
Applying Aspect-Oriented Change Realization in the Mobile
Application Domain

Sandra Kostova
Institute of Informatics, Information Systems and Software

Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava
Slovakia

kostova.sandra@gmail.com

Valentino Vranić
Institute of Informatics, Information Systems and Software

Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava
Slovakia

vranic@stuba.sk

ABSTRACT
Aspect-oriented programming makes possible to express changes
in a modular way directly at the level of programming language
constructs. This is particularly useful in situations that require
explicit change manipulation, such as change reapplication to an-
other version branch in application customization. However, it
may be tricky to employ appropriate aspect-oriented constructs
in a correct way that accommodates well the change to be imple-
mented. This has been successfully addressed by an approach to
aspect-oriented change realization based on a two-level change
type model, which features a catalog of specification and imple-
mentation change types and their relationships, primarily targeting
the web application domain. In this paper, we explore the applica-
bility of the change types gathered in this catalog for the mobile
application domain. For this, we performed a study that involved a
set of hypothetical scenarios and two real mobile applications for
Android. The study revealed that the change types known from
the web application domain are in their essence applicable to the
mobile application domain. It also lead to the discovery of four new
specification change types in the mobile application domain and
the corresponding specification–implementation change type rela-
tionships along with further relationships between known change
types.

CCS CONCEPTS
• Human-centered computing → Smartphones; Mobile de-
vices; • Social and professional topics → Software mainte-
nance; • Software and its engineering → Abstraction, mod-
eling and modularity; Software configuration management
and version control systems; Software version control;Main-
taining software;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00
https://doi.org/10.1145/3191697.3213806

KEYWORDS
aspect-oriented programming, change modularization, mobile ap-
plications, Android, maintenance
ACM Reference Format:
Sandra Kostova and Valentino Vranić. 2018. Applying Aspect-Oriented
Change Realization in the Mobile Application Domain. In Proceedings of 2nd
International Conference on the Art, Science, and Engineering of Programming
(<Programming’18> Companion). ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3191697.3213806

1 INTRODUCTION
Every software system, from the moment of being conceived, is
subject to changes. Most of the work in the area of change manage-
ment and version control focuses either on tracking changes and
versions in code (with the most prominent system for this being
Git) or models [29] as realization artifacts, or on tracking changes
in requirements [2, 10] as specification artifacts. Aspect-oriented
change realization [36] interconnects these two areas by dealing
with changes in code as with conceptual units in terms of specifica-
tion providing means for a quick transition from a change request
to its implementation, which, moreover, remains in one module.

Aspect-oriented programming can be used to express non-correc-
tive changes1 in a modular way directly at the level of programming
language constructs [11]. This is particularly useful in situations
that require explicit change manipulation, such as change reapplica-
tion to another version branch in application customization [35, 36].
However, it may be tricky to employ appropriate aspect-oriented
constructs in a correct way that accommodates well the change
to be implemented. This has been successfully addressed by an
approach to aspect-oriented change realization based on a two-
level change type model, which features a catalog of specification
and implementation change types and their relationships (further
referred to simply as catalog of change types), primarily targeting
the web application domain [3].

Aspect-oriented programming has not yet come to be widely
accepted on mobile platforms, but it is possible to apply it [22, 30].
Since mobile applications are not less than desktop applications
subject to numerous changes, mobile application development could
benefit from using aspect-oriented change realization.

The rest of the paper is structured as follows. Section 2 revisits
the catalog of known change types in the context of aspect-oriented
1Corrective changes can be realized using aspect-oriented programming, too, but that
would cause unnecessary version proliferation, as there is little use of keeping the
possibility of restoring incorrect versions.

https://doi.org/10.1145/3191697.3213806
https://doi.org/10.1145/3191697.3213806
https://doi.org/10.1145/3191697.3213806

<Programming’18> Companion, April 9–12, 2018, Nice, France Sandra Kostova and Valentino Vranić

change realization in the mobile application domain. Section 3
presents the implementation change types from this catalog that
we applied in our study. Section 4 explains newly identified specifi-
cation change types for the mobile application domain. Section 5
discusses change interaction. Section 6 reflects on related work.
Section 7 concludes the paper.

