A Configurable UML Based Use Case Modeling Metamodel

Lubos$ Zelinka and Valentino Vranié
Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technology
Slovak University of Technology,
Ilkovicova 3, 84216 Bratislava 4, Slovakia
zelinka04 @ student.fiit.stuba.sk, vranic @fiit.stuba.sk

Abstract

There is a variety of approaches to use case modeling,
especially regarding their textual description as their true
form. Under certain circumstances, the use of each one of
these approaches may be justified. A consistent applica-
tion of a particular approach requires the existence of its
metamodel. It appears that use case modeling notations
are close enough to each other to allow for constructing a
common, configurable use case modeling metamodel. Such
a metamodel is proposed in this paper. It is based on the
UML metamodel elements relevant to use case adapted and
extended to cover different use case modeling notations with
a special attention given to the elements of use case de-
scription. The configuration options of the proposed use
case modeling metamodel are identified and the actual val-
ues for Jacobson’s and Cockburn’s notation presented and
discussed. The metamodel is evaluated by a configurable
use case modeling tool prototype.

1. Introduction

Use cases are widely used, but often degraded to be
merely UML diagrams with only a few words of descrip-
tion. Being UML standardized gives a false impression
of uniformness of this technique. Indeed, speaking of use
case diagrams, we may note that although there are other
graphical notations ranging from those close to the UML
use case notation [5, 8] to some quite different notations [4]
in practice, they are truly a realm of UML. However, UML
does not prescribe any notation for the use case description,
which is their main form. There is a tremendous number of
varieties in the use case textual description.

It is possible to discuss advantages of one approach to
use case modeling over the other ones, but that would not
bring any real value to modelers who have to use them as
decisions that lead to adopting a particular approach might

be beyond their control. They are interested in having their
use case modeling as such—as well as consistency of the
resulting models—supported by a tool. However, the tool
support of a particular notation cannot possibly exist with-
out making it clear what is, and what is not a part of the
notation.

A model of the notation—i.e., a metamodel—is what is
actually needed. It appears that use case modeling nota-
tions are close enough to each other to allow for construct-
ing a common, configurable use case modeling metamodel,
which is the topic of this paper.

The paper is further organized as follows. Section 2 ana-
lyzes differences in understanding and application of the use
case notation elements focusing mainly on Jacobson’s and
Cockburn’s notation. Based on this analysis, Sect. 3 intro-
duces a use case modeling metamodel. Section 4 presents
options for the configuration of this metamodel and their
values for Jacobson’s and Cockburn’s notation. Section 6
discusses related work. Section 7 brings conclusions and
directions of further work.

2. Diversity in use case modeling

A use case describes a coherent functionality that pro-
vides some result of value to a user. As the term says, it is
a case of a system use [1]. There are many different ways
of describing use cases, but all of them have their roots in
Jacobson’s or Cockburn’s notation. This section briefly ex-
plains the most prominent elements of use case description
as such, and than points out the differences between Jacob-
son’s and Cockburn’s notation. The way the technique is
used in practice is to a large extent influenced by the capa-
bilities of available tools, so an overview of tool support is
presented, too.

2.1. Use case description

A semiformal use case description is simply a natural
language text structured using a text template which divides
the text into logical parts. Even though there is no broadly
accepted standard use case template, the existing templates
are quite similar.

Name and brief description provide the reader with ba-
sic information about the use case. The use case name—
sometimes called fitle—uniquely identifies the use case in
the use case model (or at least in its namespace if the model
is partitioned). Use case names may be accompanied by
identification numbers used to refer to them.

Actors are roles adopted by external entities that inter-
act with the system directly [1]. Typically, actors are user
roles, but systems, subsystems, or even time can all perform
as actors. Each actor can participate in many use cases and
each use case can embrace several actors. It is often dis-
tinguished between primary and secondary actors. Primary
actors participate in a use case to satisfy their goals, while
secondary actors help the system satisfy goals of primary
actors.

Preconditions are a set of constraints that should be ful-
filled before the use case starts. Postconditions are a set of
constraints that would be fulfilled after the use case finishes
if preconditions have been satisfied before it started. This is
actually the design by contract [12], but we may encounter
different, less restrictive understanding of preconditions and
postcondition, putting them to a merely informative posi-
tion [20], or a fully restricted view, where the very use case
activation is presumed by fulfilling its precondition [1].

