
Acta Polytechnica Hungarica

 – 1 –

Challenges in Preserving Intent

Comprehensibility in Software

Valentino Vranić,1 Jaroslav Porubän,2

Michal Bystrický,1 Tomáš Frťala,1 Ivan Polášek,1 3

Milan Nosáľ,2 and Ján Lang1

1 Institute of Informatics and Software Engineering, Faculty of Informatics and

Information Technologies, Slovak University of Technology in Bratislava,

Ilkovičova 2, 84216 Bratislava, Slovakia, vranic@stuba.sk,

tomas.frtala@stuba.sk, michal.bystricky@stuba.sk, jan.lang@stuba.sk

2 Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia,

jaroslav.poruban@tuke.sk, milan.nosal@tuke.sk

3 Gratex International, a. s., Galvaniho 17/C, 821 04 Bratislava, Slovakia,

ipo@gratex.com

Abstract: Software is not only difficult to create, but it is also difficult to understand. Even

the authors themselves in a relatively short time become unable to readily interpret their

own code and to explain what intent they have followed by it. Software is being created

with the goal to satisfy the needs of a customer or directly of the end users. Out of these

needs comes the intent, which is relatively well understandable to all stakeholders. By

using other specialized modeling techniques (typically the UML language) or in the code

itself, use cases and other high-level specification and analytical artifacts in common soft-

ware development almost completely dissolve. Along with dedicated initiatives to improve

preserving intent comprehensibility in software, such as literate programming, intentional

programming, aspect-oriented programming, or the DCI (Data, Context and Interaction)

approach, this issue is a subject of contemporary research in the re-revealed area of en-

gaging end users in software development, which has its roots in Alan Kay's vision of a

personal computer programmable by end users. From the perspective of the reality of

complex software system development, the existing approaches are solving the problem of

losing intent comprehensibility only partially by a simplified and limited perception of the

intent and do this only at the code level. This paper explores the challenges in preserving

the intent comprehensibility in software. The thorough treatment of this problem requires a

number of techniques and approaches to be engaged, including preserving use cases in the

code, dynamic code structuring, executable intent representation using domain specific

languages, advanced UML modularization, 3D rendering of UML, and representation and

animation of organizational patterns.

Valentino Vranić et al. Challenges in Preserving Intent Comprehensibility in Software

 – 2 –

Keywords: intent; use cases; domain specific languages; 3D rendering of UML; organiza-

tional patterns

1 Introduction

Software is not only difficult to create, but it is also difficult to understand. Even

the authors themselves in a relatively short time become unable to readily interpret

their own code and to explain what intent they have followed by it, i.e., what they

wanted to achieve. Similar situations arise with models and in particular with

more detailed, design models. This problem is being solved by introducing anoth-

er artifact into software development: documentation. This brings in a further

complex problem: the need to keep documentation up to date. In the case of inter-

nal documentation (comments), the traceability of the artifacts the documentation

is related to has to be ensured, too. Furthermore, a considerable effort is needed to

initially create the documentation, inevitably with a disputable and difficult to

control quality because its consistency, as opposed to that of a program, cannot be

tested by actual execution.

This problem can also be perceived in a more global manner. Software is being

created with the goal to satisfy the needs of a customer or directly the needs of the

end users. Out of these needs comes the intent, which is relatively well under-

standable to all the stakeholders. By using other specialized modeling techniques

(typically the UML language) or in the code itself, use cases and other high-level

specification and analytical artifacts in common software development almost

completely dissolve.

Understanding the intent expressed in code has been identified as one of the key

problems in software development that has a direct impact on creating program-

ming languages and related tools [36]. This is important not only in software

maintenance, but it is also related to the question of reuse: the comprehension of

the intent as realized by a given component is necessary for its reuse.

Along with dedicated initiatives to improve preserving intent comprehensibility in

software, such as literate programming, which subordinates code to documenta-

tion [34], intentional programming, which aimed at enabling direct creation of

appropriate abstractions by the programmer [57], aspect-oriented programming,

which makes possible to gather parts of the code into modules by use cases [25,

26], or the DCI (Data, Context and Interaction) approach, which enables to partial-

ly preserve use cases [14], this issue is a subject of the contemporary research in

the re-revealed area of engaging end users in software development [6] that has its

roots in Alan Kay's vision of a personal computer programmable by end users.

From the perspective of the reality of complex software system development, the

existing approaches solve the problem of losing intent comprehensibility only

Acta Polytechnica Hungarica

 – 3 –

partially, by a simplified and limited perception of the intent and do so only at the

code level.

This paper explores the challenges in preserving intent comprehensibility in soft-

ware. The thorough treatment of this problem requires a number of techniques and

approaches to be engaged. Section 2 explains the dimensions of the intent in soft-

ware. Sections 3–5 explore the possibilities of preserving intent comprehensibility

from the perspective of each of the basic software constituents. Section 6 discuss-

es the related work. The paper is closed by conclusions and indication of further

work directions.

2 Dimensions of Intent

The ultimate form of the software is the executable code, which is mostly text

based. The level of the comprehensibility of the intent expressed by the code de-

termines the quality of the resulting software system: better intent comprehensibil-

ity simplifies error discovery and lessens the divergence from the functionality

that the software system should have provided.

Software development is accompanied by the creation of many artifacts that as

such do not contribute to its functionality and thus fairly quickly become outdated.

