Literal Inter-Language Use Case Driven Modularization

Michal Bystricky

Valentino Vranié

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava
Ilkovicova 2, Bratislava, Slovakia

{michal.bystricky,vranic}@stuba.sk

Abstract

Use cases are a practically proven choice to concisely and precisely
express what highly interactive systems do. Several attempts have
been made to modularize code according to use cases. None of
these approaches is able to gather all the code related to a use
case in one module and to reflect its steps. However, to allow
for code to be modularized according to use case flows and their
steps, an instrumentation environment is necessary. In this paper,
literal multi-language use case coding based on defragmentation is
proposed. The approach aims at fully preserving use case flows in
as comprehensible form as possible. The steps of use case flows
appear directly in the code as comments. Despite being comments,
the steps are active, which is achieved by a dedicated preprocessor
and framework. The detailed step implementation gathers all the
code fragments of each step each of which may be in a different
programming language.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications—Languages; D.2.6 [Software
Engineering]: Programming Environments; D.2.10 [Software En-
gineering]: Design; D.3.2 [Programming Languages]: Language
Classifications—Multiparadigm languages; D.3.4 [Programming
Languages]: Processors—Preprocessors

General Terms Design, Documentation, Languages

Keywords Use case, modularization, flow of events, intent, DCI,
aspect-oriented programming

1.

In all but simplest programs, code is commonly not gathered in one
unit. Different approaches to programming employ different units
of modularization. In object-oriented programming, these include
classes and methods, but also packages at the higher level and
code blocks at the lower level. The aim of code modularization
is to enable the separation of concerns, which is necessary in any
organized thinking and problem solving [8]. As such, it should
improve code comprehension, but this is not always the case since

Introduction

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

MODULARITY Companion’16, March 14-17, 2016, Malaga, Spain
© 2016 ACM. 978-1-4503-4033-5/16/03...
http://dx.doi.org/10.1145/2892664.2892680

99

modularization is often put into the service of technical concerns,
such as maintainability and reuse.

Undoubtedly, documentation improves code comprehension,
but it introduces another artifact to be maintained and synchronized
with code, including maintaining the links between to the doc-
umented code [16, 21]]. With internal documentation, commonly
known as comments, at least the documentation to code links cease
to be an issue. Literate programming [17]] brings internal documen-
tation to another level. The documentation takes the primacy over
the code and the code appears as if it is being embedded into the
documentation. The structure of such documentation necessarily
copies the code modularization along with the comprehensibility
problems it brings.

But what kind of modularization is appropriate for documenta-
tion? With respect to common, highly interactive software systems,
such as virtually all custom developed information systems, use
cases are a practically proven choice to concisely and precisely ex-
press what such systems do. Even agile and lean approaches to soft-
ware development, which are quite reluctant regarding documenta-
tion, recognize their usefulness, though often in a shorter form or
in an exemplary style of user stories. The idea of describing the in-
teraction between the user and the system in the form of steps has
proven over time to be easily readable and comprehensible even by
end users At the same time, use cases resemble algorithms [6] with
use case step sequences—known as flows of events, use case flows,
or simply flows—as their crucial part. This dual nature makes use
cases a very good basis for self documented code. This idea might
be observed in modeling, too: UML provides the collaboration ele-
ment as a way of modularizing models according to use cases.

While use cases might not be appropriate for certain less in-
teractive kinds of systems, such as batch processing or embed-
ded systems, or where interaction is well defined and not likely to
change (6], we focus here exactly on highly interactive systems in
which it pays off to engage use cases in exploring interactivity prior
to investing any significant effort into coding [6]. Another point
worth consideration are changes. They mainly come as change re-
quests, which are usually phrased in terms of the system usage,
which is the language very close to use cases. In the code modu-
larized according to use cases, tracing the affected places would be
much easier.

Several attempts have been made to modularize code accord-
ing to use cases ranging from improving their traceability [10, [13],
through concentrating code of each use case into one module us-
ing aspect-oriented programming [14} [L5]], to preserving use case
steps [6], including our own prior work [2]. None of these ap-
proaches is able to gather all the code related to a use case in one
module and to reflect its steps. In spite of that, DCI (Data, Context
and Interaction) [6] is particularly interesting in how it manages to
come close to the ideal of having human comprehensible use case

representation in pure code by employing role based programming
in common object-oriented programming languages without hav-
ing to modify them. However, use case flows remain fragmented
across the roles [2]. Our prior work took initial steps in a little bit
different direction, acknowledging the necessity of providing an in-
strumentation environment to allow for code to be modularized ac-
cording to use case flows and their steps [2].

