

Ki
zales denotes it as methodology.

3.2. ASPECT-ORIENTED PROGRAMMING AND RELATED APPROACHES 11

A list of groups and individuals doing AOP resear
h is maintained by Xerox PARC

AOP group and it is growing (a
omplete list is available at Xerox PARC AOP home

page [Xer℄). We'll take a
loser look at four AOP te
hniques, whi
h
onstitute the basis of

AOP resear
h until now and thus are of great importan
e for further AOP development:

� Ki
zales et al. at Xerox PARC: AOP, Aspe
tJ [Xer℄

� Lieberherr et al. at Northeastern University: adaptive programming (AP) [Dem℄

� Aksit et al. at the University of Twente:
omposition �lters (CF) [TRE℄

� Ossher et al. at IBM Resear
h: subje
t-oriented programming (SOP) [IBM℄

As it is usual with industrial methodologies (as opposed to formal ones), the fo
us

in AOP resear
h has been on the implementation phase. Thus all of the approa
hes

mentioned are a
tually AOP implementation te
hniques. This means that there is an

open �eld of establishing the AO analysis and design methodology in order to
omplete

aspe
t-oriented development pro
ess.

AP and CF have been re
ently rede�ned by their inventors with respe
t to AOP as

spe
ial
ases of it (see Se
tions 3.2.2 and 3.2.3). This is not the
ase with SOP and there

is no
ommon agreement whether SOP is AOP or not (see Se
tion 3.2.4).

Yet another questionable issue is whether AOP is OOP bound or not. A paradox

is that although AOP te
hniques listed build upon OOP, the very idea of the AOP is

not limited to it. This is be
ause aspe
ts tend to
ross
ut fun
tional units of the system

(referred to as generalized pro
edures in AOP papers [KLM

+

97℄), i.e. this problem arises

in non-obje
t-oriented systems as well.

3.2.1 Aspe
t-Oriented Programming

As mentioned before, Xerox PARC group gave name to AOP. A
tually, most of the AOP

terminology (like aspe
t,
ross
utting, tangling, weaving) adopted later by others was in-

vented by them. Most of resear
h e�ort is being
on
entrated on Aspe
tJ, a general

purpose AOP extension to Java [LK98℄.

The idea of Xerox PARC AOP is best presented by an example. In Fig. 3.1 two
lasses

are presented, Point and Line, with three kinds of methods:
reating, writing and reading

(implementations are not shown). Suppose we want to be warned by a text on the s
reen

what kind of a

ess to these
lasses has been performed. In ordinary Java we would have

to modify ea
h method of both Point and Line. This would result in what is known as

tangled
ode. To avoid this, in Aspe
tJ we
an use aspe
ts. In our example it is the aspe
t

ShowA

esses that solves the problem. Note that the original
ode remains un
hanged.

Before running the ordinary Java
ompiler, so-
alled weaver must be used, whi
h would

weave the aspe
t into the
ode.

The solution in
orporating aspe
ts is undoubtedly more elegant than the tangled one,

but
onsider again the Fig. 3.1. The information of where aspe
t is to be woven, known

as join-points, is in
luded in the aspe
t itself, whi
h
ompli
ates the reuse of aspe
ts.

3.2.2 Adaptive Programming

The adaptive programming (AP) proposed by Demeter group [Dem℄ at Northeastern Uni-

versity in Boston deals mainly with traversal strategies of
lass diagrams.

12 CHAPTER 3. RECENT SOFTWARE DEVELOPMENT PARADIGMS

lass Point {

Point(int x, int y);

void set(int x, int y);

void setX(int x);

void setY(int y);

int getX();

int getY();

}

lass Line {

Line(int x1, int y1, int x2, int y2);

void set(int x1, int y1, int x2, int y2);

int getX1();

int getY1();

int getX2();

int getY2();

}

aspe
t ShowA

esses {

stati
 before void Point.set(*), void Line.set(*), void Line.set(){

System.out.println("Write");

}

stati
 before int Point.getX(), int Point.getY(),

int Line.getX1(), int Line.getY1(), int Line.getX2(), int Line.getY2() {

System.out.println("Read");

}

stati
 before Point(*), Line(*) {

System.out.println("Create");

}

}

Figure 3.1: An Aspe
tJ example (based on example from [LK98℄)

The Demeter group has used AOP ideas for several years before the name aspe
t-

oriented programming was
oined. The
ollaboration with the Xerox PARC AOP group

then begun and Demeter group rede�ned the AP as the spe
ial
ase of AOP where one of

the aspe
ts is expressible in terms of graphs and where the other aspe
ts or
omponents

refer to the graphs using traversal strategies. The traversal strategies are partial spe
i�-

ations of a graph pointing out a few
ornerstone nodes and edges and thus
ross
ut the

graphs they are intended for while only mentioning a few isolated nodes and edges.

For example, assume we have a UML
lass diagram of a system as presented in the left

part of Fig. 3.2. Assume we would like to
ount on the people waiting at the bus stations all

along the bus route. Clearly, in ordinary OOP, this would require either implementation

of small methods in all of the a�e
ted
lasses (shaded ones) or rough breaking of the

en
apsulation prin
iple by exposing some of the private data of the
lasses.

If we use a traversal strategy, as it is proposed in AP, there is no need for a
hange in

the existing
lasses. In this
ase, the traversal strategy:

from BusRoute through BusStop to Person

solves the problem of getting to Person obje
ts along the bus route, whi
h is suÆ
ient to

ount them.

The right part of Fig. 3.2 demonstrates the robustness of this te
hnique|the traversal

strategy mentioned above applies in this
ase without any
hange although a
lass diagram

it was
onstru
ted for
hanged.