Flows of events—or simply just flows (known also as
scenarios)— represent every possible outcome of an at-
tempt to accomplish a use case goal [15]. A flow is a se-
quence of interactions between an actor and a system. The
interactions start from the triggering action and continue
until the goal is delivered or abandoned [10]. In the use
case description the interactions are represented by steps.
Flows are sometimes represented as prose, but usually they
are represented as sequences of steps, or—more precisely—
partial orderings of steps [5], as some steps simply don’t fit
into any ordering (such as “at any point, a user can cancel
the activity”). Very often, it is distinguished between main
(or basic) and alternative flows. A main flow describes the
normal sequence of steps in the execution of a use case [2].
Usually, it represents the interaction between the actor and
the system under ideal conditions without alternatives and
exceptions. Alternative flows cover behavior that is of op-
tional, exceptional, or truly alternate character in relation to
another flow [2]. They are dependent on some condition
occurring at an explicit point in another flow. Additionally,
another category of flows can be distinguished: subflows,
which are used to separate repetitive interaction from other

flows [10].

Use case relationships are a part of the use case descrip-
tion even though they are not explicitly present in most of
the use case templates. UML offers two standard relation-
ships between use cases called include and extend. The in-
clude relationship defines that a use case contains the be-
havior defined in another use case [14]. The purpose of this
relationship is to reuse existing behavior or extract identi-
cal behavior. The behavior of the included use case is sim-
ply inserted into the behavior described in the including use
case. It is similar to a function call in a programming lan-
guage, but the include relationship should not be used for a
functional decomposition. The extend relationship is a re-
lationship directed from the extending use case towards the
use case being extended that specifies how and when the be-
havior defined in the extending use case can be inserted into
the behavior defined in the use case being extended [14].
It is typically used to add optional or exceptional behavior
without making changes to the behavior described in ex-
tended use case, which is similar to alternative flows.

The extend relationship is used in combination with ex-
tension points, which are named places in the flow of events
where additional behavior can be inserted or attached [2].
Every flow of events can have multiple extension points.
A common way to define an extension point in a use case
description is inserting its name into the flow of events be-
tween two steps. It’s a pretty straightforward way, but every
extension point refers only to a single place in the flow of
events, which can be limiting. Since steps in flows of events
are usually numbered, it is possible to define the extension
point by a step number. In addition, it is possible to create
extension points that occur over multiple steps between two
step numbers.

2.2. Jacobson’s notation

Jacobson’s and Cockburn’s use case modeling notation
are well established and distinguished. Consider the exam-
ple in Fig. 1 and 2. We can see that Jacobson’s notation
allows multiple main flows. The extension point is defined
by a step number in a specific flow which suggest the possi-
bility of using extension points over multiple steps. Beside
alternative flows and subflows, Jacobson employs a special
flow denoted as extension flow, but it can be seen just as an
alternative flow defined in another use case, as confirmed in
Jacobson’s own writing [10].

2.3. Cockburn’s notation

Cockburn is a strong proponent of a purely textual repre-
sentation of use cases. In the example of extend relationship
in Fig. 3, the Check spelling use case extends the Edit a doc-
ument use case implicitly by its main flow. There is no ex-

Use Case: Reserve Room

Basic Flows:

B1. Reserve Room

The use case begins when a customer wants to reserve a room.

1. The customer selects to reserve a room.

2. The system displays the types of rooms the hotel has and their rates.

3. The customer Check Room Cost.

4. The customer makes the reservation for the chosen room.

5. The system deducts from the database the number of rooms of the
specified type available for reservation.

o

The system creates a new reservation with the given details.

7. The system displays the reservation confirmation number and check-
in instructions.
8. The use case terminates.

Alternate Flows:

Al. Duplicate Submission If in step 5 of the basic flow there is an identi-
cal reservation in the system (same name, e-mail, and start and end dates),
the system displays the existing reservation and asks the customer if he
wants to proceed with the new reservation.