The rest of the paper presents a novel approach to inter-language
use case driven modularization. Section [2| presents the basics of
having use cases as code modules. Section[3|describes how multiple
languages are employed in implementing use case steps. Section
explains what kind of processing is necessary for this. Section [3]
describes how are the use case relationships supported. Section [6|
discusses our approach in a broader context. Section /| describes
the implementation and evaluation. Section[§]discusses the related
work. Section [0]concludes the paper.

2. Use Cases as Code Modules

To overcome use case flow fragmentation, we propose to maintain
a whole use case in a single file. Here is an example:
/%%

* UseCase Add Article

% ===================

A user adds a new article into the database.

* Ok K ¥

Preconditions

*

*
=
5]
o
I3
o
R
=3
o
17}
=
o

[0}

0”
©
Q.
o
B
ot
o
o
23
©
«w

<
%
o
©
B

*
=
2]
ct
o
3]
12]

Author: Writes an article

* ¥

*

Main success scenario

*

. Author
. System
. Author

1 selects to add article
2

3

4. Author
5

6

7

prompts for the ’title’ and ’content’
writes an article

enters the title and content of the article
selects to submit

saves the article

displays the article

. Author
. System
. System

* K K X X X X X ¥

Extensions

*

4a. Author doesn’t enter the title and description
4al. System notifies about required fields
4a2. System returns to step 3

LR A

Postconditions

* *

User can see the article

*
~

(function () {
this.authorHasLoggedOntoTheSystem = function (done) {...};
this.selectsAddArticle = function (done) {...};
this.promptsFor = function (args, done) {...};
this.writesAnArticle = function (done) {...};

D:

Since the use case text from provides a good overview suitable for
both software developers and all other stakeholders, it is placed at
the top of the file as a comment. The Markdown markup language
is used to denote the structure of the use case text.

A use case may contain several flows. Cockburn’s notation [3]] is
employed here. The main flow is denoted as Main success scenario.
Extension flows are introduced in the Extension section. Each ex-
tension is indicated by the triggering step number and then followed

100

by the sequence of alternative steps. The above example contains
an extension that resolves the problem with the unprovided input.

The use case text is followed by the implementation of steps
each of which is represented by a method (in our example, the
method bodies are omitted). All use case step methods for one use
case, including its extension flow steps, are gathered in one class.
This use case class is implemented in JavaScript using its function
approach. This is peculiar to JavaScript. In case of a class based
language such as Java, the common class construct would be used.

The names of use case step methods are formed by transforming
the use case step text into the camel case format. This is used to
bind use case steps to their implementation.

Each precondition and postcondition is introduced at a separate
line in the corresponding section. Unlike with steps, their imple-
mentation may be omitted (in our example, only the postcondition
is implemented). If included, the same approach as with use case
step methods is used, including the lexical binding mechanism. Use
case short description is not active in the implementation.

The use case step methods have one or two input parameters.
The done parameter is a callback method to return the values in
asynchronous calls.

The user input may be indicated directly in use case steps.
Single quotation marks are used for this. Consider step 2 in our
example. The title and content are the input parameters whose
value is to be provided by the user. This is just a more convenient
way than introducing them directly as the corresponding use case
method parameters:

this.promptsForTitleAndContent =
function (args = [’title’, ’content’], done) {...};

The use case steps that represent actor actions such as “User
selects an article.” cannot be expressed literally. They are captured
by the listeners attached to appropriate controls. For the step we
mentioned, a listener would be attached to the select article button.
When the article button is clicked, the listener executes the corre-
sponding code. Afterwards, the execution proceeds with the next
use case step.

3. Engaging Multiple Languages

In web applications, front end and back end are typically imple-
mented in different languages due to development team experience,
programmer or other costs, libraries support, or performance, and
this is so in our case, too. Consider the implementation of step 6 of
the use case introduced the previous section:

this.savesTheArticle = function (done) {
/** Partial Article.php
<7php
class Article {
public $createdAt;
public $publishedAt;
public $title;
public $content;
public function save() { ... } }
*/
/** Partial saveArticle.php
<?php
require ’Article.php’;
$article = new Article();
$article->title = $POST[’title’];
$article->content = $POST[’content’];
$article->createdAt = new DateTime();
echo $article->save();
*/
var _this = this;
get(_this.metadata.pathDir+’ /saveArticle.php’ function(result){
result = JSON.parse(result);
/** Partial success.css
.alert { border: 1px solid red }