3.2. ASPECT-ORIENTED PROGRAMMING AND RELATED APPROACHES 13

BusRoute

BusList

Bus

BusStopList

PersonList

BusStop

Person

buses

passsengers

busStops

0..*

0..*

waiting

0..*

VillageList

BusRoute

BusList

Bus

Person

buses

passsengers

0..*

0..*

0..*

Village

villages

0..*

busStops

BusStopList

BusStop

PersonList

waiting

Figure 3.2: Traversal strategies (from [Lie97℄)

3.2.3 Composition Filters

Composition �lters is an aspe
t-oriented programming te
hnique where di�erent aspe
ts

are expressed as de
larative and orthogonal message transformation spe
i�
ations
alled

�lters [AT98℄.

A message sent to an obje
t is evaluated and manipulated by the �lters of that obje
t,

whi
h are de�ned in an ordered set, until it is dis
arded or dispat
hed (i.e. a
tivated or

delegated to another obje
t).

The �lter behavior is simple: ea
h �lter
an either a

ept or reje
t the re
eived mes-

sage, but the semanti
s asso
iated with these depend on the �lter type; e.g. if an Error

type �lter a

epts the re
eived message, it is forwarded to the next �lter, but if it was a

Dispat
h type �lter, the message would be exe
uted. Detailed des
ription of the
ompo-

sition �lters
an be found in [AWB

+

93, Koo95℄.

In Fig. 3.3 two sets of �lters (written in Sina language [Koo95℄, whi
h dire
tly adopts

the CF model [AT98, AWB

+

93℄) atta
hed to the Point and Line
lasses from Fig. 3.1

respe
tively are shown. We assume the existen
e of the
lass ShowA

ess with three

methods: WriteA

ess, ReadA

ess and CreateA

ess (the instan
e a

 of this
lass is

used in �lters). These methods simply write out one of three possible messages about the

type of the a

ess. They are
alled by three
orresponding Dispat
h �lters, in
ase the

message was a

epted. Afterwards, the method of the inner obje
t, whi
h has been
alled,

is exe
uted (inner.*).

If we
onsider this example in the AOP terminology, then the
lass ShowA

ess a
tually

implements the aspe
t, while �lters represent the join points. Thus, the join points in this

ase are separated from the aspe
t, whi
h is better regarding the aspe
t reuse.

3.2.4 Subje
t-Oriented Programming

We de�ne a
ertain obje
t, or more generally a
on
ept, by its properties. This is suÆ
ient

to pre
isely de�ne and identify mathemati
al
on
epts, but the same does not apply to

natural
on
epts be
ause their de�nitions are subje
tive and thus never
omplete (more

details about
on
eptual modeling
an be found in [Cza98℄).

Subje
t-oriented programming is based on subje
tive views, so-
alled subje
ts. SOP is

being developed at IBM (see [IBM℄). It was proposed as an extension of the OOP and

thus subje
t is a
olle
tion of
lasses or
lass fragments whose hierar
hy models its domain

in its own, subje
tive way. A
omplete software system is then
omposed out of subje
ts

14 CHAPTER 3. RECENT SOFTWARE DEVELOPMENT PARADIGMS

Point

a

: ShowA

ess;

inputfilters

WriteA

ess: Dispat
h = {set, a

.WriteA

ess, inner.*};

ReadA

ess: Dispat
h = {getX, getY, a

.ReadA

ess, inner.*};

CreateA

ess: Dispat
h = {Point, a

.CreateA

ess, inner.*};

Exe
ute: Dispat
h = {true => inner.*};

Line

a

: ShowA

ess;

inputfilters

WriteA

ess: Dispat
h = {set, a

.WriteA

ess, inner.*};

ReadA

ess: Dispat
h = {getX, getY, getX1, getY1, a

.ReadA

ess, inner.*};

CreateA

ess: Dispat
h = {Line, a

.CreateA

ess, inner.*};

Exe
ute: Dispat
h = {true => inner.*};

Figure 3.3: A �lter atta
hing example

by writing the
omposition rules, whi
h spe
ify the
orresponden
e of the subje
ts (i.e.

namespa
es),
lasses and members to be
omposed and how to
ombine them.

As a result of the resear
h e�ort in SOP, the Watson Subje
t Compiler was devel-

oped [KOHK96℄, whi
h allows partial (subje
tive) de�nitions of C++ program elements

and automates the
omposition required to produ
e a running program. There are also

other platforms SOP support was built for, su
h as IBM VisualAge for C++ Version 4,

HyperJ and Smalltalk [IBM℄.

The example from Fig. 3.1 reimplemented in Watson Subje
t Compiler-like syntax

4

is presented in Fig. 3.4. We assume that
lass ShowA

ess is implemented in A

ess

namespa
e and that
lasses Point and Line are implemented in Graphi
s namespa
e.

In this
ase the join-points, represented by the
omposition rules, are separated from the

aspe
t, whi
h is represented by the separate
lass, as it was the
ase in CF approa
h, too.

Composition rules for the
lasses getY, getX1, getY1 and getX2 are omitted in Fig. 3.3

(indi
ated by ellipsis) sin
e they are analogous to the rule for getX.

This is not a
hara
teristi

ase of the appli
ation of SOP (su
h as
an be found

in [OHBS94, KOHK96, IBM℄); it is presented here in order to show how a well-known

AOP example
an be easily transformed into its SOP version. Nevertheless, there is no

general agreement whether SOP is AOP. Czarne
ki [Cza98℄ views SOP as a spe
ial
ase of

AOP where the aspe
ts a

ording to whi
h the system is being de
omposed are
hosen in

su
h a manner that they represent di�erent, subje
tive views of the system. On the other

hand, Ki
zales et al. [KLM

+

97℄ reje
t the very idea that SOP (whi
h they
all subje
tive

programming)
ould be AOP, arguing that the methods involved in automati

ombination

of methods for a given message from di�erent subje
ts supported in SOP are
omponents

in the AOP sense sin
e they
an be well lo
alized in a generalized pro
edure (routine).