1. If the customer wants to continue, the system proceeds with the
reservation, and the use case resumes.

2. If the customer indicates that the new reservation is a duplicate, the
use case terminates.

Subflows:
S1. Check Room Cost

1. The customer selects his desired room type and indicates his period
of stay.

2. The system computes the cost for the specified period.

Extension Points:
E1. Update Room Availability The Update Room Availability extension
point occurs at step 5 of the Basic Flow.

Figure 1. A use case in Jacobson’s notation
(adopted from [2]).

plicit extension point either: the extension point is referred
to descriptively in the trigger part of the description.

2.4. Tool support

While general UML modeling tools offer some support
of use case modeling, there are also dedicated use case mod-
eling tools with usually better coverage of use case descrip-
tion. The challenging areas of use case modeling support
are flows and use case relationships because their changes
affect the integrity of textual use case descriptions. Based
on the creation of textual use case descriptions, it is possible
to distinguish three categories of use case tools: text based,
template based, and model based tools.

In the text based use case modeling tools, the use case
description—including flows and use case relationships—is
written as plain or formatted text into respective text boxes.
Some tools in this category support formatted text, which
makes the textual use case descriptions easier to read. The

Use Case: Handle Waiting List

Extension Flows:

EF1. Queue for Room This extension flow occurs at the extension point
Update Room Availability in the Reserve Room use case when there are
no Rooms of the selected type available.

1. The system creates a pending reservation with a unique identifier for
the selected Room type.

2. The system puts the pending reservation into a waiting list.

3. The system displays the unique identifier of the pending reservation
to the customer.

4. The base use case terminates.

Figure 2. An extension use case in Jacob-
son’s notation (adopted from [2]).

Use Case: Edit a document
Primary actor: user

Scope: Wapp

Level: user goal

Trigger: User opens the application.
Precondition: none

Main success scenario:
1. User opens a document to edit.
2. User enters and modifies text. User saves document and exits
application.

Use Case: Check spelling Primary actor: user

Scope: Wapp

Level: subfunction!

Precondition A document is open

Trigger: Anytime in Edit a document that the document is open and the
user selects to run the spell checker.

Main success scenario: ...etc....

Figure 3. Use cases in Cockburns’s notation
(adopted from [5]).

general problem of these tools is the lack of the support for
the use case description maintenance. Examples of such
tools include ArgoUML, Poseidon for UML, and IBM Ra-
tional Software Architect

In the template based use case modeling tools, a static
or dynamic template is used to create use case descrip-
tions. Templates basically partition the description text
(plain or formatted). Common partitionings distinguish be-
tween flows and a range of simple description items, such as
use case name, brief description, preconditions, postcondi-
tions, and other similar parts of the use case description that
do are not numbered. In case of dynamic template support,
the templates can be adapted by adding new or removing
existing types of flows and description items to fit the user
needs. While the maintainability of use case descriptions
is still problematic even in such tools, they are at least eas-
ier to read and write. For example, Visual Paradigm and
Enterprise Architect fall into this category.

In model based use case modeling tools, use case de-
scriptions are based on a specific use case model. These
tools usually contain sophisticated formatted text editors
that directly manipulate the structured use case descriptions
according to the use case model. For example, every step
is a part of a specific flow, which allows the user to per-
form changes in the order of steps that result in automatic
renumbering of affected steps and other parts of the use case
description that depend on them like alternative flows or ex-
tension points. This is only one of many ways how tools of
this category help the user to ensure the integrity of use case
descriptions. Visual Use Case and CaseComplete are exam-
ples of model based use case modeling tools.

3. Invoking a metamodel

The diversity in use case modeling can be concisely cap-
tured in a metamodel, which can serve to better understand
this technique and as a basis for the development of con-
figurable use case modeling tools. Since use case modeling
is partially covered by the UML metamodel, we will adapt
and extend it with the notions needed to cover textual part
of use cases. Our aim was not to add to UML specifica-
tion, but to develop a concise, standalone use case modeling
metamodel. Integration into the UML metamodel is a part
of our ongoing work.