*/

/** Partial success.html

<link rel="stylesheet" type="text/css" href="success.css">
<div class="alert alert-success" role="alert">Successfully
saved</div>

*/

if (Iresult.err) {

get(_this.metadata.pathDir+’ /success . htm1’ function(data)
var gen = tmpl(data, {});
document.getElementByIld(’result?).innerHTML = gen;

) e}l)se (.}

done();

_this.continue([

document.getElementByld(’article-title’).value,
document.getElementByld(’article-content’).value

1, function () {});

D3
b
Inside the JavaScript code, there are code fragments implemented
in three other languages: PHP, HTML, and CSS. JavaScript plays
the role of a bearing language. The code fragments contain the parts
of code of regular modules related to the particular step.

Physically, the respective regular modules would normally be
contained within their files, so the code fragments can be seen as
partial, virtual files. Each virtual file is delimited by comments that
indicate the actual file it contributes to. By this, the virtual files
can be extracted and merged into actual files that can be processed
further by the corresponding common language tools (compiled
and executed or interpreted, depending on the language).

How the code in virtual files is merged is language dependent.
For example, the elements of the equally named classes in equally
named PHP virtual files would be merged into one resulting class.
In CSS, the same is applied with respect to selectors and declara-
tions: all declarations related to the same selector are merged under
this selector.

4. Processing

To achieve the literal inter-language use case driven modulariza-
tion as described in previous sections, code instrumentation at three
levels is involved: continuous processing, preprocessing, and exe-
cution. Use cases may involve the same virtual files. For example,
several use cases may employ the same code for document print-
ing. For convenience, they are editable from any of these use cases.
However, editing manually all the virtual file copies would not be
convenient. Therefore, continuous processing ensures all equally
named virtual files are kept the same by propagating the changes to
any one of them to all other ones.

Before the code can be processed further by the corresponding
common language tools (compiled and executed or interpreted,
depending on the language), it is necessary to merge the virtual
files, as discussed in the previous section, It is also necessary to
extract the information on the order in which the use case step
methods are to be executed. This is performed according to the
lexical binding between the use case steps in the use case text
and the corresponding methods (recall the camel case, Section 2).
Preprocessing involves making the input parameters included in
the actual use case step code as described in Section [2] It also
involves translating use case relationships—discussed in the next
section—into code. Finally, preprocessing involves copying the
predefined, generic main method necessary as a starting point for
the application.

Use cases are activated from the user interface controls. These
are actually defined directly in use case code, as has been discussed
in the previous section. To execute use case steps in the corre-
sponding order, the underlying framework is involved. It relies on
the order of the steps extracted during preprocessing. Note that the

101

framework can be entirely replaced by weaving additional code at
the preprocessing level.

5. Use Case Relationships

All three relationships between use cases in use case modeling—
include, extend, and generalization/specialization—are supported
by our approach. For this, special syntax is used in the use case
text. Input parameters demonstrated in Section2]are a part of this.

A use case can activate another use case in a procedural call
fashion via the include relationship. This is implemented in the
continue method of the framework, which is normally used to
indicate that the step has finished and to make the control flow
proceed to the next step. This behavior is altered to executing
another use case by providing this use case name as an argument
to the continue method. A more convenient way is simply to
omit the step implementation. This would make the preprocessor
interpret the step text as an include construct and generate the
corresponding code. Either the Include keyword with the use case
name as a parameter can be used:

Include °Find an article’.

or the use case name can be provided right after the actor name (the
notation is not case sensitive):

User find an article

The extend relationship enables for a use case to affect another
use case in one of its exposed extension points in an asymmetric
aspect-oriented way. This is implemented similarly to the include
relationship: the continue method calls the extending use case
when the extension point and trigger are reached. Again, a more
convenient way is to define the extension points and triggers in the
use case text and let the preprocessor generate the corresponding
code. Suppose the Review an Article use case is extended by the
Find an Article use case. For this, the Review an Article use case
defines the corresponding extension point:

’Finding article’:step ’3.°

The Find an Article use case, in the body part Triggers, must define
it should be triggered when the finding article extension point
is reached:

When the extension point *Finding article’ is reached.