2 APPLYING KNOWN ASPECT-ORIENTED
CHANGE TYPES TO MOBILE
APPLICATIONS

As we mentioned in the introduction, in the two-level aspect-
oriented change realization model [34], one level contains imple-
mentation change types, which are generally applicable regardless
of the application domain, while the other one contains specifi-
cation change types, which are domain specific. Given a change
request, it is first decomposed into individual changes, each of
which is then separately analyzed and generalized and then looked
for a similar phrasing among the specification change types in the
catalog of change types. Each specification change type points to
the corresponding implementation type, which is specified by a
code scheme.

Upon identifying the specification change type that suits the
needs of the required change, the corresponding implementation
change type, which includes a ready to be be applied code scheme,
is simply read from the cataloged relationships. Implementation
change types recall design patterns and some of them actually are
design patterns. Sometimes, several implementation types can be
used alternatively or may have to be combined in order to imple-
ment the given specification change type.

Consider an example. One of the functions of the contact man-
agement mobile application is to provide telephone numbers owned
by the company employees. The application requires registration.
There are two account types: administrator and common employee.
In addition to common employee rights, administrators can see the
contact details of all employees, change the position of other em-
ployees, delete contacts, etc. Assume that a change request comes
stating that common employees should be prevented from access-
ing the options for deleting or changing the employee information.
They are already prevented from performing these operations in the
application logic, but the corresponding options are still available
to them in the user interface. What we need to do is to restrict com-
mon employees in accessing the user interface accordingly. Going
through specification change types, we may find that the User In-
terface Restriction specification change type, for which the catalog
reads, “It is quite annoying when a user sees, but can’t access some
options due to user rights restrictions,” quite corresponds to this
situation. Strictly speaking, this is rather a generalized example
than a definition, but this format seems to suit matching to change
specifications.

The existing catalog of change types for the web application do-
main contains the following change types and relationships (speci-
fication change types given first) [36]:
• One Way Integration: Performing Action After Event
• Two Way Integration: Performing Action After Event
• Adding Column to Grid: Performing Action After Event
• Removing Column from Grid: Method Substitution

• Altering Column Presentation in Grid: Method Substitution
• Adding Fields to Form: Enumeration Modification with Ad-
ditional Return Value Checking/Modification
• Removing Fields from Form: Additional Return Value Check-
ing/Modification
• Introducing Additional Constraint on Fields: Additional Pa-
rameter Checking or Performing Action After Event
• Introducing User Rights Management: Border Control with
Method Substitution
• User Interface Restriction: Additional Return Value Check-
ing/Modifications
• Introducing Resource Backup: Class Exchange

According to the catalog, the Additional Return Value Checking/-
Modification is an implementation change type that corresponds
to the User Interface Restriction specification change type. In our
situation, the menu consists of the list of the options which are
consequently rendered by the user interface part of the application.
The menu is returned by the logon() method. To restrict the user
interface for a common user then means simply to leave out the
options not allowed for this type of users. By applying the corre-
sponding code scheme included in the catalog, we can write the
following aspect:

public aspect CommonUserMenuRestriction {
privateMenu menu;
pointcut logonmethod(User user): call(∗ User.logon(..))

&& target(user);

Menu around(User user): logonMethods(user) {
menu = proceed(user);
restrictMenu(user);
return menu;

}
private void restrictMenu(User user) {

if (user.type == UserTypes.common) {
... // leave out non−administrative options from the menu

}
}

}

Let us consider few other change requests (code omitted for
space reasons). One of them might state that enhancing the restric-
tions to the user interface by introducing a full-fledged user rights
management is needed. In effect, this would concern limiting ac-
cess to sensitive parts of the application when a common user is in
charge, which brings us to the Introducing User RightsManagement
specification change type. According to the catalog, this change
is implemented by the Border Control aspect-oriented design pat-
tern [23] combined with the Method Substitution implementation
change type. Border Control specifies the restricted region in terms
of method calls prohibited for common users. Method Substitution
empowers this pointcut by a piece of around advice to decide upon
the execution of these calls.