These additional artifacts are usually conjointly referred to as documentation. A

special position among these is held by models as non-code artifacts predominate-

ly expressed in a graphical form and used to reason about the software system

being developed. As such, they can be perceived as a transient form towards the

code, which is, after the code has been created, condemned to outdating. Models

can also be used to generate code or other models, or they can even be executable.

In any case, it is important for the intent in models to be comprehensible, too.

The originators of the intent are people and losing the intent in organizing people

is transferred to the software being developed by these people. This is a direct

consequence of Conway’s law [11]:

Organizations which design systems are constrained to produce designs

which are copies of the communication structures of these organizations.

This is not only the problem of the initial organization of the people. The people

remain the key factor throughout software development including the maintenance

phase, too. They tend to literally impersonate the software system parts they de-

velop and the effectiveness of resolving development problems depends directly

on the effectiveness of the communication among the developers. This is where

agile and lean approaches, which favor face-to-face contact among people over

any kind of formal communication, save significant time and resources [14].

Valentino Vranić et al. Challenges in Preserving Intent Comprehensibility in Software

 – 4 –

Furthermore, the notion of intent in software is relative and it can be observed in

the following dimensions:

 Stakeholders (intent originators): from whose perspective the intent is ob-

served, starting with the end user and moving towards the programmer

 Level: at what level of construct granularity is the intent expressed, start-

ing with the lower level constructs (e.g., conditional statements or loops),

via covering constructs (e.g., methods, classes, etc.), conceptual con-

structs and software system parts (different levels of subsystems), up to

the overall software system, including people organization

 Expression: how is the intent expressed, starting with an idea or mental

model, via informal notes and further forms of textual description, in-

cluding requirements lists and use cases, up to graphical model represen-

tations, formal specification, and, finally, the executable form itself

The entire intent space as determined by these dimensions, i.e., stakeholders–

level–expression, is huge. With respect to the basic software constituents, three

particular areas of interest can be identified therein (see Figure 1):

 With respect to code, it is reasonable to observe the intent by its represen-

tation in an executable form at the code level up to the covering con-

structs level

 With respect to models, the focus should be on expressing the intent by

graphical models spanning from the conceptual construct level up to the

software system level

 With respect to people, the most interesting is the people organization as

such and people organization in projects, at which the employment of

textual description and graphical models to express the intent appropri-

ately should be explored

All three areas span throughout the whole stakeholder dimension since, in general,

any stakeholder can be involved in any software artifact. This is at heart of the

agile and lean approaches to software development with their concept of cross-

functional roles. It may seem strange for end users to be connected with code, but

it a huge number of people in the USA (four times the number of professional

programmers there) reported they do programming at work [6]. With techniques

that shape code according to use cases and domain specific languages, addressed

in the next section, end user programming becomes even more relevant. Sec-

tions 4 and 5 address the remaining two areas of interest in exploring the intent in

software.

Acta Polytechnica Hungarica

 – 5 –

3 Code Perspective

As we will see in this section, the intent expressed in use cases can actually sur-

vive in code (Section 3.1) with application domain abstractions supported by do-

main specific languages (Section 3.2), while the differences in the mental models

of individual stakeholders require abandoning the fixed code structure (Sec-

tion 3.3).

Figure 1

Areas of interest in exploring the intent in software

3.1 Preserving Use Cases

From the perspective of preserving use cases in code, there are two approaches of

particular interest: aspect-oriented programming, which enables to collect the code

parts into modules corresponding to use cases [25, 26], and the DCI approach

[14], which enables to partially preserve use case flows, i.e., sequences of steps in

Valentino Vranić et al. Challenges in Preserving Intent Comprehensibility in Software

 – 6 –

use cases—known also as flows of events or simply flows1—albeit they remain

fragmented by roles.

In common object-oriented programming, the client or end user intent diminishes

from code. The parts of use cases end up in different classes by which they are

realized. The ability to affect one use case by another one without having any

reference to the affecting use case in the affected one, known as the extend rela-

tionship, also lacks in common object-oriented programming.

What should be explored is how appropriate design patterns, the frameworks

based on these design patterns, and preprocessing techniques can ensure not only

the code to be modularized according to use cases, but also how use case flows

(the actual steps) can be preserved in the code and how to achieve this in a form

close to the natural language. The modification of use cases, which usually hap-

pens only in code without reflecting the changes in the use case model, would

consequently be readable to stakeholders that have no programming knowledge.

This would even open a possibility for these stakeholders to directly modify the

program, at least at the highest level.

It is necessary to investigate the possibilities of expressing individual steps in use

case flows and the possibility of their formal interpretation without fully formaliz-

ing how they are expressed. For this, formal processing of informal meaning by

abstract interpretation could be considered [35]. By now, it has been demonstrat-

ed, though only in the Python programming language, how use case flows can be

preserved in code [7]. The modularization of use cases using design patterns in the

PHP programming language has been addressed, too [23], but this approach does

not preserve use case flows.

3.2 Domain Specific Languages

Domain specific languages are being created with the goal of bringing closer the

way the code is expressed to the problem domain. Programmers use problem

domain notions directly in the solution, while tools communicate with them in this

notional apparatus, too [42]. Domain specific languages play a key role in model

driven software development. Because of this, the orientation on domain specific

languages in searching for the ways to express the intent in software comes as a

natural choice. Despite a growing popularity of domain specific languages, a

number of questions remain unanswered in this area. These include language

composition [18], effective sentence creation using projectional and hybrid editors

[62], and assessment of the usability of domain specific languages [4].