3.1. Flows

Flows of events (F1low) are an essential part of the use
case description (see Figure 4). Each flow consists of steps
(Step). This is a generally accepted idea, yet actual step
representation, including their ordering, may vary signifi-
cantly and as such is beyond this metamodel. However, in
our metamodel, we do recognize the possibility of existence
of special kinds of steps (TypedStep) with the agreed
meaning given by their type (StepType) which could be
defined by its name, the list of parameters and the list of
parameter names.

Three types of flows can be recognized: main (basic)
flow (MainFlow), subflow (Subflow), and alternative
flow (AlternativeFlow). In general, a use case may
have any number of main flows—even none—though some
approaches require a main flow.

A use case without a main flow would represent a use
case that could not be activated directly by an actor. Instead,
it would be intended just for inclusion in other use cases or
to extend them, in which case it should provide one or more
subflows or alternative flows, respectively.

A use case may include preconditions and postcondi-
tions, which are a kind of a constraint (Constraint).
Other parts of the use case description vary signifi-
cantly among approaches and even in a particular ap-

+flowStep
1"

Step

Flow ‘1

[N

Subflow MainFlow AlternativeFlow

\+ subFI% mainFlow
1 1

UseCase 0..1

+alternativeFlow

+precondition
+postcondition
A *

Constraint

* 1
+ useCase

+ actor + descriptionltem

* *

Actor Descriptionltem

Figure 4. Flows.

proach depending software analyst preferences, so they
are just indicated as any kind of a description item
(DescriptionItem).

In our metamodel, we made the participation relation-
ship between Actor and UseCase explicit whereas in
the UML metamodel it is given by the fact that these two
metaclasses are derived from BehavioredClassifier
which allows for them to be associated.

An alternative flow is activated, usually according to a
constraint (Constraint), in a particular step (Step). In
some approaches, it is possible to specify the execution or-
der of the alternative flow with respect to the step affected
by it usually before, after, or around it, i.e. with the full
control upon the step (just like advices in aspect-oriented
programming).

Any flow can have subflows. A use case with no flows
can be an abstract use case intended to be specialized [1].

3.2. Relationships

In general, there are two types of use case relationships:
include and extend. The UML metamodel recognizes both
of them as a special kind of DirectedRelationship
(which is the metaclass the general dependency is derived
from, too, making them a close relative of it). However,
some approaches ignore the extend relationship and, hypo-
thetically, there could be approaches that wouldn’t provide
not even the include relationship.

The include relationship (see Figure 5) means an
inclusion of a specific flow from another use case
(FlowInclusion) in one or several steps of the includ-
ing use case (Step). We opt for inclusion of a general flow

(Flow), although it is unlikely that someone would want to
include an alternative flow. The inclusion of a flow may be
constrained (Constraint).

Step —?1 " * flowSte Flow

1. + includedFlow
+ includingStep

UseCase
. 1 1
* + includedUC + includinguC
FlowlInclusion
+ include
+ inclusign * *
Include
0..
0..1

*

+ inclusionConstraint
Constraint

Figure 5. The include relationship.

The inclusion of a flow (FlowInclusion) is possible
even without the corresponding include relationship (zero
multiplicity of Include), which covers flow activations
of use case’s own flows.

The extend relationship means an extension of one
or several extension points (ExtensionPoint) of the
use case being extended by a specific extension flow
(FlowExtension). Some approaches allow only an al-
ternative flow to serve as an extending flow, but this is not
generally accepted, so our metamodel allows any kind of
flow in this role (Fig. 6).

Analogously to alternative flows—which actually act as
extension flows in a single use case—some approaches al-
low to specify the execution order of the extension flow
with respect to the extension point, usually before, after, or
around it, i.e. with the full control upon the extension point
(just like advices in aspect-oriented programming).

An extension point (ExtensionPoint) is merely a
name of the step or a range of steps (startingStep—
endingStep) represented by an extension location
(ExtensionLocation exposed by the use case being
extended. The extension of a flow may be constrained
(Constraint). In the UML metamodel, there is at most
one constraint for each extend relationship. Our metamodel
allows several constraints for each extension flow.