Another change request might be to introduce telephone number
validation consisting of checking whether the telephone number
already exists in the application and whether it is in a correct format.
This is as if we would need to integrate our application with the
telephone number validation. It is not necessary for the validation

Applying AO Change Realization in the Mobile Application Domain <Programming’18> Companion, April 9–12, 2018, Nice, France

part to be aware of the rest of the application, i.e., the integration
is one way only. The catalog contains a specification change type
named exactly like that: One Way Integration. The corresponding
implementation change type is Performing Action After Event, with
the action being the telephone number validation, and the event
being the entering of the telephone number.

Consider one more change request that demonstrated applicabil-
ity of known aspect-oriented change types to mobile applications:
calling prefixes should be appended automatically to telephone
numbers entered into forms if they contain no calling prefix them-
selves. Adding a calling prefix means adding constraints to the
telephone number field, which brings us to the Adding Constraint
to the Field specification change type, to be implemented as the
Additional Parameter Checking implementation change type.

3 APPLIED IMPLEMENTATION CHANGE
TYPES IN MOBILE APPLICATIONS

To assess the two-level aspect-oriented change realization approach
in the mobile application domain, we performed a study involv-
ing implementing a series of changes in two mobile applications.
Diabetes Monitoring System (DMS)2 is intended to help diabetics
to better manage their disease and keep it under control. Expense
Tracker (ET)3 helps users manage their money by providing weekly,
monthly, and yearly reports about their expenses.

Since we were unable to find the corresponding specification
change types in the existing catalog of change types, we resorted
directly to implementation change types. This indicates the need
for establishing specification change types specific for mobile appli-
cations, which we address in Section 4. Sections 3.1–3.5 describe the
experience of implementing selected implementation change types
from the known catalog of change types for the web application
domain.

3.1 Performing Action After Event
We successfully used the Performing Action After Event implemen-
tation change to implement sound notification, vibration notifica-
tion, and logging in DMS and ET. An example of logging screen
changes in DMS is shown below:

public aspect ActivityAspect {
private pointcut getViewPointcut(int i):

call(∗ setContentView(int)) && args(i);

after(int i): getViewPointcut(i) {
getActivityLayoutName(i);

}
public void getActivityLayoutName(int i) {

if (R.layout.activity_main == i) {
Log.i("INFO", "Main User Activity is on");
return;

} else if (R.layout.add_new_user == i) {
...
} else if (R.layout.login == i){
Log.i("INFO", "Login Activity is on");
return;

2https://github.com/arsikj/Diabetes-Monitoring-System-Android
3https://github.com/vinsol/expense-tracker

}
}

}

The calls to the setContentView() method, which actually sets the
main layout (activity), along with the layout number, an argument
to this method, are being captured. The layout number is then
interpreted in terms of existing layouts with the corresponding
information being logged.

3.2 Additional Parameter Checking
In DMS, theAdditional Parameter Checking implementation change
type was used to introduce checking the entered doctor number
value and checking the entered name values:
public privileged aspect NameValidatorAspect {

String userName, doctorName;
boolean ok, ok1;
protected pointcut myClass(): within(AddNewUser);
private pointcut getName(): myClass() && execution(∗ save(..));

void around(): getName() {
userName = ((AddNewUser) (thisJoinPoint.getThis())).

userName.getText().toString();
doctorName = ... // analogously as userName
ok = nameValidation(userName);
ok1 = nameValidation(doctorName);

if (!ok) {
Toast.makeText(AddNewUser.getContext(), ...).show();
return;

}
if (!ok1) { ... // analogously as with ok
}
proceed();

}
private boolean nameValidation() {

...
}

}

One of the difficulties we encountered was in accessing the
names. They were defined as private attributes and no get methods
were implemented either. In AspectJ, an aspect can access a member
of a class even though it is private if the aspect is declared as
privileged, which is what we used. In effect, this means breaking
encapsulation, so privileged aspects have to be used with caution.
In ET, the Additional Parameter Checking implementation change
type was applied to impose checking the number of unfinished
expense entries performed upon adding or deleting an expense.