1 Sometimes scenario is used to denote a use case flow. This may be confusing since a

scenario can stand for a particular path through a use case, which involves some or all

steps of one or several use case flows.

Acta Polytechnica Hungarica

 – 7 –

Domain specific languages can be used to achieve a readable and executable in-

tent representation that enables to propagate the notions from use cases, i.e., appli-

cation domain, to code, i.e., solution domain. In other words, domain specific

languages raise the level of abstraction of the solution domain closer to the appli-

cation domain abstractions making it possible for programmers to express the

solution using in the application domain fashion.

There are three promising directions in the research of preserving intent compre-

hensibility with domain specific languages. The first one is to come closer to the

ideal case in which a domain specific language will be both the application do-

main language and solution domain language. A domain specific language can

have textual, but also graphical (visual) concrete representations, which consti-

tutes the grounds for the second direction of research in preserving the intent with

domain specific languages: overcoming the gap between the model and the code,

while retaining executability. The third direction aims at simplifying the creation

of domain specific languages and their evolution, which takes place along with the

evolution of the program itself (constituting a program–language coevolution).

3.3 Dynamic Code Structure

A huge impediment to observing the intent is the fixed code structure. Different

stakeholders need to see code in different ways in which—from their perspec-

tive—the intent is readable. However, these cannot be based on a static code rep-

resentation, but have to be modifiable as though they are the actual code represen-

tation. The challenge here is not only to design the necessary views, but also to

enable creating further views directly by stakeholders.

The fixed code structure is a consequence of the economic aspects of software

development. Developers are bound to choose exactly one code structure. This

code structure corresponds to the mental model they have built upon their experi-

ence and knowledge, but also to the nature of the intent they have to realize. An

alternative implementation that would employ some other code structure is in this

case redundant and thereof economically inconvenient. Thus, the final code struc-

ture usually favors one intent that the authors considered to be the most important.

That intent can be anything, including technical intents such as software efficien-

cy, software extensibility, etc.

The programmers that join a project during the course of its realization, have to

understand the existing code before they can manage to progress. In such a situa-

tion, the new programmers, as new stakeholders, have to adopt the mental model

of the original programmers. This is difficult, since their own experience,

knowledge, and preferences in general are only rarely close to those of the original

programmers and thus constitute a mental barrier to the code comprehension. If,

for example, the original programmers focused on the system efficiency, while the

new programmers prefer extensibility, they might not understand many of the

Valentino Vranić et al. Challenges in Preserving Intent Comprehensibility in Software

 – 8 –

decisions made by the original programmers making it difficult for them to com-

ply with these decisions.

The problem of the limitations of static structure is in practice partially being

attacked by the built-in projections in integrated development environments

(IDE). Finding variable uses, which enables to follow scattering of the variable

use and thus to follow the intent implemented by it, is one of these. Similarly,

environments enable to follow selected intents that are not directly part of the

executable code. One example is comments with the TODO prefix, which can be

found and provided to stakeholders by the IDE in a navigable list with all the

instances of a given comment.

Approaches are known that improve certain aspects in the context of the problem

area of dynamic code structuring. A prominent example is a method for a faster

orientation in code supported by a tool that enables to display the body of the

method being called directly at the place of the call without the need of explicit

navigation [16].

Intentional code views from the perspective of the architectural intents based on

logical metaprogramming have been reported [41]. However, these views are not

editable. Intents have been represented in a form of a graph abstraction, too [55].

Programming with so-called ghosts [8] is based on automatic creation of unde-

fined yet entities used in the program, which are displayed in a separate, editable

view. The approach has been implemented as a prototype in the form of an Eclipse

plugin and as an extension to Smalltalk Pharo. Recording and automating design

pattern application treated, for example, by Kajsa [27], can also be perceived as a

way of expressing the intent using metadata.

4 Model Perspective

Dynamic code structuring as addressed in Section 3.2 is conceptually applicable to

graphical models, too. Providing different, modifiable views instead of only one,

static view is highly related to aspect-oriented modularization or to what is known

as advanced modularization in general. There are some opportunities to achieve

this in UML as a de facto standard in software modeling (Section 4.1). Employing

the third dimension in representing software models can further improve intent

comprehensibility (Section 4.2).

4.1 Advanced Modularization in UML

Despite extensive research in the area of aspect-oriented software development,

expressing advanced modularization at the model level did not end up with a gen-

erally accepted approach. A very important approach in this direction is Theme

Acta Polytechnica Hungarica

 – 9 –

[10], which is, similarly as newer approaches such as RAM [33], based on non-

UML elements.

Separation of concerns with clearly expressing their interrelation naturally con-

tributes to intent comprehensibility. The UML diagrams typically used in practice

make this possible only to a limited extent. Therefore, it is necessary to investigate

how advanced elements of UML, which usually have no straightforward counter-

parts in code, can help in expressing intent. In this sense, composite structure

models, whose important elements are roles and their collaborations, are particu-

larly interesting. Here, it is necessary to search for the ways of expressing roles

and their composition. Another UML concept that is directly interconnected with

composite structure models are parameterized types.