But this seem to be a more general issue, sin
e it applies to Aspe
tJ too, named aspe
tual

paradox by Liebrherr et al. [LLM99℄: \an aspe
t des
ribed in Aspe
tJ, the Xerox PARC's

AOP language, whi
h has a
onstru
t for spe
ifying aspe
ts, is by de�nition no longer an

aspe
t, as it has just been
aptured in a (new kind of) generalized routine".

It is worth mentioning, as Czarne
ki [Cza98℄ observed, that SOP is
lose to GenVo
a

approa
h [Bat99, BG97℄, where the systems are
omposed out of layers a

ording to the

design rules (for further information on this topi
 see [PLA℄): GenVo
a layers
an be easily

4

A

ording to the information available in the papers regarding SOP, a
omposition presented is regular,

although the a
tual syntax
ould by slightly di�erent.

3.3. GENERATIVE PROGRAMMING 15

namespa
e Graphi
sWithA

ess{

lass Point;

lass Line;}

Graphi
sWithA

ess.Point.Point :=

Merge[Graphi
s.Point.Point, A

ess.ShowA

ess.CreateA

ess℄;

Graphi
sWithA

ess.Line.Line :=

Merge[Graphi
s.Point.Line, A

ess.ShowA

ess.CreateA

ess℄;

Graphi
sWithA

ess.Point.set :=

Merge[Graphi
s.Point.set, A

ess.ShowA

ess.WriteA

ess℄;

Graphi
sWithA

ess.Line.set :=

Merge[Graphi
s.Line.set, A

ess.ShowA

ess.WriteA

ess℄;

Graphi
sWithA

ess.Point.getX :=

Merge[Graphi
s.Point.getX, A

ess.ShowA

ess.ReadA

ess℄;

. . .

Graphi
sWithA

ess.Line.getY2 :=

Merge[Graphi
s.Line.getY2, A

ess.ShowA

ess.ReadA

ess℄;

Figure 3.4: An example of the subje
t
omposition

simulated by subje
ts, whi
h brings into
onne
tion AOP with GenVo
a as a su

essful

approa
h to reusability [Bat99℄. Of
ourse, this does not mean that we
an assume that

AOP is a pra
ti
ally proven te
hnology; however, it speaks in favor of AOP.

3.3 Generative Programming

In his Ph.D. thesis, Czarne
ki [Cza98℄ (and re
ently also in the book, whi
h he wrote to-

gether with Eisene
ker [CE00℄) proposes a
omprehensive software development paradigm,

whi
h brings together the obje
t-oriented analysis and design methods with domain engi-

neering methods that enable development of the families of systems: generative program-

ming.

The de�nition introdu
ed in [CE00℄ reads:

Generative programming (GP) is a software engineering paradigm based on

modeling software systems families su
h that, given a parti
ular requirements

spe
i�
ation, a highly
ustomized and optimized intermediate or end-produ
t

an be automati
ally manufa
tured on demand from elementary, reusable im-

plementation
omponents by means of
on�guration knowledge.

GP is a unifying paradigm|it is
losely related to obje
t-oriented programming and

three other paradigms (see Figure 3.5):

� obje
t-oriented programming, providing e�e
tive system modeling te
hniques

� generi
 programming, whi
h
an be summarized as \reuse through parameterization"

� domain-spe
i�
 languages, whi
h in
rease the abstra
tion level for a parti
ular do-

main and are highly intentional, and

� aspe
t-oriented programming, used to a
hieve separation of
on
erns.

16 CHAPTER 3. RECENT SOFTWARE DEVELOPMENT PARADIGMS

Xerox Aspe
t-Oriented

Programming

Composition

Filters

Demeter/Adaptive

Programming

Subje
t-Oriented

Programming

Q

Q

Q

Q

Q

Qs

-

�

�

�

�

�

�3

�

�

�

�

�

�

�

�7

Obje
t-Oriented

Programming

Generi

Programming

Domain-Spe
i�

Languages

Aspe
t-Oriented

Programming

Q

Q

Q

Q

Q

Qs

-

�

�

�

�

�

�3

�

�

�

�

�

�

�

�7

Generative

Programming

Figure 3.5: Generative programming and related paradigms. The arrows represent \is

in
orporated into" relationship.

Obje
t-oriented programming is present in GP indire
tly as well (not depi
ted)|

through aspe
t-oriented programming approa
hes, whi
h (although not obje
t-oriented

bound) a
tually build upon OOP (Se
tion 3.2).

GP �rst has to be tailored to a parti
ular domain in order to be used. This pro
ess will

give us a methodology for the families of systems to be developed, whi
h
an be viewed

as a paradigm itself. This gives a
ertain metaparadigm
avor to GP.

In the implementation �eld, GP requires metaprogramming for so-
alled weaving (i.e.

joining the aspe
t part of the
ode with the fun
tional one) and automati

on�guration.

To support domain-spe
i�
 notations, it needs synta
ti
 extensions. Czarne
ki proposes

a
tive libraries as appropriate to
over this requirement. A
tive libraries, whi
h
an be

viewed as knowledgeable agents

5

intera
ting with ea
h other to produ
e
on
rete
ompo-

nents, require appropriate programming environment.

3.4 Summary

Post-obje
t-oriented paradigms presented here
arry out a latent multi-paradigm idea with

them. This is not strange sin
e this idea
an be identi�ed already in their prede
essor|

obje
t-oriented paradigm.

These paradigms are not obje
t-oriented bound, but they �t well with obje
t-oriented

programming. A
tually, the very fa
t that they arose in dominan
e of obje
t-orientation

in software development doesn't seem to be an a

ident.

Also,
ertain unifying tenden
ies have been identi�ed among the paradigms des
ribed.

This is espe
ially apparent with generative programming, but the possibility of unifying

the AOP approa
hes (probably adapted to suite the
ommon shell), too. In the examples

presented, we saw that some of these te
hniques
an be applied inter
hangeably, namely

5

It would be useful to
onsider some agent-oriented programming [Sho93℄ te
hniques here.