3.3 Additional Return Value
Checking/Modification

Assume that in ETwewould like to round the amount of the expense
entry to two decimal places whenever a user inserts a new expense
entry. To do this, the return value of the method that saves the
entry data must be changed:
Object around(EditAbstract o): EntryPoint(o) {

Entry list = new Entry();

https://github.com/arsikj/Diabetes-Monitoring-System-Android
https://github.com/vinsol/expense-tracker

<Programming’18> Companion, April 9–12, 2018, Nice, France Sandra Kostova and Valentino Vranić

list.id = o.entry.id;
o.entry.amount = o.editAmount.getText().toString();

if (!o.entry.amount.equals(".") && !o.entry.amount.equals("")) {
Double mAmount = Double.parseDouble(o.entry.amount);
mAmount = (double) ((int) ((mAmount + 0.005) ∗ 100.0) / 100.0);
list.amount = mAmount + "";
h.put("Amount Digits", new StringProcessing().

getStringDoubleDecimal(list.amount).length()+"");
} else {

list.amount = "";
}
return list;

}

In DMS, the same implementation change type was used to
introduce telephone number formatting in terms of introducing the
current calling prefix if it is missing.

3.4 Class Exchange
The amount rounding we dealt with in the previous section actu-
ally requires using yet another implementation change type, Class
Exchange:

public aspect AmountValidation {
HashMap<String,String> h;
private pointcut HashPoint():

withincode(Entry getSaveEntryData(..))
&& call(HashMap.new(..));

Object around(): HashPoint() {
h = new HashMap<String, String>();
return h;

}
Object around(EditAbstract o): EntryPoint(o) {

...
}

}

A pointcut captures each new HashMap instance creation within
the getSaveEntryData() method. In a piece of the around advice,
that class instance is exchanged with another one. What follows
is the around advice from the previous section that implements
Additional Return Value Checking/Modification. Consequently, this
was a very special implementation because we came to combine
two different implementation change types in one aspect. This is
actually a new way of implementing the Introducing Additional
Constraint specification change type that needs to be cataloged
(see Section 4).

3.5 Method Substitution
While in the Class Exchange implementation change type we are
exchanging one class with another one, in the Method Substitution
implementation change type it is the execution of a method that
is being exchanged. Sometimes, the original method execution
is completely disabled [36]. We used this change type to achieve
duplicity checking in DMS. This means that after the Save button is
pressed while registering a user, DMS checks whether a user with
the same name already exists. If this is so, the application attempts

to modify the name by preceding it with NEW and checks once
more whether the user with this name already exists in the user
list. For this, one method execution was substituted with another
method execution. If there is such a name, the method execution
is completely disabled (code omitted for space reasons). A very
similar functionality was implemented in ET, too: duplicity check
of the entered expense entry.

4 NEW SPECIFICATION CHANGE TYPES FOR
THE MOBILE APPLICATION DOMAIN

In previous sections, we demonstrated that the two-level aspect-
oriented change realization approach and the original catalog of
change types for the web application domain is applicable to the
mobile domain applications. Out of six implementation change
types in this catalog, we successfully applied five. This was expected,
since implementation change types in the two-level aspect-oriented
change realization approach are expressed so that they do not
depend on the application domain. This is why they were originally
called generally applicable change types [3].

The situation was different with the specification change types,
originally known as application specific change types [3]. Although
some of the specification change types for the web application
domain could be applied to the mobile application domain, there
were situations in which no existing specification change types
could be applied. Also, we observed further relationships between
change types.

One of the new specification changes is Introducing Sound Noti-
fication, which was implemented in both DMS and ET to introduce
a sound upon registering a new user. Another one is Introducing
Vibration Notification, which was implemented in both DMS and
ET to introduce a vibration upon pressing the back button.

We also discovered the Logging Activity Changes specification
change. A typical activity change that one might want to log in
Android applications is a change to the main activity, and this is
what we implemented in both DMS and ET applications.

Introducing Display Constraints, the last specification change
type we discovered, was applied to ET to introduce checking the
number of unfinished expense entries. For this, the Additional Pa-
rameter Checking implementation change type was used. Actually,
this change was a result of code refactoring. The existing function-
ality was rephrased as an aspect to enable its easy inclusion and
exclusion. Table 1 summarizes the changes implemented in DMS
and ET.