The generalization/specialization relationship makes possible
for a use case to reuse an existing use case. In this, it can mod-
ify some of its behavior. The modification can be defined explic-
itly by use case steps similarly to method overriding. We employed
this approach. In code, it corresponds directly to inheritance and
method overriding, as use cases are implemented as classes and
their steps as methods. As with two other relationships, generaliza-
tion/specialization is also supported by the preprocessor. The gen-
eralization/specialization is indicated directly in the use case text
header:

UseCase Add Article with Review specializes Add Article

The specialized use case implements only the affected steps, while
the use case text must contain also the inherited steps with the
(inherited) prefix, e.g.:

(inherited) System prompts for the title and content.

6. Broader Context

The approach proposed here can be used in different ways. First of
all, the scope of its application can vary. As has been mentioned in
the introduction, use case driven modularization is not appropriate

in all cases. Moreover, it may be appropriate for only a part of the
system. The reasons may be organizational, but probably the most
interesting case is employing use case driven modularization for a
new functionality with an existing code base. If the framework is
imported and the main method is omitted, there is no interaction
with such code. The existing code can be called from within use
case step implementation.

What functionality is to be considered a use case is something
that could be debated over. Although it is evident that overusing of
the include relationship leads to the pitfall of functional decompo-
sition, the need for distinguishing use case granularity is generally
accepted be it via so-called include-only use cases [[15], lower layer
use cases [3]], or habits [6]. Our approach enforces no methodolog-
ical viewpoint in this respect and the technically is capable of sup-
porting layered use cases via the include relationship.

Not enforcing any methodological viewpoint makes our ap-
proach fit different kinds of software development processes. Of
course, additional benefit may be expected in use case driven pro-
cesses and this includes agile and lean approaches as has been ex-
plained in the introduction. Furthermore, the approach suits well
the iterative and incremental way of software development enabling
developers to experiment with implementation while having the ac-
tual use case text right in front of their eyes. However, nothing pre-
vents one from developing use cases in the waterfall way.

The approach is not limited to particular software languages
(programming and markup), including the bearing language. In
fact, we experimented with Java as the bearing language, too.

As has been explained in the previous section, use cases can be
reused using the three kinds of relationships between them. In a
transition to another language, the use case text is reusable directly.

The preprocessed code is human readable. It is annotated by
use cases. In fact, this is a clue to semi-automatic refactoring of the
existing code that is not modularized according to use cases.

Refactoring can be achieved by reversing the transformation
performed by the preprocessor and we have actually implemented
a support for it. Parts of existing code are manually annotated with
steps of use cases. Based on these annotations, the implementation
for use cases is generated. The parts of existing code appear in
use case implementation as virtual files for particular use case step.
Then, at runtime, a dedicated module ensures that the existing code
is executed according to the use case text.

7. Implementation and Evaluation

To support our approach to literal inter-language use case driven
modularization we created a dedicated web based development
environment [3][1_] The server side is implemented in JavaScript
and uses the Node.js and Express.js frameworks. The client side
is written in JavaScript with the AngularJS framework and Twitter
Bootstrap, a CSS framework. CodeMirror is used as a code editor.

We reimplemented a significant portion of a real web applica-
tion (hockey academy) using our approach. We implemented the
whole content management system with 25 use cases out of the
total of 110 use cases in the application. Having both implemen-
tations, we have been able to assess the complexity of following a
use case in code and complexity of making a change to a use case
implementation. Each of these was measured by three metrics: the
number of files that had to be open, number of lines of code oper-
ated upon, and number of context switches that occurred. Having
to look elsewhere than at the next statement in source code while
following a particular thread of thoughts is counted as a context
switch [2].

!'Seehttps://bitbucket.org/bystricky/literal-use-cases/and
https://www.youtube.com/watch?v=R4ArqH4ZdgI.

102

While in our approach a use case can be followed or changed
within a few context switches and files (depending on the number of
related use cases), the conventional approach requires 7—12 context
switches and 5-8 files to open on average. In following a use case in
code, the number of lines to be operated upon (read) varies. There
are cases in which it is almost double in our approach. This is
probably because of the use case text being included in the code
and due to the framework specifics. In making a change to a use
case implementation, the number of lines to be operated upon (read,
written, or changed) is comparable.

There are several threats to validity of the results obtained by
our study. From the perspective of internal validity, the threats in-
clude considering only a limited number of metrics and not con-
sidering other programming languages and development environ-
ments with different tracing capabilities. From the perspective of
external validity, the threats include not considering systems of dif-
ferent sizes nor of different types (less interactive systems).