3.4. SUMMARY 17

Xerox PARC AOP, CF and SOP, with no substantial di�eren
e. Traversal strategies in AP

aim at di�erent issues, but they are not in
ontradi
tion with other AOP te
hniques. How-

ever, the examples presented do not imply the inter
hangeability of the AOP te
hniques

in a general
ase and a further investigation is required.

An important
hara
teristi
 of the AOP approa
hes and GP is that they don't aim at

pushing out any other approa
h from the s
ene but, on the
ontrary, seek for the best way

to in
orporate it. A further step from this partially hidden multi-paradigm nature of the

des
ribed approa
hes is to reveal it
ompletely and express it expli
itly. Su
h approa
hes

will be dis
ussed in the next
hapter.

18 CHAPTER 3. RECENT SOFTWARE DEVELOPMENT PARADIGMS

Chapter 4

Multi-Paradigm Approa
hes

In the survey of the re
ent post-obje
t-oriented software development paradigms given in

the previous
hapter a spontaneous move towards paradigms' integration be
ame apparent.

This
hapter is a survey of several approa
hes that make this move towards multi-paradigm

expli
it.

One possible approa
h is to
reate a new language in su
h a manner that it would

support multiple paradigms. This approa
h is demonstrated in se
tion 4.1 on Budd's

multi-paradigm programming in Leda. The other way is to determine the rules of sele
ting

the paradigms for solving parti
ular issues when ri
hly expressive (i.e. supporting multiple

paradigms) programming language is available. This is explored in se
tion 4.2, whi
h

des
ribes Coplien's multi-paradigm design for C++. However, ea
h of the two has its

short
omes. This makes a pla
e for the third one, Mi
rosoft's intentional programming,

brie
y presented in se
tion 4.3.

4.1 Multi-Paradigm Programming in Leda

The question how to support multi-paradigm programming at language level yields a

simple answer:
reate a multi-paradigm language. Budd took this route towards multi-

paradigm programming by
reating a multi-paradigm language
alled Leda [Bud95℄.

A

ording to Budd, Leda language supports four programming paradigms: impera-

tive,

1

logi
, fun
tional and obje
t-oriented. The term paradigm as used by Budd denotes

a large-s
ale paradigm (with respe
t to
lassi�
ation of paradigms introdu
ed in Chap-

ter 2). This means that Leda a
tually supports more than four small-s
ale paradigms.

This is
lear if we remember that, for example, obje
t-oriented paradigm breaks down

into several small-s
ale paradigms (Se
tion 4.2). Nevertheless, for simpli
ity, we will dis-

uss just the me
hanisms by whi
h ea
h of the four pro
laimed paradigms is supported.

Leda has a Pas
al-like (i.e. Algol-like) syntax and, moreover, the me
hanism upon

whi
h all four supported paradigms realization is based in Leda are fun
tions.

2

This

makes a good ba
kground for the imperative (pro
edural) paradigm.

Logi
 paradigm is supported by a stereotypi
al type of fun
tion that returns a rela-

tion datatype and a spe
ial assignment operator <-. These indi
ate when an inferen
e

me
hanism, inherent to logi
 programming, is to be a
tivated.

1

A
tually pro
edural, to be more pre
ise.

2

Meaning pro
edures returning values.

19

20 CHAPTER 4. MULTI-PARADIGM APPROACHES

The fun
tional paradigm requires no spe
ial me
hanism than that provided by fun
-

tions, i.e. pro
edures returning a value, sin
e Leda permits a fun
tion to be an argument

to the other fun
tion or to return a fun
tion as a result. Thus, when programming in

Leda, a fun
tional paradigm is a
hieved using the fun
tions in a re
ursive fashion while

refraining from assignments.

The obje
t-oriented paradigm is supported similarly like in the C++ or Obje
t Pas
al.

In addition to basi
 me
hanisms of obje
t-oriented paradigm, su
h as
lasses, inheritan
e,

en
apsulation et
., Leda supports parameterized types (by some authors also
onsidered

as a part of obje
t-oriented paradigm, e.g. [Mey97℄).

In spite of its limited use, Leda language is interesting be
ause it demonstrates the

ombination of paradigms. For example, the inferen
e me
hanism of logi
 programming

an be used inside of a pro
edure.

Of
ourse,
reating a language that supports multiple paradigms and expe
ting it

would be the best language to program in is similar to a hunt on the best programming

paradigm. Despite the number of supported paradigms in a programming language, that

number is �nite; the paradigms that would appear after the establishment of that language

would not be in
luded. One
an argue that it is possible to extend the language with new

programming me
hanisms in order to support new paradigms. This is, indeed, possible and

often pra
ti
ed. Unfortunately, programming languages
annot be extended inde�nitely

due to limitations set by parsing methods.

Leda is an example of a language
reated (from s
rat
h) in order to support multiple

paradigms. However, we
an
onsider inter
onne
ting existing languages that support

di�erent paradigms through an interfa
e instead of making a
ompletely new language (a

sort of language reuse). There is also a possibility of implementing one language on top

of the other, but this leads to a
ertain degradation of performan
e. More on this topi

and also an example of inter
onne
ting obje
t-oriented and logi
 programming (Loops and

Xerox Quintus Prolog)
an be found in [KE88℄.

4.2 Multi-Paradigm Design for C++

Multi-paradigm design for C++ (MPD), as proposed by Coplien [Cop99b, Cop99a, Cop99
℄,

has its roots in multi-paradigm
hara
teristi
s of C++. Despite these multi-paradigm

hara
teristi
s, C++ is often
onsidered to be only an obje
t-oriented language. As su
h,

C++ is used to implement the systems designed a

ording to obje
t-oriented paradigm.

However, non-obje
t-oriented features of C++ are widely used, but without their \legal-

ization" in design.