In order to be incorporated into the process of aspect-oriented
change realization based on a two-level change type model, newly
identified specification change types for mobile application domain
have to be bound to corresponding implementation change types.
The previous section indicated some of these relationships, along
with some new relationships between already known change types.
An example of this is amount rounding (recall Sections 3.3 and 3.4),
which was identified to be of the Introducing Additional Constraint
specification change type, and which was implemented using both
Class Exchange and Add Return Value Checking Modification im-
plementation change types. In the rightmost two columns, Table 1
summarizes the new relationships between change types we dis-
covered in our study.

Applying AO Change Realization in the Mobile Application Domain <Programming’18> Companion, April 9–12, 2018, Nice, France

Table 1: Implemented change types in mobile applications.

Change Application Implementation Change Type Specification Change Type
Name validation DMS Additional Parameter Checking Introducing Additional Constraints on Fields
Telephone number formatting DMS Additional Return Value Checking/Modification Introducing Additional Constraints on Fields
Telephone number validation DMS Additional Parameter Checking Introducing Additional Constraints on Fields
Sound notification both Performing Action After Event Introducing Sound Notification
Vibration notification both Performing Action After Event Introducing Vibration Notification
Logging screen changes both Performing Action After Event Logging Activity Changes
Duplicity control both Method Substitution Altering Column Presentation in Grid
Amount rounding ET Add Return Value Checking/Modifications Introducing Additional Constraints on Fields

and Class Exchange
Checking the number of ET Additional Parameter Checking Introducing Display Constraints
unfinished expense entries

5 CHANGE INTERACTION
Interaction of changes realized in aspect-orientedway occursmainly
due to addressing and manipulating the same elements by pieces of
advice belonging to different change implementations. Consider the
interaction that occurred in DMS between telephone number vali-
dation, telephone number formatting, and name validation changes.
Each of these changes address the same method named save() (see
Section 3.2). The exact order in which the changes are applied can
be determined by the rules of advice precedence, which are based
on advice type and physical order of code [19]. The order of our
changes happens to be as follows: telephone number validation, tele-
phone number formatting, and name validation. Telephone number
validation checks whether the entered numbers are valid. If they
are not, telephone number formatting and name validation are not
executed. This way, some changes may prevent other changes from
being executed. In our case, this poses no problem because we want
the application to format the number only if the telephone number
validation passes successfully.

Another change interaction we noticed in DMS happened be-
tween sound notification and duplicity control. Duplicity control
occurs around calls to the method of registering a new user. Sound
notification occurs after the same method is called. According to
advice precedence rules, a piece of the around advice will be exe-
cuted before a piece of the after advice. Thus, sound notification,
implemented as a piece of the after advice, will not accomplish its
function if duplicity control prohibits the registration of a new user,
as the join point sound notification waits for will never be executed.

6 RELATEDWORK
Jalali and Bider [18] presented an idea of using aspect-oriented ap-
proach to adaptive case management. For this, they identified par-
ticular constraints and proposed their aspect-oriented realization,
such as response restriction, precedence restriction, or not chain
succession constraint, which are one level above aspect-oriented
programming primitives, just like implementation change types
in aspect-oriented change realization based on a two-level change
type model. However, no specification change types have been
proposed there.

Aspect-oriented programming has been identified as interesting
and applicable in Android applications [8] and studies of technical
issues in affecting applications in Android using aspects have been

reported [22, 31] but these efforts cannot be considered to be orga-
nized application of aspect-oriented programming in the mobile
application domain.

The SuperMod tool [27] aims at interconnecting version control
changes with features in software product line development. This
is similar to how aspect-oriented change realization interconnects
implementation and specification level changes. However, in aspect-
oriented change realization, changes remain operated upon directly
at the programming language level with no need for additional
tools.

Other applications of aspect-oriented programming, such as
those in modifying compiled code [4, 5], use case driven mod-
ularization [6, 7, 16, 17] refactoring [24], creating programming
languages [9, 25], or complex event processing [20, 21] could po-
tentially benefit from aspect-oriented change realization in making
these approaches closer to specification artifacts and, consequently,
non-expert practitioners, such as end users.