4.2 3D Rendering of UML

Model rendering itself and creation of alternative views can also enhance intent

comprehensibility by reducing its fragmentedness. The third dimension can be

employed here to simultaneously display and interconnect related parts of the

model. For this, a complex 3D UML rendering support for the layout of class or

module layers and their relationships has to be provided. This is different than the

standard package modularization, in which the relationships between package

elements are not easily observed. The point is in maintaining the layers in a simu-

lated 3D space in which it will be possible to create and observe elements and

their relationships along with the relationships between the layers as such.

In this sense, the model could be structured according to use cases as intent bear-

ers. Use cases define interaction and therefore are commonly modeled by se-

quence diagrams, which implicitly uncover the underlying structure necessary for

the realization of use cases [26, 1]. To expose the structure directly, sequence

diagrams can be easily converted into communication or object diagrams and

displayed in their own layers. The class diagram automatically created out of the

communication or object diagrams could be displayed in another layer making the

correspondence—and their intent—of the elements of these different diagrams

obvious provided their planar coordinates are preserved. The idea itself has been

indicated earlier [47]. Current research efforts aim at realizing it [22]. This ap-

proach is applicable also to decoupling patterns and antipatterns in class diagrams

depicted schematically in Figure 2.

Several approaches to the 3D rendering of UML diagrams have been reported.

However, each of these approaches is targeting only one type of UML diagrams

and none of them supports editable 3D views. X3D-UML [39] is an approach to

the 3D rendering of UML state machine diagrams in movable hierarchical layers

with the possibility of applying filtering. No appropriate tool for editing this view

is available.

Valentino Vranić et al. Challenges in Preserving Intent Comprehensibility in Software

 – 10 –

GEF3D [17, 45] is a 3D framework based on Eclipse GEF (Graphical Editing

Framework) developed as an Eclipse plugin. By using this framework, existing

GEF-based 2D editors can easily be embedded into 3D editors. The main idea of

this framework is to use the third dimension to visualize connections among sev-

eral common (2D) UML diagrams each of which is displayed in a separate layer

parallel to other layers. GEF3D supports also orthogonal positioning of layers into

virtual boxes [17] that makes inter-model connections clearly visible, but limits

the number of layers. GEF3D views are non-editable. Moreover, the project has

not been maintained since 2011.

A different way of 3D rendering of UML diagrams is based on so-called geons

[9], simple geometrical forms by which humans recognize more complex objects

according to Biederman's recognition-by-components theory. In UML diagrams, a

different geon is assigned to each kind of model element. According to this ap-

proach, by getting used to this mapping, even complex diagram structures become

readily comprehensible.

Figure 2

Decoupling patterns and ant-patterns with a layered 3D rendering of a class diagram

Acta Polytechnica Hungarica

 – 11 –

5 People Perspective

Appropriate ways of organizing people have been discovered in successful pro-

jects of software development and captured as organizational patterns [15]. Ap-

proaches that will enable to better understand the intent of organizational patterns

individually and in combination have to be explored. One possibility is their clari-

fication using software modeling and UML in particular, including the 3D render-

ing of UML discussed in Section 3.3. This approach is applicable to expressing

the organization of people in areas other than software development, too.

Alternatively, organizational patterns could be modeled in a virtual world in

which it would be possible for people to try the roles featured in these patterns and

experience the characteristic problem situations in a simulated environment.

For example, in the Architect also Implements pattern [15], a stakeholder could

play the role of a programmer who has to understand the design of a software

system in order to be able to implement it. The stakeholder could also play the

role of a software architect who prepares the design without a clear idea of its

implementation. The stakeholder could also experience each of these roles in a

positive arrangement in which the architect cooperates with programmers and

contributes to the implementation.

A virtual world does not necessarily mean virtual reality. That would surely be a

benefit, but the human imagination is capable of substituting this dimension when

important features of the content are captured. This phenomenon is known in

videogames, among which those with an interesting story tend to endure despite a

simpler graphical workout. Thus, the essence is in creating the corresponding

model of a typical situation solved by a given organizational pattern. In general, it

is necessary to find an approach of transforming organizational patterns into such

typical situations and to create a framework in which they could be readily ex-

pressed.

Agile games [37, 20] provide a possibility to experience situations in which it is

possible to better understand principles, relationships, and forces acting in agile

and lean approach to software development. The same approach could be applied

with organizational patterns.

Differently than agile games, the envisaged representation and animation of or-

ganizational patterns in a virtual world would provide a more realistic picture of

the situation. It would also take less time and would be applicable in an individual

setting with no need to engage other people, nor depend on their time. A simpli-

fied representation of this idea is offered by the SimSYS environment [12]. Ani-

mating organizational patterns as text adventure games [21] promises to improve

the comprehensibility of original descriptions of organizational patterns [15].

Valentino Vranić et al. Challenges in Preserving Intent Comprehensibility in Software

 – 12 –

6 Related Work

The problem of preserving intent comprehensibility accompanies software devel-

opment from its beginnings. In the introduction, we indicated some important

historical points starting from Alan Kay’s vision of personal computer program-

mable by end users [32] through several approaches to preserving intent in pro-

gramming, namely literate programming [34], intentional programming [56],

aspect-oriented programming [25, 26], and the DCI approach [14]. Preserving

intent comprehensibility is a subject of research in contemporary area of engaging

end users in software development [6]. Even though involving the client or end

users in software development is important, too, we claim that the successful

treatment of the problem of preserving intent comprehensibility has to comprise

all three basic software constituents: code, models, and people.