Coplien proposes a parti
ular metaparadigm intended for developing families of sys-

tems, whi
h enables
hoosing the appropriate paradigm for the feature that has to be

designed and implemented. It is based on the SCV (s
ope,
ommonality and variability)

analysis mentioned in Se
tion 2.3.

In his work regarding multi-paradigm design (
ited above), Coplien abbreviates the

name s
ope,
ommonality and variability analysis to just
ommonality and variability

analysis and separates the two thus a
hieving two distin
t analyses|
ommonality analy-

sis and variability analysis. Despite this formal distin
tion, the two analyses are performed

in parallel. Commonality analysis
on
entrates on
ommon attributes while the aim of

the variability analysis is to parameterize the variation. This pro
ess yields
ommonal-

ity/variability pairings. Any su
h
ommonality/variability pairing represents a program-

ming paradigm|in the sense of the small-s
ale paradigms (dis
ussed in Se
tion 2.3).

4.2. MULTI-PARADIGM DESIGN FOR C++ 21

The two analyses are performed on both appli
ation and solution domain indepen-

dently and then the
ommonalities and variabilities of the appli
ation and solution domain

analyses are lined up, leading to use of the \right" paradigms supported by the language

for the
orresponding analysis abstra
tions.

Although, in Coplien's own words, \MPD is a
raft that is neither fully an art nor fully

a rigorous dis
ipline" [Cop99
, p. xv℄, and to great extent relies on designer's intuition

and experien
e, it is a move towards greater regularization of the appli
ation of multiple

paradigms in software development. Also, it has to be pointed out that despite it is
alled

just design, MPD is a
omplete software development pro
ess resulting into a program

implementation.

The major steps performed during the MPD are:

�
ommonality and variability analysis of the appli
ation domain

�
ommonality and variability analysis of the solution domain

� transformational analysis

� translation from the transformational analysis to the
ode.

These steps need not to be performed sequentially.

3

They
an be performed in parallel

and revisited as needed. Before starting the a
tual MPD, it is re
ommended to evaluate

a possibility of the existing designs' reuse. Also, it is re
ommended to
onsider the use of

the appli
ation-oriented languages. Coplien proposes this paradoxi
ally as the last step.

However, there is no point in doing an analysis of the solution domain that is not going to

be used. Logi
ally, the best time to
hoose the implementation language is after (possibly

during) the
ommonality and variability analysis of the appli
ation domain (if we are not

limited to a spe
i�
 programming language a

ording to requirements).

Commonality analysis of the appli
ation domain begins with �nding
ommonality do-

mains and
reating domain di
tionary. It then pro
eeds in parallel with the variability

analysis. The results of the analysis |the parameters of variation for a given
ommonality

domain and their
hara
teristi
s| are summarized in the variability tables
onsisting of

the following
olumns:

� parameters of variation

� meaning (the de
ision being made)

� domain

� binding (binding time)

4

� default.

A parameter of variation
an be a domain itself. To
apture this relationship vari-

ability dependen
y graphs

5

are used. The notation of variability dependen
y graphs is

quite simple: the domains are depi
ted as ellipses, and the arrows point from the domain

3

However, it is not possible to perform the transformational analysis without having �nished at least a

part of the
ommonality and variability analyses of the appli
ation and solution domain.

4

Des
ribes how early the value of the parameter of variation is to be sele
ted. The alternatives for C++

(in as
ending order) are: sour
e,
ompile, link (and load) and run.

5

Coplien sometimes
alls them domain dependen
y graphs.

22 CHAPTER 4. MULTI-PARADIGM APPROACHES

to its parameters of variation. The variability dependen
y graphs are used to identify

overlapping domains (whi
h
an be merged). Also, they help to identify
odependent

domains|domains with
ir
ular dependen
y (whi
h must be resolved).

Commonality and variability analysis of the solution domain begins with the identi�
a-

tion of supported paradigms, whi
h is a
tually a kind of the SCV analysis (see Se
tion 2.3).

It results into an informal des
ription of the identi�ed paradigms stru
tured as follows:

�
ommonality

� variability

� binding

� example.

It pro
eeds with exploring the negative variability|su
h a variability that violates the rule

of variation by atta
king the underlying
ommonality. A positive variability, as opposed to

the negative one, is su
h a variability that
an be parameterized. The negative variability

has to be kept small. If it be
omes larger than the
ommonality, the design should be

refa
tored to reverse the
ommonality and variability.

The results of the
ommonality and variability analysis of the solution domain are

being summarized in the two types of tables. One type is used to express features for

negative variability and
onsists of the following
olumns:

� kind of
ommonality

� kind of variability

� language feature for positive variability

� language feature for
orresponding negative variability.

The other type of the table, denoted as family table, expresses
ommonality and positive

variability pairings in the domain of the programming language (that is being used) and

ontains the following
olumns:

�
ommonality

� variability

� binding

� instantiation

� language me
hanism.

The tables obtained in the pre
eding analysis are used during the transformational

analysis. The variability table is aligned with the family table to see whi
h language

feature is suitable for whi
h part of design. This results into an annotated version of the

variability table in
luding the additional
olumn representing the language paradigm to

be used (denoted as te
hnique).

Regarding the number of subdomains in the appli
ation domain and the number of

paradigms used, several types of MPD
an be distinguished:

4.3. INTENTIONAL PROGRAMMING 23

� single domain|single paradigm

� multiple de
oupled domains|single paradigm

� multiple de
oupled domains|single paradigm for ea
h subdomain

� multiple de
oupled domains|multiple paradigms for ea
h subdomain

� multiple subdomains in a dire
ted a
y
li
 graph|multiple paradigms.

With in
reasing number of domains and paradigms, the transformational analysis be
omes

more
ompli
ated. Two last
ategories require a
ombination of paradigms (see Fig. 4.1).

template <
lass T>

bool sort(T elements[℄, int nElements){

. . .

}

Figure 4.1: A
ombination of the pro
edural and template paradigm (from [Cop99
℄).