As with the flow inclusion, the extension of a flow
(FlowExtension) is possible even without the cor-
responding extend relationship (zero multiplicity of
Extend and ExtensionPoint with respect to
ExtensionLocation), which covers flow alterations

of use case’s own flows.

4. Metamodel configuration

The use case modeling metamodel proposed in the pre-
vious section can be configured to represent an established
notation or simply to define a use case modeling that fits
the needs of a particular organization. This can be done
mostly by restricting multiplicities of associations in the
metamodel. Such a restriction can represent any subset of
values allowed by the original multiplicity, but only a total
restriction to zero is of practical meaning.

Restricting multiplicities might be seen as a low-level
metamodel configuration. To make the configuration eas-
ier, we can represent most of the configuration options as
Boolean variables where true stands for the original multi-
plicity, and false for the zero multiplicity. Table 1 presents
the list of the most important Boolean configuration options
and their values in Jacobson’s (J) and Cockburn’s (C) nota-
tion, which we discussed in Sect. 2.2 and 2.3.

Table 1. The use case metamodel configura-
tion options and their values in Jacobson’s
(J) and Cockburn’s (C) notation.

Property

Single-Step Extension Points
Range Extension Points
Mandatory Main Flow

Multiple Main Flows

Subflows

Subflows in Main Flows
Subflows in Alternative Flows
Subflows in Subflows
Alternative Flows

Alternative Flows in Main Flows
Alternative Flows in Subflows
Alternative Flows in Alternative Flows
Extension

Multiple Extension Locations in an Extension
Extension by a Specific Flow
Extension Flow Constraint
Extension Flow Execution Order
Inclusion

Inclusion Flow Constraint
Inclusion of a Specific Flow

ZZ 2 e
ZZRZZZZZR LR Z<Z 20

Single-Step Extension Points means the possibility of
having startingStep tobeequal to endingStep. For
Range Extension Points, startingStep must be able to
differ from endingStep.

+ extend

*

+extend

UseCase ‘1 + extendingUC

Extend

1 +extendedUC
1| + useCase

*

*

+ extensionPoint
ExtensionPoint

0..

=

+ extensionPoint

0..1| + step

0.1

+ extension

1.*

ExtensionLocation + extensionLocation

*

lowExtension

+ executionOrder
1 0..1

ExecutionOrder

+ startingStep
1

+ endingStep

+ extendingFlow

Step

1.+ tTlowStep ?

Figure 6. The extend relationship.

Mandatory Main Flow restricts the minimum multiplic-
ity of mainFlow to 1, while no Multiple Main Flows
would mean restricting its maximum to 1.

Options Subflows, Alternative Flows, Inclusion, and Ex-
tension have a meaning of the very presence of respective
metaclasses.

If subflows are allowed, their inclusion can be restricted
with respect to the type of the including flow by the fol-
lowing options: Subflows in Main Flows, Subflows in
Alternative Flows and Subflows in Subflows. There are
analogous options for alternative flows: Alternative Flows
in Main Flows, Alternative Flows in Subflows, and Al-
ternative Flows in Alternative Flows. All these options
would be realized by constraining associations Flow—
InclusionFlowand Flow-ExtensionFlow to allow
only desired subtypes of F1ow.

The rest of Boolean options has the realization in multi-
plicity restriction as listed below:

e no Multiple Extension Locations in an Extension:
maximum extensionLocat ion multiplicity is 1

e no Extension by a Specific Flow: maximum
extendingFlowis 0

e no Extension Flow Constraint: maximum
extensionConstraint is0

e no Extension Flow Execution Order: maximum

executionOrderis0

0..1 + extensionConstraint
Flow * Constraint
e no Inclusion Flow Constraint: maximum
inclusionConstraint is 0
e no Inclusion of a Specific Flow: maximum

includedFlowis O

There are two configuration options that consist of a list
of elements (not listed in the table). Description Items rep-
resents a (possibly) empty list of textual description items a
use case can have. Execution Order Types is a list of values
that represent possible execution order types of extension
flows, usually before, after, or around (as has been men-
tioned in Sect. 3.1).

The presence of options Alternative Flows in Subflows,
Alternative Flows in Alternative Flows, and Multiple Ex-
tension Locations in an Extension in Jacobson’s notation
configuration is estimated: the notation allows for these op-
tions, but we haven’t actually encountered examples that
would employ them.