Aspect-oriented change realization [5, 40, 64, 65] enables modular expression of a

change, by which it actually contributes to a more comprehensible representation

of the intent. Determining the realization type of a change that has to be applied is

possible also by the multi-paradigm design with feature modeling [40], which is in

its own right interesting from the perspective of preserving intent comprehensibil-

ity because it represents an effort to bridge the gap between the solution and ap-

plication domain by a transformation [63].

The intent in code can be exposed by encouraging programmers to record their

intent in the form of intentional comments prior to writing any code as in the de-

sign intention driven programming [38]. Such enforcement of documentation

directly in the code addresses some of problems and limitations of literate pro-

gramming [58].

Approaches strongly bound to a model, e.g., domain driven design [19], do not

consider exposing behavior at a higher, use case level, but rather they encourage

programmers to create knowledge-rich models—also called smart models—which

do not evolve well [13]. As a result, the higher-level use cases become fragmented

in models and they are not visible in the code. This is addressed by several ap-

proaches that preserve the intent in code at a higher level by the modularization of

the code into use cases [7, 14, 25, 26].

A use case modeling metamodel can serve as a basis for reasoning about preserv-

ing use cases in the code and models [66, 67].

In applying advanced modularization for the purpose of a clearer separation of the

intent in code, techniques of applying advanced modularization in established

programming languages that are not being denoted as aspect-oriented [3] are of

particular interest.

The problem of effective design of domain specific languages from the perspec-

tive of tool support [52] is the key to a successful adoption of domain specific

languages in software development. A domain specific language is a dynamic

Acta Polytechnica Hungarica

 – 13 –

element in software development undergoing constant changes. This evolution of

domain specific languages may involve their composition. In building domain

specific languages, creating their concrete syntax out of the samples of sentences

of abstract conception [53], as well as inferring domain specific languages out of

user interfaces of existing software systems [1], can help significantly.

Recording the applied design patterns using annotations [56] can help in preserv-

ing intent comprehensibility in code. The method of abstracting information from

the details of the format being used, targeting XML formats and annotations [43],

can be applied here. Furthermore, an analysis of the need for dynamic code struc-

ture and its conceptual design has been reported [44], supported by a NetBeans

module prototype that enables simple intent based code projections expressed by

structured comments [54].

Using 3D space for software modeling in UML has been reported to support code

refactoring and optimization by displaying patterns in a separate layer, as well as

antipatterns for refactoring in another layer [46, 48, 50, 60]. Code visualization

upon AST project graphs [49, 51, 61] can be used to present models. This is relat-

ed not only to algorithms of positioning elements and their relationships, such as

FM3 or Fruchterman-Reingold, but also to the internal conception of presenting

information in code, such as authors, anitpatterns, types of classes, and simi-

lar [22].

To successfully master the graphical demands while working with UML models in

a 3D space, advanced software visualization [24, 28, 30, 59] and graph visualiza-

tion in general [31], as well as design of environments for visual programming

[29], are necessary.

Conclusions

Up to now, preserving intent comprehensibility has been approached to in a frag-

mented manner without clearly understanding its relativity. We envisage an inte-

gral perception of the intent in software and in support to its comprehensibility in

the whole space formed by the identified dimensions of the intent, i.e., stakehold-

ers–level–expression, and in all three basic software constituents, i.e., code, mod-

els, and people. Our hypothesis is that it is possible to increase the comprehensi-

bility of the intent by applying the corresponding methods conceived with respect

to the dimensions in which the intent is observed:

 Having use cases as part of the code can overcome current fragmented-

ness of the representation of use case flows, as well as readability of their

steps as such

 Domain specific languages can provide a readable and executable intent

representation

 Dynamic code structuring brings in editable adaptable code views

Valentino Vranić et al. Challenges in Preserving Intent Comprehensibility in Software

 – 14 –

 Advanced modularization in UML strives at employing standard yet un-

derutilized UML elements to express the intent

 3D rendering of UML has the potential of providing a fully editable mod-

el capable of displaying the relationship of use cases to the corresponding

detailed UML model (applicable to the DCI approach, too), but also pat-

terns and antipatterns in optimization and refactoring, aspects in aspect-

oriented modeling, and alternative and parallel scenarios

 Representation and animation of organizational patterns of software de-

velopment will make possible to transfer the experience of proven ways

of organizing people in software development in a new form available to

all stakeholders on an individual basis and at a convenient time

Acknowledgement

The work reported here was supported by the Scientific Grant Agency of Slovak

Republic (VEGA) under the grant No. VG 1/1221/12.

This contribution/publication is also a partial result of the Research & Develop-

ment Operational Programme for the project Research of Methods for Acquisition,

Analysis and Personalized Conveying of Information and Knowledge, ITMS

26240220039, co-funded by the ERDF.

References

[1] J. Arlow and I. Neustadt. UML 2 and the Unified Process: Practical Object-

Oriented Analysis and Design. 2nd Edition, Addison-Wesley, 2005.

[2] M. Bačíková, J. Porubän, D. Lakatoš: Defining Domain Language of Graph-

ical User Interfaces. In Proceedings of SLATE ‘13, 2nd Symposium on

Languages, Applications and Technologies, Porto, Portugal, 2013.