7 CONCLUSIONS AND FURTHERWORK
In order to make the benefits of aspect-oriented change realization
available in the mobile application domain, we explored the appli-
cability of aspect-oriented change realization based on a two-level
change type model and known change types originally devised
for the web application domain for the mobile application domain.
For this, we performed a study that involved a set of hypothetical
scenarios and two real mobile applications for Android. The study
revealed that the change types known from the web application
domain are in their essence applicable to the mobile application
domain. It also lead to the discovery of four new change types in
the mobile application domain and the corresponding specification–
implementation change type relationships along with further rela-
tionships between known change types. We discussed the problems
and limitations and paid particular attention to the issue of change
interaction.

By performing further studies, the catalog of change types could
be enriched with new change types that would make applying
aspect-oriented change realization available in the mobile appli-
cation domain even more convenient. This could be supported
further by expressing newly discovered change types at the mod-
eling level [35]. It has been demonstrated that easier maintenance
of aspects compensates for the initial effort necessary to develop

<Programming’18> Companion, April 9–12, 2018, Nice, France Sandra Kostova and Valentino Vranić

these aspects if they are not affecting the underlying structure,
while otherwise, the effect is opposite [12]. We would like to ex-
plore this further by assessing the level of maintainability reached
by aspect-oriented change realization using some of the available
frameworks [1, 26, 28]. Also, we would like to explore how layered
3D visualization of software models [13–15] possibly employing
virtual reality [32, 33] applied to aspect-oriented change realization
could improve maintainability.

ACKNOWLEDGMENTS
This work was supported by the Slovak Research and Develop-
ment Agency under the contract No. APVV-15-0508, Research &
Development Operational Programme for the project Research of
Methods for Acquisition, Analysis and Personalized Conveying of
Information and Knowledge ITMS 26240220039, co-funded by the
ERDF, and internal grant scheme of the Slovak University of Tech-
nology in Bratislava in support of the teams preparing proposals
for Horizon 2020.

REFERENCES
[1] W. Abdelmoez, Hatem Khater, and Noha El-shoafy. 2012. Comparing Main-

tainability Evolution of Object-Oriented and Aspect-Oriented Software Product
Lines. In Proceedings of 8th International Conference on INFOrmatics and Systems,
INFOS2012, Advances in Software Engineering Track. IEEE, Cairo, Egypt.

[2] Naveed Ali and Richard Lai. 2016. A Method of Requirements Change Manage-
ment for Global Software Development. Information and Software Technology 70,
C (2016), 49–67.

[3] Michal Bebjak, Valentino Vranić, and Peter Dolog. 2007. Evolution of Web Ap-
plications with Aspect-Oriented Design Patterns. In Proceedings of ICWE 2007
Workshops, 2nd International Workshop on Adaptation and Evolution in Web Sys-
tems Engineering, AEWSE 2007. Como, Italy.

[4] Ilona Bluemke and Konrad Billewicz. 2008. Aspects in the Maintenance of Com-
plied Programs. In Proceedings of 3rd International Conference on Dependability of
Computer Systems, DepCoS-RELCOMEX 2008. IEEE, Szklarska Porȩba, Poland.

[5] Ilona Bluemke and Konrad Billewicz. 2009. Aspect Modification of an EAR Appli-
cation. In Advanced Techniques in Computing Sciences and Software Engineering,
Proceedings of 2008 International Conference on Systems, Computing Sciences and
Software Engineering, SCSS 2008, part of International Joint Conferences on Com-
puter, Information, and Systems Sciences, and Engineering, CIS2E 08. Springer,
Krakow, Poland.

[6] Michal Bystrický and Valentino Vranić. 2015. Preserving Use Case Flows in
Source Code. In Proceedings of 4th Eastern European Regional Conference on the
Engineering of Computer Based Systems, ECBS-EERC 2015. IEEE Computer Society,
Brno, Czech Republic.

[7] Michal Bystrický and Valentino Vranić. 2017. Preserving Use Case Flows in Source
Code: Approach, Context, and Challenges. Computer Science and Information
Systems Journal (ComSIS) 14, 2 (2017), 423–445.

[8] Fernando Cejas. 2014. Aspect-Oriented Programming in Andorid. https:
//fernandocejas.com/2014/08/03/aspect-oriented-programming-in-android/.