Multi-paradigm design as proposed by Coplien regularizes the use of multiple paradigms

by �rst making the
on
ept of paradigm more formal. To a
hieve this,

Coplien points out the need for solution domain (i.e. implementation environment)

analysis, whi
h is often underestimated. This results into a gap between design and

implementation. Multi-paradigm design makes this gap smaller. It enfor
es reusability

of design: both appli
ation and solution domain analyses
an be reused independently

(however, the transformational analysis is not reusable).

Aiming at reusability of design brings MPD
lose to design patterns [GHJV95℄.

6

The

two approa
hes are not unrelated. Rather, they seem to be
omplementary; the design

patterns
apture the experien
e of designers by do
umenting the re
ommended solutions

for the
ommon problems in software development, while MPD relies on designer's expe-

rien
e.

The appli
ation of design patterns alone doesn't lead to a
omplete system imple-

mentation [GHJV95℄, and that is a
ase with MPD, too. Translation of the results of

transformational analysis into
ode yields a
ode skeleton, but
ertainly not a full imple-

mentation.

MPD la
ks a more sophisti
ated notation. The one proposed by Coplien en
ompasses

only few types of tables and variability diagrams, whi
h doesn't seem to be suÆ
ient to

apture all the relevant details of the MPD (mostly expressed just as informal text).

4.3 Intentional Programming

Programming languages with �xed syntax are limiting otherwise unlimited number of

programming abstra
tions. Intentional programming group at Mi
rosoft Resear
h

7

o�ers

a solution to this problem as a new software development paradigm
alled intentional

programming [Sim96a, Sim96b, Sim99℄.

6

One of the
omments on the
over of this book (by Steve Vinoski) denotes reusable design as "the real

key to software reuse"

7

Led by Simonyi, the original developer of the MS Word and Ex
el.

24 CHAPTER 4. MULTI-PARADIGM APPROACHES

The idea behind intentional programming (IP) is that programming abstra
tions|in

IP terminology denoted as intentions|hosted by programming languages limited in the

sense of a

epted notations (due to underlying grammars),
ould live well without their

hosts, (�xed-syntax) programming languages.

8

However, one
an argue that a programming language
an be extended to support

additional programming
onstru
ts, but this approa
h also has its limits be
ause of the

parsing methods. Eventually, su
h extensions lead to arti�
ial
onstraints on the notation,

as it is the
ase with a spa
e that has to be inserted before a
losing triangular bra
ket of

the nested template in C++ [Cza98℄.

The solution proposed in IP is to have program represented by a so-
alled intentional

tree, whi
h is similar to abstra
t syntax tree.

9

This intentional tree
onsists of nodes rep-

resenting intention instan
es. Ea
h su
h an instan
e points to the
orresponding intention

de
laration node. This node points to an intentional sub-tree, whi
h represents the de�-

nition of the intention. The exe
utable program is obtained in a pro
ess
alled redu
tion,

in whi
h the intentional tree is traversed and transformed a

ording to the rules de�ned

by intentions until it
onsists only of exe
utable nodes. Su
h a redu
ed tree is represented

in an intermediate language, whi
h is to be translated into the exe
utable
ode.

It is
lear that IP needs (and has) a spe
ial and
omplex integrated programming

environment, whi
h is equipped with a spe
ial graphi
 editor instead of the usual text

editor. This enables ea
h intention to have its spe
ial graphi
 representation that best

suits it.

Of
ourse, entering a program in su
h an environment is
ompletely di�erent from

entering it in a
lassi
 text editor, but one di�eren
e is espe
ially interesting. A program

text, as we are used to it, is a
omplete and an unambiguous representation of a program.

In IP environment this is not so; it is not suÆ
ient to examine the representation in the

IP editor stati
ally in order to obtain a full information about the program|intentions

must be inspe
ted individually. For example, two distin
t variables|even if residing the

same s
ope|
an have the same name. However, there is a
omplete and unambiguous

representation for a program written in IP: its intentional tree. But it is in
onvenient to

maintain intentional tree dire
tly be
ause of its
omplexity.

A program sour
e representation in the IP programming environment seems strange

at �rst sight, but it
ould be something perfe
tly normal in a near future. This
hange

is
omparable to textual program sour
e representation repla
ing the pun
hed
ards one.

On the other hand, IP
ounts on a binary format for the program �les, whi
h is a bit

dangerous unless the format is made publi
ly available.

It should be pointed out that IP is not supposed to push out all the existing program-

ming languages from the s
ene: it is meant to be
apable of importing any program in

any programming languages in order to reuse lega
y
ode by a language-spe
i�
 parser.

10

8

Other problems with
lassi
al programming languages are analyzed in [Cza98℄.

9

A

ording to Simonyi, it would be misleading to say that intentional tree is an abstra
t syntax tree

\be
ause there is no syntax an there are no produ
tions" [Sim96a℄. In fa
t, this is a little bit impre
ise;

sin
e abstra
t syntax tree has nothing to do with produ
tions, what he probably had in mind was a
on
rete

syntax tree.

10

IP environment
an be extended with new parsers as libraries.

4.4. SUMMARY 25

4.4 Summary

Although approa
hes dis
ussed in the previous
hapter
arry a multi-paradigm
avor with

them, they are not expli
it about it. As we saw in this
hapter, there are also approa
hes

aiming at the expli
it use of multiple paradigms.

Three su
h multi-paradigm approa
hes that were presented in this
hapter are
om-

pared in Table 4.1 a

ording to these
riteria (of
ourse, this
omparison is not
omplete):

Paradigm: the
on
ept of paradigm it enfor
es

Language: a programming language it is bound to

Language extension: a support for the language extension.

Paradigm Language Language extension

MP in Leda large-s
ale Leda no

MPD small-s
ale any no

IP small-s
ale none yes

Table 4.1: The three multi-paradigm approa
hes
ompared

It is important to note that these three approa
hes are not antagonisti
. Multi-

paradigm design arms us with te
hniques for dealing with multiple paradigms when multi-

paradigm environment is available. Intentional programming enables su
h an environment

to be
reated and maintained easier than it is a
ase with
lassi
al programming languages.