[3] J. Bálik and Valentino Vranić. Symmetric Aspect-Orientation: Some Practical

Consequences. In Proceedings of NEMARA 2012: International Workshop

on Next Generation Modularity Approaches for Requirements and Archi-

tecture, at AOSD 2012, Potsdam, Germany, ACM, 2012.

[4] A. Barišić, V. Amaral, M. Goulão, and B. Barroca. Quality in Use of Domain-

Specific Languages: A Case Study. In Proceedings of 3rd ACM SIGPLAN

Workshop on Evaluation and Usability of Programming Languages and

Tools, ACM, 2011.

[5] M. Bebjak, V. Vranić, and P. Dolog. Evolution of Web Applications with

Aspect-Oriented Design Patterns. In Proceedings of ICWE 2007 Work-

shops, 2nd International Workshop on Adaptation and Evolution in Web

Systems Engineering, AEWSE 2007, in conjunction with ICWE 2007,

Como, Italy, 2007.

[6] M. M. Burnett and B. A. Myers. 2014. Future of End-User Software Engineer-

ing: Beyond the Silos. In Proceedings of the Future of Software Engineer-

Acta Polytechnica Hungarica

 – 15 –

ing, FOSE 2014, 36th International Conference on Software Engineering,

ICSE 2014, Hyderabad, India, ACM, 2014.

[7] M. Bystrický and V. Vranić. Preserving Use Case Flows in Source Code. In

Proceedings of 4th Eastern European Regional Conference on the Engineer-

ing of Computer Based Systems, ECBS-EERC 2015, Brno, Czech Repub-

lic, IEEE Computer Society, 2015.

[8] O. Callau and É. Tanter. Programming with Ghosts. IEEE Software, 30(1):74–

80, 2013.

[9] K. Casey and C. Exton. A Java 3D Implementation of a Geon Based Visualisa-

tion Tool for UML. In Proceedings of the 2nd International Conference on

Principles and Practice of Programming in Java, Kilkenny City, Ireland,

2003.

[10] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design: The

Theme Approach Addison-Wesley, 2005.

[11] M. E. Conway. How do Committees Invent?, Datamation, 14(4):28–31, April

1968.

[12] K. Cooper and C. Longstreet. Towards Model-Driven Game Engineering for

Serious Educational Games: Tailored Use Cases for Game Requirements.

In Proceedings of 17th International Conference on Computer Games,

CGAMES, IEEE, 2012.

[13] J. O. Coplien. The DCI Architecture: Supporting the Agile Agenda. Øredev

Developer Conference, 2009. https://vimeo.com/8235574

[14] J. O. Coplien and G. Bjørnvig. Lean Architecture: for Agile Software Devel-

opment. Wiley, 2010.

[15] J. O. Coplien and Neil B. Harrison. Organizational Patterns of Agile Software

Development. Prentice Hall, 2004.

[16] M. Desmond, M.-A. Storey, and C. Exton. Fluid Source Code Views. In

Proceedings of 14th IEEE International Conference on Program Compre-

hension, ICPC’06, Washington, DC, USA, IEEE Computer Society, 2006.

[17] K. Duske. A Graphical Editor for the GMF Mapping Model. GEF3D Devel-

opment Blog, 2010. http://gef3d.blogspot.sk/2010/01/graphical-editor-for-

gmf-mapping-model.html

[18] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language Composition Untan-

gled. In Proceedings of 12th Workshop on Language Descriptions, Tools,

and Applications, ser. LDTA ’12, New York, NY, USA: ACM, 2012.

[19] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Soft-

ware. Addison Wesley, 2003. ISBN: 0-321-12521-5.

Valentino Vranić et al. Challenges in Preserving Intent Comprehensibility in Software

 – 16 –

[20] J. M. Fernandes, S. M. Sousa. PlayScrum—A Card Game to Learn the Scrum

Agile Method. In Proceedings of 2nd International Conference on Games

and Virtual Worlds for Serious Applications, 2010.

[21] T. Frťala and V. Vranić. Animating Organizational Patterns. In Proceedings

of 8th International Workshop on Cooperative and Human Aspects of Soft-

ware Engineering, CHASE 2015, ICSE 2015 Workshop, Florence, Italy,

IEEE, 2015.

[22] L. Gregorovič, I. Polášek, and B. Sobota. Software Model Creation with

Multidimensional UML. In Proceedings of International Conference on Re-

search and Practical Issues of Enterprise Information Systems, CONFENIS

2015, 23rd IFIP World Computer Congress International Conference on Re-

search and Practical Issues of Enterprise Information Systems, LNCS, Dae-

jeon, Korea, Springer, 2015 (accepted).

[23] J. Greppel and V. Vranić. An Opportunistic Approach to Retaining Use Cases

in Object-Oriented Source Code. In Proceedings of 4th Eastern European

Regional Conference on the Engineering of Computer Based Systems,

ECBS-EERC 2015, Brno, Czech Republic, IEEE Computer Society, 2015.

[24] F. Grznár and P. Kapec. Visualizing Dynamics of Object Oriented Programs

with Time Context. In Proceedings of Spring Conference on Computer

Graphics, SCCG 2013, Smolenice, Slovakia, ACM, 2013.