[9] Sergej Chodarev, Dominik Lakatoš, Jaroslav Porubän, and Ján Kollár. 2014. Ab-
stract Syntax Driven Approach for Language Composition. Central European
Journal of Computer Science 4, 3 (2014), 107–117.

[10] Catarina Costa and Leonardo Murta. 2013. Version Control in Distributed Soft-
ware Development: A Systematic Mapping Study. In 2013 IEEE 8th International
Conference on Global Software Engineering, ICGSE 2013. IEEE, Bari, Italy.

[11] Peter Dolog, Valentino Vranić, and Mária Bieliková. 2001. Representing Change
by Aspect. ACM SIGPLAN Notices 36, 12 (Dec. 2001), 77–83.

[12] Stefan Endrikat and Stefan Hanenberg. 2011. Is Aspect-Oriented Programming
a Rewarding Investment into Future Code Changes? A Socio-technical Study
on Development and Maintenance Time. In Proceedings of 2011 IEEE 19th Inter-
national Conference on Program Comprehension, ICPC 2011. IEEE, Kingston, ON,
Canada.

[13] Matej Ferenc, Ivan Polášek, and Juraj Vincúr. 2017. Collaborative Modeling and
Visualisation of Software Systems Using Multidimensional UML. In Proceedings
of 5th IEEE Working Conference on Software Visualization, VISSOFT 2017. IEEE,
Shangai, China.

[14] Lukáš Gregorovič and Ivan Polášek. 2015. Analysis and Design of Object-Oriented
Software Using Multidimensional UML. In Proceedings of 15th International Con-
ference on Knowledge Technologies and Data-Driven Business. ACM, Graz, Austria.

[15] Lukáš Gregorovič, Ivan Polášek, and Branislav Sobota. 2015. Software Model
Creation with Multidimensional UML. In Proceedings of 9th IFIP WG 8.9 Working
Conference, CONFENIS 2015, part of WCC 2015 (LNCS 9357). Springer, Daejeon,
Korea.

[16] Ivar Jacobson. 2003. Use Cases and Aspects – Working Seamlessly Together.
Journal of Object Technology 2, 4 (2003).

[17] Ivar Jacobson and Pan-Wei Ng. 2004. Aspect-Oriented Software Development with
Use Cases. Addison-Wesley.

[18] Amin Jalali and Ilia Bider. 2014. Towards Aspect Oriented Adaptive Case Manage-
ment. In Proceedings of 2014 IEEE 18th International Enterprise Distributed Object
Computing Conference, EDOCW 2014, Workshops and Demonstrations. IEEE, Ulm,
Germany.

[19] Ramnivas Laddad. 2010. AspectJ in Action: Enterprise AOP with Spring Applications
(second ed.). Manning.

[20] Ján Lang, Michal Jantošovič, and Ivan Polášek. 2012. Re-Usability in Complex
Event Pattern Monitoring. In Proceedings of IEEE 10th Jubilee International Sym-
posium on Aplied Machine Intelligence and Informatics, SAMI 2012. IEEE, Herľany,
Slovakia.

[21] Ján Lang and Ján Jánik. 2013. Reactive Distributed System Modeling Supported
by Complex Event Processing. In Proceedings of 3rd Eastern European Regional
Conference on the Engineering of Computer Based Systems, ECBS-EERC 2013. IEEE
Computer Society, Budapest, Hungary.

[22] Ivan Martoš and Valentino Vranić. 2017. Affecting Applications in Android Using
Aspects. In Proceedings of 2015 IEEE 1st International Workshop on Consumer
Electronics, 2015 CE WS. IEEE, Novi Sad, Serbia.

[23] Russell Miles. 2004. AspectJ Cookbook. O’Reilly.
[24] Roman Pipík and Ivan Polášek. 2013. Semi-Automatic Refactoring to Aspect-

Oriented Platform. In Proceedings of 14th IEEE International Symposium on Com-
putational Intelligence and Informatics, CINTI 2013. IEEE, Budapest, Hungary.