Itis reasonable to expect that our approach would perform better
compared to DCI and aspect-oriented development with use cases
as has been demonstrated for the precursor approach we developed
earlier [2].

8. Related Work

DCI [6, 20] differentiates between domain objects and use cases.
Use cases are decoupled from domain objects and are implemented
against the roles to be played by domain objects. Similar decou-
pling can be achieved with our approach, too, by applying it only
partially. However, differently than with our approach, in DCI, use
case flows in code are not continuous and tracing within the file
that contains the use case implementation is necessary, as has been
demonstrated in our prior work [2]. While DCI requires no particu-
lar tools, as with our approach, dedicated frameworks may be nec-
essary, such as Apache Zest (formerly Qi4J) in case of Java [23].
Unlike with our approach, no effort is taken in DCI to engage mul-
tiple languages in one file.

In aspect-oriented programming with use cases [[14}[15]], aspects
implement so-called use case slices, i.e., an aspect gathers all the
elements of a system a particular use case operates upon. The aspect
methods may be organized to reflect the use case steps, which
would be similar to our approach, but, unlike with the use case
steps in our approach, the ordering of the methods has no effect
with respect to the program behavior. Also, this approach does not
address the engagement of multiple languages.

It has been demonstrated that source code can be generated
from use cases [9} 24], but that requires strictly adhering to the
specific language for expressing use cases. In the end, the code is
not modularized according to the use cases it was generated from.

Merging use case related parts recalls partial classes form
subject-oriented programming [19] and symmetric aspect-oriented
composition in general [4,[11]. Each partial class treats one concern
(subject) in order to improve code comprehension and maintain-
ability.

There are also some broader implications of the approach pro-
posed here. The language used to express use cases in the comment
part may be viewed as a domain-specific language. This domain-
specific language is enabled by a preprocessor that is actually a
generator in the sense of generative programming [7]. Combining
different languages and different styles of programming is related
to multi-paradigm programming [22].

Our development environment is related to several other exper-
imental development environments. Object Teams [12] enable to
program with roles and their bundles called teams. This seems to
highly correspond to DCI, but there are no indications of a support
for use case steps. ReDSeeDS [24]] transforms use cases written in a
particular specification language (RSL) into UML models and Java

https://bitbucket.org/bystricky/literal-use-cases
https://www.youtube.com/watch?v=R4ArqH4ZdgI

code, but they vanish there. Dynamic code structuring [[18]] makes
possible to have different perspectives on code through an explicit
concern representation. Use cases could be one such perspective,
but not at the level of individual use case steps. None of the men-
tioned development environments supports multiple languages.

9. Conclusions and Further Work

In this paper, literal multi-language use case coding based on de-
fragmentation is proposed. The approach aims at fully preserving
use case flows in as comprehensible form as possible. The steps of
use case flows appear directly in the code as comments. Despite
being comments, the steps are active, which is achieved by a dedi-
cated preprocessor and framework. The detailed step implementa-
tion gathers all the code fragments of each step each of which may
be in a different programming language.

The need for taking different perspectives on code is reflected
in modern integrated development environments. Dynamic code
structuring [[18]] addresses this need directly in the code itself based
on explicit concern representation. It would be interesting to ex-
plore how the approach proposed here would accommodate this or
some other way of providing multiple code views.

As we discussed in our previous work [2], being able to see use
case steps directly in code and moreover to program in terms of
use case steps would make the intent expressed by the code more
comprehensible and easier to maintain. Such code is potentially
readable and even maintainable by end users, which is in line
with the current trend of end-user software engineering [1]]. In our
approach, transferring the control to the use case text can make
code even more accessible to end-users.

Acknowledgments

The work reported here was supported by the Scientific Grant
Agency of Slovak Republic (VEGA) under grants VG 1/0734/16
and VG 1/0774/16. 1t is also a partial result of the Research &
Development Operational Programme for the project Research of
Methods for Acquisition, Analysis and Personalized Conveying of
Information and Knowledge, ITMS 26240220039, co-funded by
the ERDF.

References

[1] M. M. Burnett and B. A. Myers. Future of end-user software engineer-
ing: Beyond the silos. In Proceedings of Future of Software Engineer-
ing, FOSE 2014, pages 201-211, Hyderabad, India, 2014. ACM.

M. Bystricky and V. Vranié. Preserving use case flows in source code.
In Proceedings of 4th Eastern European Regional Conference on the
Engineering of Computer Based Systems, ECBS-EERC 2015, Brno,
Czech Republic, Aug. 2015. IEEE CS.