[25] I. Jacobson. Use Cases and Aspects—Working Seamlessly Together. Journal

of Object Technology, 2(4):7–28, 2003.

[26] I. Jacobson and P.-W. Ng. Aspect-Oriented Software Development with Use

Cases Addison-Wesley, 2004.

[27] P. Kajsa and P. Návrat. Design Pattern Support Based on the Source Code

Annotations and Feature Models. In Proceedings of 38th International Con-

ference on Current Trends in Theory and Practice of Computer Science,

SOFSEM'12, Springer, 2012.

[28] P. Kapec. Hypergraph-Based Software Visualization. In Proceedings of In-

ternational Workshop on Computer Graphics, Computer Vision and Math-

ematics, GraVisMa 2009, Plzeň, Czech Republic, 2009.

[29] P. Kapec. Visual Programming Environment Based on Hypergraph Represen-

tations. In Proceedings (Part II) of ICCVG 2010, International Conference

on Computer Vision and Graphics, Warsaw, Poland, LNCS 6375, Springer,

2010.

[30] P. Kapec. Visualizing Software Artifacts Using Hypergraphs. In Proceedings

of Spring Conference on Computer Graphics in Cooperation, SCCG'2010,

Budmerice, ACM, 2010.

[31] P. Kapec, Michal Paprčka, Adam Pažitnaj, and Vladimír Polák. Exploring 3D

GPU-Accelerated Graph Visualization with Time-Traveling Virtual Cam-

Acta Polytechnica Hungarica

 – 17 –

era. Journal of Theoretical and Applied Computer Science (JTACS),

7(2):16–30, 2013.

[32] A. Kay. A Personal Computer for Children of All Ages. In Proceedings of the

ACM Annual Conference – Volume 1 (ACM '72), ACM, 1972.

[33] J. Kienzle, W. Al Abed, F. Fleurey, J.-M. Jézéquel, and J. Klein. Aspect-

Oriented Design with Reusable Aspect Models. Transactions on Aspect-

Oriented Software Development, 7:279–327, 2010.

[34] D. E. Knuth. Literate Programming. The Computer Journal, 27:97–111, 1984.

http://www.literateprogramming.com/knuthweb.pdf

[35] J. Kollár. Formal Processing of Informal Meaning by Abstract Interpretation.

In Proceedings of Smart Digital Futures 2014, SDF-14, Frontiers in Artifi-

cial Intelligence and Applications, Volume 262, Chania, Greece, IOS Press,

2014.

[36] T. D. LaToza and B. A. Myers. Hard-to-Answer Questions About Code. In

Proceeding of Workshop on Evaluation and Usability of Programming

Languages and Tools, PLATEAU '10, Reno, Nevada USA, ACM, 2010.

[37] T. Lynch et al. An Agile Boot Camp: Using a LEGO®-Based Active Game

to Ground Agile Development Principles. In Proceedings of 2011 Frontiers

in Education Conference, FIE 2011, Rapid City, SD, USA, 2011.

[38] K. Matz. Designing and Evaluating an Intention-Based Comment Enforce-

ment Scheme for Java. MA thesis. Walton Hall, Milton Keynes, MK7 6AA,

United Kingdom: The Open University, 2010.

[39] P. McIntosh. X3D-UML: User-Centred Design. Implementation and Evalua-

tion of 3D UML Using X3D. PhD thesis, RMIT University, 2009.

[40] R. Menkyna and V. Vranić. Aspect-Oriented Change Realization Based on

Multi-Paradigm Design with Feature Modeling. In Proceedings of 4th IFIP

TC2 Central and East European Conference on Software Engineering

Techniques, CEE-SET 2009, Revised Selected Papers, LNCS 7054, Kra-

kow, Poland, Springer, 2012.

[41] K. Mens, B. Poll, and S. González. Using Intentional Source-Code Views to

Aid Software Maintenance. In Proceedings of International Conference on

Software Maintenance, ICSM ’03, Washington, DC, USA, IEEE Computer

Society, 2003.

[42] M. Mernik, J. Heering, A. M. Sloane. When and How to Develop Domain-

Specific Languages. ACM Computing Surveys (CSUR), 37(4):316–344,

2005.

[43] M. Nosáľ and J. Porubän. Supporting Multiple Configuration Sources Using

Abstraction. Central European Journal of Computer Science. 2(3):283–299,

2012.

Valentino Vranić et al. Challenges in Preserving Intent Comprehensibility in Software

 – 18 –

[44] M. Nosáľ, J. Porubän, and M. Nosáľ. Concern-Oriented Source Code Projec-

tions In Proceedings of Federated Conference on Computer Science and In-

formation Systems, FEDCSIS 2013, Kraków, Poland, IEEE, 2013.

[45] J. von Pilgrim and K. Duske. GEF3D: a Framework for Two-, Two-and-a-

Half- and Three-Dimensional Graphical Editors. Proceedings of 4th ACM

Symposium on Software visualization, Ammersee, Germany, 2008.

[46] R. Pipík and I. Polášek. Semi-Automatic Refactoring to Aspect-Oriented

Platform. In Proceedings of 14th IEEE International Symposium on Compu-

tational Intelligence and Informatics, CINTI 2013, Budapest, IEEE, 2013.

[47] I. Polášek. 3D Model ako spôsob návrhu objektovej štruktúry (3D Model for

Object Structure Design). In: Systémová integrace, 11(2):82–89, 2004. In

Slovak.