Finally, multi-paradigm programming in Leda demonstrates how four spe
i�
 program-

ming paradigms
an be
ombined.

26 CHAPTER 4. MULTI-PARADIGM APPROACHES

Chapter 5

Con
lusions and Further Work

This report started with the
on
ept of paradigm, both in general sense and spe
i�
ally

in the sense of the software development. The analysis revealed two distin
t meanings of

the term paradigm a

ording to the level of granularity: large-s
ale and small-s
ale.

After brief dis
ussion of ea
h of these two meanings, we fo
ussed on sele
ted post-

obje
t-oriented paradigms (aspe
t-oriented programming approa
hes and generative pro-

gramming). Among these, a growing multi-paradigm tenden
y has been identi�ed.

This multi-paradigm tenden
y materialized into approa
hes whi
h arti
ulate it expli
-

itly. Three su
h approa
hes were dis
ussed and
ompared: multi-paradigm programming

in Leda, multi-paradigm design and intentional programming.

Multi-paradigm approa
h to software development makes the question whi
h paradigm

is the best to be a meaningless one|it has a potential of in
orporating all the paradigms

at disposal by the solution domain in developing a software system. It is a paradigm of

paradigms|a metaparadigm.

In spite of this enthusiasti

on
lusion, multi-paradigm design (and multi-paradigm

software development in general) must be further improved and re�ned if it is to be used

in its full strength. Of multi-paradigm approa
hes
onsidered, multi-paradigm design seem

to be the most appropriate as the basis for the future form of the multi-paradigm software

development.

There are many open issues regarding multi-paradigm design. MPD as proposed by

Coplien is a
tuallyMPD for C++. Although we
an speak of MPD in general as appli
able

to any programming language, before its a
tual appli
ation it has to be tailored to a given

programming language yielding a method. Designing su
h a method for Aspe
tJ would

be espe
ially interesting sin
e it would not just enable the use of MPD for Aspe
tJ in

designing software systems, but also it
ould help to better understand the relationship

between the aspe
t-oriented programming and multi-paradigm design.

1

Of
ourse, it would

be useful to tailor MPD to other programming languages as well|parti
ularly Ei�el, for

its pro
laimed obje
t-orientation, and Java, for its popularity (and similarity with C++).

InsuÆ
ien
y of the notation used in MPD (few types of tables and variability diagrams)

indi
ates the insuÆ
ien
y in the method itself, whi
h is too mu
h based on the designer's

intuition and experien
e. A method that would in
orporate traditional analysis and design

approa
hes into MPD
ould help to over
ome this problem.

Sin
e MPD relies on designer's experien
e, and sin
e design patterns
apture this

1

Coplien denoted aspe
t-oriented programming as \the most fully general implementation of multi-

paradigm design possible" [Cop00℄

27

28 CHAPTER 5. CONCLUSIONS AND FURTHER WORK

experien
e, the
onne
tion of the two should be
onsidered in order to enable the use of

the experien
e do
umented by design patterns in MPD.

Finally, translation of the results of transformational analysis into
ode yields just a

ode skeleton, but not a full implementation, whi
h is left to an \experien
ed designer".

Thus, a method is required that would make this transition to the a
tual program
ode

more deterministi
.

Bibliography

[AT98℄ Mehmet Aksit and Bedir Tekinerdogan. Solving the modeling problems of

obje
t-oriented languages by
omposing multiple aspe
ts using
omposition

�lters. In Pro
. of AOP'98 workshop, 1998. Available at [TRE℄.

[AWB

+

93℄ Mehmet Aksit, Ken Wakita, Jan Bos
h, Lodewijk Bergmans, and Akinori

Yonezawa. Abstra
ting obje
t-intera
tions using
omposition-�lters. In Obje
t-

Based Distributed Pro
essing, pages 152{184. Springer-Verlag, 1993. Available

at [TRE℄.

[Bat99℄ Don Batory. Produ
t-line ar
hite
tures, generators and reuse. In Pro
. of

GCSE'99 (
o-hosted with the STJA 99), Erfurt, Germany, September 1999.

Presentation slides and notes. Published on CD.

[BG97℄ Don Batory and Bart J. Gera
i. Composition validation and subje
tivity in

GenVo
a generators. IEEE Transa
tions on Software Engineering (spe
ial

issue on Software Reuse), pages 67{82, February 1997. Available at [PLA℄.

[BN97℄ M�aria Bielikov�a and Pavol N�avrat. Funk
ion�alne a logi
k�e programovanie.

Slovak University of Te
hnology in Bratislava, 1997. In Slovak.

[Boo94℄ Grady Boo
h. Obje
t-Oriented Analysis and Design with Appli
ations.

Addison-Wesley Publishing Company, se
ond edition, 1994.

[Bud95℄ Timothy A. Budd. Multiparadigm Programming in Leda. Addison-Wesley,

1995.

[CE00℄ Krysztof Czarne
ki and Ulri
h Eisene
ker. Generative Programing: Prin
iples,

Te
hniques, and Tools. Addison-Wesley, 2000.

[CHW98℄ James Coplien, Daniel Ho�man, and David Weiss. Commonality and variabil-

ity in software engineering. IEEE Software, 15(6), November 1998. Available

at [Cop℄.

[Cop℄ Home page of James O. Coplien. http://www.bell-labs.
om/people/
ope. A
-

essed on August 15, 2000.

[Cop96℄ James Coplien. Broadening beyond obje
ts to patterns and to other

paradigms. ACM Computing Surveys, 28A(4), De
ember 1996. Available at

http://www.a
m.org/surveys (a

essed on August 15, 2000).