M. Bystricky and V. Vrani¢. Development environment for literal
inter-language use case driven modularization. In Proceedings of
Modularity 2016 Demos & Posters, Mdlaga, Spain, 2016. ACM.

J. Balik and V. Vrani¢. Symmetric aspect-orientation: Some practical
consequences. In Proceedings of NEMARA 2012: International Work-
shop on Next Generation Modularity Approaches for Requirements
and Architecture, at AOSD 2012, Potsdam, Germany, 2012. ACM.

[5] A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.

[2

—

[3]

[4

=

103

[6] J. Coplien and G. Bjgrnvig. Lean Architecture for Agile Software
Development. Wiley, 2010.

[7] K. Czarnecki and U. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[8] E. W. Dijkstra. On the role of scientific thought. Technical Report
EWD 447, The University of Texas at Austin, USA, 1974. http:
//www.cs.utexas.edu/users/EWD/ewd04xx/EWD447 . PDF.

J. Francu and P. Hnétynka. Automated code generation from system
requirements in natural language. e-Informatica Software Engineering
Journal, 3(1):72-88, 2009.

J. Greppel and V. Vrani¢. An opportunistic approach to retaining use
cases in object-oriented source code. In Proceedings of 4th East-
ern European Regional Conference on the Engineering of Computer
Based Systems, ECBS-EERC 2015, Brno, Czech Republic, Aug. 2015.
IEEE CS.

[9

—

[10]

[11] W. H. Harrison, H. L. Ossher, and P. L. Tarr. Asymmetrically vs. sym-
metrically organized paradigms for software composition. Technical

Report RC22685, IBM Research, Dec. 2002.

[12] S. Herrmann. A precise model for contextual roles: The programming
language ObjectTeams/Java. Applied Ontology, 2(2):181-207, 2007.

ISSN 1570-5838.

[13] R. Hirschfeld, M. Perscheid, and M. Haupt. Explicit use-case rep-
resentation in object-oriented programming languages. In Proceed-
ings of 7th Symposium on Dynamic Languages, DLS’11, pages 51-60,

Portland, Oregon, USA, 2011. ACM.

I. Jacobson. Use cases and aspects — working seamlessly together.
Journal of Object Technology, 2(4), July—August 2003.

[15] 1. Jacobson and N. Pan-Wei. Aspect-Oriented Software Development
with Use Cases. Addison-Wesley, 2004.

[16] A. Kacofegitis and N. Churcher. Theme-based literate programming.
In Proceedings of 9th Asia-Pacific Software Engineering Conference,
APSEC 2012. IEEE, 2002.

[14]

[17] D. E. Knuth. Literate programming. The Computer Journal, 27(2):
97-111, 1984.

[18] M. Nosal’, J. Porubin, and M. Nosal'. Concern-oriented source code
projections. In Proceedings of 2013 Federated Conference on Com-
puter Science and Information Systems, FedCSIS 2013, pages 1541—
1544, Krakéw, Poland, 2013. IEEE.

[19] H. Ossher, W. Harrison, F. Budinsky, and I. Simmonds. Subject-
oriented programming: Supporting decentralized development of ob-
jects. In Proceedings of 7th IBM Conference on Object-Oriented Tech-
nology, July 1994.

[20] T. Reenskaug and J. O. Coplien. The DCI architecture: A new vision
of object-oriented programming. Artima Developer, 2009. URL
http://www.artima.com/articles/dci_vision.html|

[21] M. Smith. Towards Modern Literate Programming. Honours project
report, University of Canterbury, Christchurch, New Zeland, 2001.

[22] V. Vrani¢. Towards multi-paradigm software development. Journal of
Computing and Information Technology (CIT), 10(2):133-147, 2002.

[23] J. Zat'ko and V. Vrani¢. Assessing the DCI approach to preserving
use cases in code: Qi4J and beyond. In Proceedings of IEEE 19th
International Conference on Intelligent Engineering Systems, INES
2015, Bratislava, Slovakia, 2015. IEEE.

[24] M. Smiatek, N. Jarzebowski, and W. Nowakowski. Translation of use
case scenarios to Java code. Computer Science, 13(4):35-52, 2012.

http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
http://www.artima.com/articles/dci_vision.html

	Introduction
	Use Cases as Code Modules
	Engaging Multiple Languages
	Processing
	Use Case Relationships
	Broader Context
	Implementation and Evaluation
	Related Work
	Conclusions and Further Work