[48] I. Polášek, P. Líška, J. Kelemen, and J. Lang. On Extended Similarity Scoring

and Bit-Vector Algorithms for Design Smell Detection. In Proceedings of

IEEE 16th International Conference on Intelligent Engineering Systems,

INES 2012, Lisbon, Portugal, IEEE, 2012.

[49] I. Polášek, I. Ruttkay-Nedecký, P. Ruttkay-Nedecký, T. Tóth, A, Černík, and

P. Dušek. Information and Knowledge Retrieval within Software Projects

and their Graphical Representation for Collaborative Programming. Acta

Polytechnica Hungarica, 10(2):173–192, 2013.

[50] I. Polášek, S. Snopko, and I. Kapustík. Automatic Identification of the Anti-

Patterns Using the Rule-Based Approach. In Proceedings of IEEE 10th Jubi-

lee International Symposium on Intelligent Systems and Informatics, SISY

2012, Subotica, Serbia, IEEE, 2012.

[51] I. Polášek and M. Uhlár. Extracting, Identifying and Visualisation of the

Content, Users and Authors in Software Projects. Transactions on Compu-

tational Science XXI: Special Issue on Innovations in Nature-Inspired

Computing and Applications, LNCS 8150, Springer Berlin Heidelberg,

2013.

[52] J. Porubän, M. Forgáč, M. Sabo, and M. Běhálek: Annotation Based Parser

Generator. In: Computer Science and Information Systems, 7(2):291–307,

2010.

[53] J. Porubän, J. Kollár, M. Sabo: Abstraction of Computer Language Patterns:

The Inference of Textual Notation for a DSL. In: Formal and Practical As-

pects of Domain-Specific Languages: Recent Developments, IGI Global,

2013.

[54] J. Porubän and M. Nosáľ. Leveraging Program Comprehension with Con-

cern-Oriented Source Code Projections. In Proceedings of Slate`14, 3rd

Symposium on Languages, Applications and Technologies, Bragança, Por-

tugal, 2014.

Acta Polytechnica Hungarica

 – 19 –

[55] M. P. Robillard and G. C. Murphy. Concern Graphs: Finding and Describing

Concerns Using Structural Program Dependencies. In Proceedings of 24th

International Conference on Software Engineering, ICSE ’02, Orlando,

Florida, USA, ACM, 2002.

[56] M. Sabo and J. Porubän. Preserving Design Patterns Using Source Code

Annotations. Journal of Computer Science and Control Systems, 2(1):53–

56, 2009.

[57] C. Simonyi. The Death of Computer Languages, The Birth of Intentional

Programming. Technical report, MSR-TR-95-52, Microsoft Research,

1995.

[58] M. Smith. Towards Modern Literate Programming. Honours project report,

University of Canterbury, New Zealand, 2001.

[59] M. Šperka, P. Kapec, and I. Ruttkay-Nedecký. Exploring and Understanding

Software Behaviour Using Interactive 3D Visualization In Proceedings of

8th International Conference on Emerging eLearning Technologies and Ap-

plications, ICETA 2010, Stará Lesná, The High Tatras, Slovakia, 2010.

[60] M. Štolc and I. Polášek. A Visual Based Framework for the Model Refactor-

ing Techniques. In Proceedings of 8th IEEE International Symposium on

Applied Machine Intelligence and Informatics, SAMI 2010, Herľany, Slo-

vakia, IEEE, 2010.

[61] M. Uhlár and I. Polášek. Extracting, Identifiyng and Visualisation of the

Content in Software Projects. In Proceedings of 2012 4th World Congress

on Nature and Biologically Inspired Computing, NaBIC 2012, Mexico

City, Mexico, IEEE, 2012.

[62] M. Voelter, J. Siegmund, T. Berger, and B. Kolb. Towards User-Friendly

Projectional Editors. In Proceedings of 7th International Conference on

Software Language Engineering, SLE 2014, 2014.

[63] V. Vranić. Multi-Paradigm Design with Feature Modeling. Computer Science

and Information Systems Journal (ComSIS), 2(1):79–102, 2005.

[64] V. Vranić, M. Bebjak, R. Menkyna, and P. Dolog. Developing Applications

with Aspect-Oriented Change Realization. In Proceedings of 3rd IFIP TC2

Central and East European Conference on Software Engineering Tech-

niques, CEE-SET 2008, Revised Selected Papers, LNCS 4980, Brno, Czech

Republic, Springer, 2011.

[65] V. Vranić, R. Menkyna, M. Bebjak, and P. Dolog. Aspect-Oriented Change

Realizations and Their Interaction. e-Informatica Software Engineering

Journal, 3(1):43–58, 2009.

[66] V. Vranić and Ľ. Zelinka. A Configurable Use Case Modeling Metamodel

with Superimposed Variants. Innovations in Systems and Software Engi-

neering: A NASA Journal, 9(3):163–177, Springer, 2013.

Valentino Vranić et al. Challenges in Preserving Intent Comprehensibility in Software

 – 20 –

[67] Ľ. Zelinka and V. Vranić. A Configurable UML Based Use Case Modeling

Metamodel. In Proceedings of 1st Eastern European Regional Conference

on the Engineering of Computer Based Systems, ECBS-EERC 2009, Novi

Sad, Serbia, IEEE Computer Society, 2009.