[Cop99a℄ James O. Coplien. Multi-paradigm design. In Pro
. of GCSE'99 (
o-hosted

with the STJA 99), Erfurt, Germany, September 1999. Published on CD.

Available at [Cop℄.

29

30 BIBLIOGRAPHY

[Cop99b℄ James O. Coplien. Multi-paradigm design and implementation in C++. In

Pro
. of GCSE'99 (
o-hosted with the STJA 99), Erfurt, Germany, September

1999. Presentation slides and notes. Published on CD. Available at [Cop℄.

[Cop99
℄ James O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.

[Cop00℄ James O. Coplien. Multi-Paradigm Design. PhD thesis, Vrije Universiteit

Brussel, Belgium, 2000. Available at [Cop℄.

[Cza℄ Home page of Krzysztof Czarne
ki. http:/www.prakinf.tu-ilmenau.de/�
zarn.

A

essed on August 15, 2000.

[Cza98℄ Krysztof Czarne
ki. Generative Programming: Prin
iples and Te
hniques of

Software Engineering Based on Automated Con�guration and Fragment-Based

Component Models. PhD thesis, Te
hni
al University of Ilmenau, Germany,

1998. See [Cza℄.

[Dem℄ Home page of Demeter group. http://www.

s.neu.edu/resear
h/demeter. A
-

essed on August 15, 2000.

[GHJV95℄ Eri
h Gamma, Ri
hard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Obje
t-Oriented Software. Addison-Wesley

Publishing Company, 1995.

[IBM℄ Home page of IBM Resear
h, Subje
t-Oriented Programming.

http://www.resear
h.ibm.
om/sop. A

essed on August 15, 2000.

[KE88℄ Timothy Kos
hmann and Martha Walton Evens. Bridging the gap between

obje
t-oriented and logi
 programming. IEEE Software, 60:36{42, July 1988.

[KLM

+

97℄ Gregor Ki
zales, John Lamping, Anurag Mendhekar, Chris Maeda,

Christina Vidiera Lopes, Jean-Mar
 Loingtier, and John Irwin. Aspe
t-

oriented programming. In Mehmet Aksit and Satoshi Matsuoka, editors,

Pro
. of ECOOP'97|Obje
t-Oriented Programming, 11th European Confer-

en
e, Jyv�askyl�a, Finland, June 1997. Springer-Verlag LNCS 1241. Available

at [Xer℄.

[KOHK96℄ Matthew Kaplan, Harold Ossher, William Harrison, and Vin
ent Kruskal.

Subje
t-oriented design and the watson subje
t
ompiler. In Pro
. of OOP-

SLA'96, 1996. Available at [IBM℄.

[Koo95℄ Piet S. Koopmans. On the de�nition and implementation of the Sina/st lan-

guage. Master's thesis, Dept. of Computer S
ien
e, University of Twente, The

Netherlands, August 1995. Available at [TRE℄.

[Kuh97℄ Thomas S. Kuhn. Stru
ture of S
ienti�
 Revolutions. OIKYMENH, 1997.

Cze
h translation.

[Lie97℄ Karl Lieberherr. Demeter and Aspe
t-Oriented Programming: Why are pro-

grams hard to evolve? Te
hni
al report, College of Computer S
ien
e, North-

eastern University, Boston, 1997. Available at [Dem℄.

BIBLIOGRAPHY 31

[LK98℄ Cristina Videira Lopes and Gregor Ki
zales. Re
ent developments in Aspe
tJ,

1998. Available at [Xer℄.

[LLM99℄ Karl Lieberherr, David Lorenz, and Mira Mezini. Programming with Aspe
tual

Components. Te
hni
al Report NU-CCS-99-01, College of Computer S
ien
e,

Northeastern University, Boston, MA, Mar
h 1999. Available at [Dem℄.

[Mey97℄ Bertrand Meyer. Obje
t-Oriented Analysis Software Constru
tion. Prenti
e

Hall PTR, se
ond edition, 1997.

[Mi
℄ Home page of Mi
rosoft Resear
h, Intentional Programming Group.

http://www.resear
h.mi
rosoft.
om/ip. A

essed on August 15, 2000.

[N�av96℄ Pavol N�avrat. A
loser look at programming expertise: Criti
al survey of

some methodologi
al issues. Information and Software Te
hnology, 38(1):37{

46, 1996.

[OHBS94℄ Harold Ossher, William Harrison, Frank Budinsky, and Ian Simmonds.

Subje
t-oriented programming: Supporting de
entralized development of ob-

je
ts. In Pro
. of the 7th IBM Conferen
e on Obje
t-Oriented Te
hnology, July

1994. Available at [IBM℄.

[PLA℄ Home page of Produ
t-Line Ar
hite
ture Resear
h Group.

http://www.
s.utexas.edu/users/s
hwartz. A

essed on August 15, 2000.

[Sho93℄ Yoav Shoham. Agent-oriented programming. Arti�
ial Intelligen
e, 60:51{92,

1993.

[Sim96a℄ Charles Simonyi. Intentional programming|innovation in the lega
y age, June

1996. Presented at IFIP WG 2.1 meeting, available at [Mi
℄.

[Sim96b℄ Charles Simonyi. The intentional programming overview, July 1996. Available

at [Mi
℄.

[Sim99℄ Charles Simonyi. The future is intentional. IEEE Computer, May 1999. Avail-

able at [Mi
℄.

[SN97℄ M�aria Smol�arov�a and Pavol N�avrat. Software reuse: Prin
iples, patterns,

prospe
ts. Journal of Computing and Information Te
hnology, 5(1):33{48,

1997.

[TRE℄ Home page of Twente Resear
h and Edu
ation on Software Engineering

(TRESE) Group. http://wwwtrese.
s.utwente.nl. A

essed on August 15,

2000.

[Xer℄ Home page of Aspe
t-Oriented Programming, hosted by the Xerox PARC

Software Design Area. http://www.par
.xerox.
om/aop. A

essed on August

15, 2000.