5. Evaluation

In order to evaluate our approach, we have developed a
prototype of a configurable use case modeling tool. The
tool supports the main, textual part of use case modeling.

We were mainly interested in testing of the metamodel
and choice of configuration options in practice. We iden-
tified a possibility of having inconsistent configurations of
options. Consider a configuration with selected option Sub-
flows and Subflows in Alternative Flows, but with no Al-
ternative Flows, nor Alternative Flows in Main Flows. Of

course, to solve this, it would be sufficient to include the
Alternative Flows and Alternative Flows in Main Flows op-
tions.

Although in the current tool implementation this prob-
lem does not actually produce inconsistent use case models,
users may be confused by not having the actual capabili-
ties of the options they selected available. This is actually
a feature interaction problem. To deal with them, feature
modeling as an appropriate approach to configuration rep-
resentation and validation could be used [7, 21].

6. Related Work

Hoffman et al. [19] recently' proposed an extension of
the UML metamodel to support textual use case description.
While our aim was to enable precise definition of differ-
ent use case notations to enable their consistent application,
Hoffman et al. are concerned mainly with ensuring con-
sistency between use case diagrams and descriptions. To
achieve this, they include the steps in the use case flows in
their metamodel. This is complementary with respect to the
metamodel proposed in this paper. However, in our meta-
model, it would be necessary to support notational variants
of step representation.

The UML metamodel [14] is a prominent attempt of es-
tablishing a common diagrammatical use case modeling no-
tation, but it also defines a set of notions, which we find
useful as a basis for our use case modeling metamodel.

Rui and Butler [17] proposed a use case modeling meta-
model focused on a single use case modeling notation. Oth-
ers have focused on unifying specific notational issues in
use case modeling such as alternative flow types [11], for-
malizing the include and extend relationships [3], or even
formalizing use cases as such [18].

While the use case modeling metamodel proposed in
this paper also attempts to cover diversity of options in use
case modeling, its goal is not to unify them—at least not
more than necessary—but to map the common and variable
among them and to provide a way to opt for a particular
notation or a combination of several notations as needed.
The latter requires a consistency check, which the proposed
metamodel is capable of, too.

7. Conclusions and Further Work

In this paper we proposed a use case modeling meta-
model. The metamodel is based on UML metamodel and
embraces mainly Jacobson’s and Cockburn’s use case nota-
tion.

The proposed metamodel is configurable by including or
omitting some of its elements, posing some constraints on

'We became aware of this work during the final editing of our paper.

their use, or by constraining multiplicity of relationships
among them. Its configurations represent individual use
case modeling notations, so it can be used to formally de-
fine the syntax of a particular use case modeling notation
that should be followed manually in general modeling tools
or enforced by a dedicated tool.

We expect our metamodel would develop further to em-
brace other possibilities of use case modeling. For example,
we have not considered explicitly business use cases [9],
which certainly deserve attention. We plan to extend our
configurable use case modeling tool prototype and perform
experiments that embrace new features.

With respect to configuration and feature interaction
problems, we would like to explore the possibility of em-
ploying feature modeling [7, 21]. For getting a full use of
a feature model, the metamodel would have to be trans-
formed to include all the possibilities of its configuration
space and have them mapped to respective features accord-
ing to the approach of the superimposed variants [6]. While
feature modeling is basically in accordance with the graph-
ical way of expressing metamodels we stick to, some con-
straints have to be expressed in a non-graphical form [21].
Other object-oriented metamodels have been expressed in
a purely non-graphical form [16] even in cases when they
define graphical models [13].

Yet another line of further work is to improve the inte-
gration of the elements of our use case modeling metamodel
with the UML metamodel.

Acknowledgements The work was supported by the Sci-
entific Grant Agency of Slovak Republic (VEGA) grant No.
VG 1/0508/09.

References

[1] J. Arlow and I. Neustadt. UML 2 and the Unified Process.
Addison-Wesley, 2005.

[2] K. Bittner and I. Spence. Use Case Modeling. Addison-
Wesley, 2002.