[25] Jaroslav Porubän, Miroslav Sabo, Ján Kollár, and Marjan Mernik. 2010. Abstract
Syntax Driven Language Development: Defining Language Semantics Through
Aspects. In Proceedings of International Workshop on Formalization of Modeling
Languages, FML ’10, part of ECOOP 2010. ACM, Maribor, Slovenia.

[26] Claudio Sant’anna, Alessandro Garcia, Christina Chavez, Carlos Lucena, and
Arndt v. von Staa. 2003. On the Reuse and Maintenance of Aspect-Oriented
Software: An Assessment Framework. In Proceedings of XVII Brazilian Symposium
on Software Engineering. Manaus, Brazil.

[27] Felix Schwägerl, Thomas Buchmann, and BernhardWestfechtel. 2015. SuperMod—
A Model-Driven Tool that Combines Version Control and Software Product Line
Engineering. In 2015 10th International Joint Conference on Software Technologies,
ICSOFT 2015. IEEE, Colmar, France.

[28] Ananthi Sheshasaayee and Robi Jose. 2015. A Theoretical Framework for the
Maintainability Model of Aspect Oriented Systems. Procedia Computer Science 62
(2015), 505–512. Proceedings of 2015 International Conference on Soft Computing
and Software Engineering, SCSE 2015.

[29] Jessada Tomyim andAmnart Pohthong. 2016. Requirements ChangeManagement
Based onObject-Oriented Software Engineeringwith UnifiedModeling Language.
In 2016 7th IEEE International Conference on Software Engineering and Service
Science, ICSESS 2016. IEEE, Beijing, China.

[30] Ľuboš Staráček and Valentino Vranić. 2014. MDA Based Multiplatform Mobile
Application Modeling with Platform Compliant User Interfaces. INFOCOMP
Journal of Computer Science 13, 2 (2014), 34–43.

[31] Erik Šuta, Ivan Martoš, and Valentino Vranić. 2017. Usability of AspectJ from the
Performance Perspective. In Proceedings of 2015 IEEE 1st International Workshop
on Consumer Electronics, 2015 CE WS. IEEE, Novi Sad, Serbia.

[32] Juraj Vincúr, Pavol Návrat, and Ivan Polášek. 2017. VR City: Software Analysis in
Virtual Reality Environment. In IEEE International Conference on Software Quality,
Reliability and Security, QRS 2017. IEEE, Prague, Czech Republic.

[33] Juraj Vincúr, Ivan Polášek, and Pavol Návrat. 2017. Searching and Exploring
Software Repositories in Virtual Reality. In Proceedings of ACM Symposium on
Virtual Reality Software and Technology, VRST 2017. ACM, Gothenburg, Sweden.

[34] Valentino Vranić, Michal Bebjak, Radoslav Menkyna, and Peter Dolog. 2011. De-
veloping Applications with Aspect-Oriented Change Realization. In Proceedings
of 3rd IFIP TC2 Central and East European Conference on Software Engineering
Techniques, CEE-SET 2008, Revised Selected Papers (LNCS 4980). Springer, Brno,
Czech Republic.

[35] Valentino Vranić and Branislav Kuliha. 2015. Realizing Changes by Aspects at the
Design Level. In Proceedings of IEEE 19th International Conference on Intelligent
Engineering Systems, INES 2015. IEEE, Bratislava, Slovakia.

[36] Valentino Vranić, Radoslav Menkyna, Michal Bebjak, and Peter Dolog. 2009.
Aspect-Oriented Change Realizations and Their Interaction. e-Informatica Soft-
ware Engineering Journal 3, 1 (2009), 43–58.

https://fernandocejas.com/2014/08/03/aspect-oriented-programming-in-android/
https://fernandocejas.com/2014/08/03/aspect-oriented-programming-in-android/

	Abstract
	1 Introduction
	2 Applying Known Aspect-Oriented Change Types to Mobile Applications
	3 Applied Implementation Change Types in Mobile Applications
	3.1 Performing Action After Event
	3.2 Additional Parameter Checking
	3.3 Additional Return Value Checking/Modification
	3.4 Class Exchange
	3.5 Method Substitution

	4 New Specification Change Types for the Mobile Application Domain
	5 Change Interaction
	6 Related Work
	7 Conclusions and Further Work
	Acknowledgments
	References