[3] A. Braganca and R. J. Machado. Extending uml 2.0 meta-
model for complementary usages of the «extend» relation-
ship within use case variability specification. In Proc. of
10th International Software Product Line Conference, SPLC
2006, pages 123-130, Baltimore, USA, 2006. IEEE Com-
puter Society Press.

[4] R. J. A. Buhr. Use case maps as architectural entities for
complex systems. IEEE Transactions on Software Engineer-
ing, 24(12):1131-1155, 1998.

[5]1 A.Cockburn. Writing Effective Use Cases. Addison-Wesley,
2000.

[6] K. Czarnecki and M. Antkiewicz. Mapping features to mod-
els: A template approach based on superimposed variants.
In R. Gliick and M. R. Lowry, editors, Proc. of Genera-
tive Programming and Component Engineering, 4th Inter-

[7

—

[8

—_—

(9]

(10]

[11]

[12]

[13]

(14]

[15]
[16]

(17]

(18]

[19]

[20]

(21]

national Conference, GPCE 2005, LNCS 3676, pages 422—
437, Tallinn, Estonia, Oct. 2005. Springer.

K. Czarnecki and U. W. Eisenecker. Generative Program-
ing: Methods, Tools, and Applications. Addison-Wesley,
2000.

A. Dedeke and B. Lieberman. Qualifying use case diagram
associations. IEEE Computer, 39(6):23-29, June 2006.

J. Heumann. Introduction to business modeling using
the unified modeling language (uml). developer-
Works, IBM, Nov. 2003. http://www.ibm.com/
developerworks/rational/library/360.
html.

I. Jacobson and N. Pan-Wei. Aspect-Oriented Software De-
velopment with Use Cases. Addison-Wesley, 2004.

P. Metz, J. O’Brien, and W. Weber. Specifying use case
interaction: Types of alternative courses. Journal of Object-
Oriented Programming, 2(2):111-131, Mar. 2003.

B. Meyer. Object-Oriented Software Construction. Prentice
Hall, second edition, 1997.

M. Navarcik and I. Pol4dsek. Object model notation. In Proc.
of 8th International Conference on Information Systems Im-
plementation and Modelling, ISIM 2005, Roznov pod Rad-
hostém, Czech Republic, 2005.

Object Management Group. OMG unified mod-
eling language (OMG UML), superstructure, v2.1.2,
Nov. 2007. http://www.omg.org/docs/formal/
07-11-02.pdf.

T. Pender. UML Bible. Wiley, 2003.

J. Porubién and P. Viclavik. Generating software language
parser from domain classes. In Proc. of International Scien-
tific Conference on Computer Science and Engineering, CSE
2008, pages 133-140, Stard Lesnd, Slovakia, Sept. 2008.

K. Rui and G. Butler. Refactoring use case models: The
metamodel. In M. J. Oudshoorn, editor, Proc. of 26th Aus-
tralasian Computer Science Conference, ACSC 2003, pages
301-308, Adelaide, Australia, Feb. 2003.

P. Stevens. On use cases and their relationships in the uni-
fied modelling language. In H. HuBmann, editor, 4th Inter-
national Conference on Fundamental Approaches to Soft-
ware Engineering, FASE 2001, held as a part of the Joint
European Conferences on Theory and Practice of Software,
ETAPS 2001, LNCS 2029, pages 140-155, Genova, Italy,
Apr. 2001. Springer.

A. N. Veit Hoffmann, Horst Lichter. Towards the integration
of uml- and textual use case modeling. Journal of Object
Technology, 8(3):85-100, 2009. http://www. jot .fm/
issues/issue_2009_05/article3/.

G. Overgaard and K. Palmkvist. Use Cases: Patterns and
Blueprints. Addison-Wesley, 2004.

V. Vrani¢. Reconciling feature modeling: A feature model-
ing metamodel. In M. Weske and P. Liggsmeyer, editors,
Proc. of 5th Annual International Conference on Object-
Oriented and Internet-Based Technologies, Concepts, and
Applications for a Networked World (Net.ObjectDays 2004),
LNCS 3263, pages 122-137, Erfurt, Germany, Sept. 2004.
Springer.

